
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2011, Article ID 171697, 11 pages
doi:10.1155/2011/171697

Research Article
Identifying a Global Optimizer with Filled Function
for Nonlinear Integer Programming

Wei-Xiang Wang,1 You-Lin Shang,2 and Lian-Sheng Zhang3

1 Department of Mathematics, Shanghai Second Polytechnic University, Shanghai 201209, China
2 Department of Mathematics, Henan University of Science and Technology, Luoyang 471003, China
3 Department of Mathematics, Shanghai University, Shanghai 200444, China

Correspondence should be addressed to Wei-Xiang Wang, zhesx@126.com

Received 27 March 2011; Revised 10 July 2011; Accepted 15 July 2011

Academic Editor: Rigoberto Medina

Copyright q 2011 Wei-Xiang Wang et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper presents a filled functionmethod for finding a global optimizer of integer programming
problem. The method contains two phases: the local minimization phase and the filling phase.
The goal of the former phase is to identify a local minimizer of the objective function, while
the filling phase aims to search for a better initial point for the first phase with the aid of the
filled function. A two-parameter filled function is proposed, and its properties are investigated.
A corresponding filled function algorithm is established. Numerical experiments on several test
problems are performed, and preliminary computational results are reported.

1. Introduction

Consider the following general global nonlinear integer programming:

min
x∈X

f(x), (P)

where f : Zn → R, X ⊂ Zn is a box set and Zn is the set of integer points in Rn. The
problem (P) is important since lots of real life applications, such as production planning,
supply chains, and finance, are allowed to be formulated into this problem.

One of main issues in the global optimization is to avoid being trapped in the basins
surrounding local minimizers. Several global optimization solution strategies have been put
forward to tackle with the problem (P). These techniques are usually divided into two
classes: stochastic method and deterministic method (see [1–7]). The discrete filled function
method is one of the more recently developed global optimization tools for discrete global
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optimization problems. The first filled function was introduced by Ge and Qin in [8] for
continuous global optimization. Papers [6, 7, 9–11] extend this continuous filled function
method to solve integer programming problem. Like the continuous filled function method,
the discrete filled function method also contains two phases: local minimization and filling.
The local minimization phase uses any ordinary discrete descent method to search for a
discrete local minimizer of the problem (P), while the filling phase utilizes an auxiliary
function called filled function to find a better initial point for the first phase by minimizing
the constructed filled function. The definitions of the filled function proposed in the papers
[9, 10] are as follows.

Definition 1.1 (see [9]). P(x, x∗) is called a filled function of f(x) at a discrete local minimizer
x∗ if P(x, x∗) meets the following conditions.

(1) P(x, x∗) has no discrete local minimizers in the set S1 = {x ∈ X : f(x) ≥ f(x∗)},
except a prefixed point x0 ∈ S1 that is a minimizer of P(x, x∗).

(2) If x∗ is not a discrete global minimizer of f(x), then P(x, x∗) does have a discrete
minimizer in the set S2 = {x | f(x) < f(x∗), x ∈ X}.

Definition 1.2 (see [10]). P(x, x∗) is called a filled function of f(x) at a discrete local
minimizer x∗ if P(x, x∗) meets the following conditions.

(1) P(x, x∗) has no discrete local minimizers in the set S1 \ x0, where the prefixed point
x0 ∈ S1 is not necessarily a local minimizer of P(x, x∗).

(2) If x∗ is not a discrete global minimizer of f(x), then P(x, x∗) has a discrete
minimizer in the set S2.

Although Definitions 1.1 and 1.2 and the corresponding filled functions proposed in
the papers [9, 10] have their own advantages, they have some defects in some degree, for
example, as the prefixed point x0 in Definition 1.2 may be a minimizer of the given filled
function, which will result in numerical complexity at the iterations or cause the algorithm
to fail. To avoid these defects, in this paper, we give a modification of Definitions 1.1 and 1.2
and propose a new filled function.

The rest of this paper is organized as follows. In Section 2, we review some basic
concepts of discrete optimization. In Section 3, we propose a discrete filled function and
investigate its properties. In Section 4, we state our algorithm and report preliminary
numerical results. And, at last, we give our conclusion in Section 5.

2. Basic Knowledge and Some Assumptions

Consider the problem (P). Throughout this paper, we make the following assumptions.

Assumption 2.1. There exists a constantD > 0 satisfying 1 ≤ D = maxx1,x2∈X,x1 /=x2‖x1−x2‖ < ∞.

Assumption 2.2. There exists a constant L > 0, such that

∣
∣f(x) − f

(

y
)∣
∣ ≤ L

∥
∥x − y

∥
∥ (2.1)

holds, for any x, y ∈ ⋃x∈X N(x), where N(x) is a neighborhood of the point x as defined in
Definition 2.4.
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Most of the existing discrete filled function methods are used for solving a box
constrained problem. To an unconstrained global optimization problem (UP): minx∈Rnf(x),
if f(x) satisfies lim‖x‖→+∞f(x) = +∞, then there exists a box set which contains all discrete
global minimizers of f(x). Therefore, (UP) can be turned into an equivalent formulation in
(P) and solved by any discrete filled function method.

For convenience, in the following, we recall some preliminaries which will be used
throughout this paper.

Definition 2.3 (see [10]). The set of all feasible directions at x ∈ X is defined by Dx = {d ∈ D :
x + d ∈ X},whereD = {±ei : i = 1, 2, . . . , n}, ei is the ith unit vector (the n-dimensional vector
with the ith component equal to one and all other components equal to zero).

Definition 2.4 (see [10]). For any x ∈ Zn, the discrete neighborhood of x is defined byN(x) =
{x, x ± ei, i = 1, 2, . . . , n}.

Definition 2.5 (see [10]). A point x∗ ∈ X is called a discrete local minimizer of f(x) over X
if f(x∗) ≤ f(x), for all x ∈ X ∩ N(x∗). Furthermore, if f(x∗) ≤ f(x), for all x ∈ X, then x∗

is called a strict discrete local minimizer of f(x) over X. If, in addition, f(x∗) < f(x), for all
(x ∈ X \ {x∗}), then x∗ is called a strict discrete local (global) minimizer of f(x) over X.

Algorithm 2.6 (discrete local minimization method).

(1) Start from an initial point x ∈ X.

(2) If x is a local minimizer of f over X, then stop. Otherwise, let

d∗ := arg min
di∈Dx

{

f(x + di) : f(x + di) < f(x)
}

. (2.2)

(3) Let x := x + d∗, and go to Step (2).

Let x∗ be a local minimizer of the problem (P). The new definition of the filled function
of f at x∗ is given as follows.

Definition 2.7. P(x, x∗) is called a discrete filled function of f(x) at a discrete local minimizer
x∗ if P(x, x∗) has the following properties.

(1) x∗ is a strict discrete local maximizer of P(x, x∗) over X.

(2) P(x, x∗) has no discrete local minimizers in the region

S1 =
{

x | f(x) ≥ f(x∗), x ∈ X \ {x∗}}. (2.3)

(3) If x∗ is not a discrete global minimizer of f(x), then P(x, x∗) does have a discrete
minimizer in the region

S2 =
{

x | f(x) < f(x∗), x ∈ X
}

. (2.4)
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3. Properties of the Proposed Discrete Filled Function T(x, x∗, q, r)

Let x∗ denote the current discrete local minimizer of (P). Based on Definition 2.7, a novel
filled function is proposed as follows:

T
(

x, x∗, q, r
)

=
1

q + ‖x − x∗‖ϕq

(

max
{

f(x) − f(x∗) + r, 0
})

, (3.1)

where

ϕq(t) =

⎧

⎪
⎨

⎪
⎩

π

2
− arctan

q

t
if t /= 0,

0 if t = 0,
(3.2)

where r > 0 and q > 0 are two parameters and r satisfies 0 < r < minf(x1)/= f(x2), x1,x2∈X |f(x1) −
f(x2)|.

The following theorems ensure that T(x, x∗, q, r) is a filled function under some
conditions.

Theorem 3.1. If 0 < q < min(r, π/4), then x∗ is a strict local maximizer of T(x, x∗, q, r).

Proof. Since x∗ is a local minimizer of (P), there exists a neighborhood N(x∗) of x∗ such that
f(x) ≥ f(x∗) and ‖x − x∗‖ = 1 hold, for any x ∈ N(x∗) ∩X. It follows that

T
(

x, x∗, q, r
)

=
1

q + 1

(
π

2
− arctan

q

f(x) − f(x∗) + r

)

,

T
(

x∗, x∗, q, r
)

=
1
q

(
π

2
− arctan

q

r

)

.

(3.3)

By the condition 0 < q < min(r, π/4) and the fact that the inequality

arctana − arctan b ≤ a − b (3.4)

holds for any real number a ≥ b, we have

Δ = T
(

x, x∗, q, r
) − T

(

x∗, x∗, q, r
)

=
1

q
(

q + 1
)

(

arctan
q

r
− π

2

)

+
1

q + 1

(

arctan
q

r
− arctan

q

f(x) − f(x∗) + r

)

≤ 1
q
(

q + 1
)

(

arctan 1 − π

2

)

+
q

q + 1

(
1
r
− 1
f(x) − f(x∗) + r

)

= −π
4

1
q
(

q + 1
) +

1
q + 1

q

r

f(x) − f(x∗)
f(x) − f(x∗) + r
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≤ −π
4

1
q
(

q + 1
) +

1
q + 1

=
1

q
(

q + 1
)

(

q − π

4

)

< 0.

(3.5)

Hence, T(x, x∗, q, r) < T(x∗, x∗, q, r), which implies that x∗ is a strict local maximizer of
T(x, x∗, q, r).

Lemma 3.2. For every x′ ∈ X, there exists d ∈ D such that ‖x′ + d − x∗‖ > ‖x′ − x∗‖.

For the proof of this lemma, see, for example, [6] or [7].

Theorem 3.3. Suppose that 0 < q < min(1, r, ((π − 2)/4(1 + D))r). If f(x) ≥ f(x∗) and x /=x∗,
then x is not a local minimizer of T(x, x∗, q, r).

Proof. For any x /=x∗ with f(x) ≥ f(x∗), by Lemma 3.2, there exists a direction d ∈ D with
x + d ∈ ⋃x∈X N(x) such that ‖x + d − x∗‖ > ‖x − x∗‖. For this d, we consider the following
three cases.

Case 1 (f(x + d) ≥ f(x∗)). In this case, by using the given condition and the fact that the
inequality

arctana ≤ a (3.6)

holds for any real number a ≥ 0, we have

Δ1 = T
(

x + d, x∗, q, r
) − T

(

x, x∗, q, r
)

=
1

q + ‖x + d − x∗‖
(
π

2
− arctan

q

f(x + d) − f(x∗) + r

)

− 1
q + ‖x − x∗‖

(
π

2
− arctan

q

f(x) − f(x∗) + r

)

=
(

arctan
q

f(x + d) − f(x∗) + r
− π

2

) ‖x + d − x∗‖ − ‖x − x∗‖
(

q + ‖x + d − x∗‖)(q + ‖x − x∗‖)

+
1

q + ‖x − x∗‖
(

arctan
q

f(x) − f(x∗) + r
− arctan

q

f(x + d) − f(x∗) + r

)

≤
(

arctan
q

r
− π

2

) ‖x + d − x∗‖ − ‖x − x∗‖
(

q + ‖x + d − x∗‖)(q + ‖x − x∗‖)

+
1

q + ‖x − x∗‖
(

arctan
q

f(x) − f(x∗) + r
+ arctan

q

f(x + d) − f(x∗) + r

)
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≤
(
q

r
− π

2

) ‖x + d − x∗‖ − ‖x − x∗‖
(

q + ‖x + d − x∗‖)(q + ‖x − x∗‖) +
1

q + ‖x − x∗‖
(
q

r
+
q

r

)

≤
(

1 − π

2

) ‖x + d − x∗‖ − ‖x − x∗‖
(

q + ‖x + d − x∗‖)(q + ‖x − x∗‖) +
1

q + ‖x − x∗‖
2q
r

≤ ‖x + d − x∗‖ − ‖x − x∗‖
(

q + ‖x + d − x∗‖)(q + ‖x − x∗‖)
(

1 − π

2
+
2q
r

q + ‖x + d − x∗‖
‖x + d − x∗‖ − ‖x − x∗‖

)

.

(3.7)

Since q + ‖x + d − x∗‖ ≤ 1 +D and ‖x + d − x∗‖ − ‖x − x∗‖ ≥ 1, we have

Δ1 ≤ ‖x + d − x∗‖ − ‖x − x∗‖
(

q + ‖x + d − x∗‖)(q + ‖x − x∗‖)
(

1 − π

2
+
2q
r
(1 +D)

)

< 0. (3.8)

Hence, in this case, x is not a local minimizer of T(x, x∗, q, r).

Case 2 (f(x + d) < f(x∗) and f(x + d) − f(x∗) + r ≤ 0). In this case, we have

Δ2 = T
(

x + d, x∗, q, r
) − T

(

x, x∗, q, r
)

= −T(x, x∗, q, r
)

< 0, (3.9)

which means the conclusion is true in this case.

Case 3 (f(x + d) < f(x∗) and f(x + d) − f(x∗) + r > 0). In this case, we have

T
(

x + d, x∗, q, r
)

=
1

q + ‖x + d − x∗‖
(
π

2
− arctan

q

f(x + d) − f(x∗) + r

)

<
1

q + ‖x + d − x∗‖
(
π

2
− arctan

q

r

)

<
1

q + ‖x − x∗‖
(
π

2
− arctan

q

f(x) − f(x∗) + r

)

= T
(

x, x∗, q, r
)

.

(3.10)

Hence, in this case, x is not a local minimizer of T(x, x∗, q, r).

The above discussion implies that x is not a discrete local minimizer of T(x, x∗, q, r).

Theorem 3.4. Assume that x∗ is not a global minimizer of f(x), then there exists a minimizer x∗
1 of

T(x, x∗, q, r) in S2.

Proof. Since x∗ is not a global minimizer of f(x), there exists x∗
1 ∈ S2 such that f(x∗

1) < f(x∗)−
r; it follows that T(x∗

1, x
∗, q, r) = 0. On the other hand, by the structure of T(x, x∗, q, r), we

have T(x, x∗, q, r) ≥ 0 for any x ∈ X. This shows x∗
1 is a minimizer of T(x, x∗, q, r).
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4. Filled Function Algorithm and Numerical Experiments

Based on the theoretical results in the previous section, the filled function method for (P) is
described now as follows.

Algorithm 4.1 (discrete filled function method).

(1) Input the lower bound of r, namely, rL = 1e − 8. Input an initial point x(0)
0 ∈ X. Let

D = {±ei, i = 1, 2, . . . , n}.
(2) Starting from an initial point x(0)

0 ∈ X, minimize f(x) and obtain the first local
minimizer x∗

0 of f(x). Set k = 0, r = 1, and q = 1.

(3) Set x(0)i
k = x∗

k + di, di ∈ D, i = 1, 2, . . . , 2n, J = [1, 2, . . . , 2n], and j = 1.

(4) Set i = Jj and x = x
(0)i
k .

(5) If f(x) < f(x∗
k
), then use x as initial point for discrete local minimization method to

find another local minimizer x∗
k+1 such that f(x∗

k+1) < f(x∗
k
). Set k = k + 1, and go to

(3).

(6) Let D0 = {d ∈ D : x + d ∈ X}. If there exists d ∈ D0 such that f(x + d) < f(x∗
k),

then use x + d∗, where d∗ = argmind∈D0{f(x + d)}, as an initial point for a discrete
local minimization method to find another local minimizer x∗

k+1 such that f(x∗
k+1) <

f(x∗
k). Set k = k + 1, and go to (3).

(7) Let D1 = {d ∈ D0 : ‖x + d − x∗‖ > ‖x − x∗‖}. If D1 = ∅, then go to (10).

(8) If there exists d ∈ D1 such that T(x+d, x∗
k
, q, r) ≥ T(x, x∗

k
, q, r), then set q = 0.1q, J =

[Jj , . . . , J2n, J1, . . . , Jj−1], j = 1, and go to (4).

(9) Let D2 := {d ∈ D1 : f(x + d) < f(x), T(x + d, x∗
k, q, r) < T(x, x∗

k, q, r)}. If
D2 /= ∅, then set d∗ = argmind∈D2{f(x + d) + T(x + d, x∗

k
, q, r)}. Otherwise set

d∗ = argmind∈D1{T(x + d, x∗
k
, q, r)}, x = x + d∗, and go to (6).

(10) If i < 2n, then set i = i + 1, and go to (4).

(11) Set r = 0.1r. If r ≥ rL, go to (3). Otherwise, the algorithm is incapable of finding
a better minimizer starting from the initial points, {x(0)i

k : i = 1, 2, . . . , 2n}. The
algorithm stops, and x∗

k
is taken as a global minimizer.

The motivation and mechanism behind the algorithm are explained below.
A set of 2n initial points is chosen in Step (3) to minimize the discrete filled function.
Step (5) represents the situationwhere the current computer-generated initial point for

the discrete filled function method satisfies f(x) < f(x∗
k
). Therefore, we can further minimize

the primal objective function f(x) by any discrete local minimization method starting
from x.

Step (7) aims at selecting a better successor point. If D2 is not empty, then we get a
feasible direction which reduce both the objective function value and filled function value.
Otherwise, we can get a descent feasible direction which reduce only filled function value.

In the following, we perform the numerical experiments for five test problems using
the above proposed filled function algorithm. All the numerical experiments are programmed
in MATLAB 7.0.4. The proposed filled function algorithm succeeds in identifying the global
minimizers of the test problems. The computational results are summarized in Table 1, and
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Table 1

PN DN IN TI TN FN

1 4 3 2.4136 18087 3617
1 4 3 2.3217 17622 3523
1 4 3 2.4252 19556 3798
2 2 5 35.1435 312342 62468
2 2 5 36.2984 326763 65352
2 2 5 36.6879 330835 66167
3 2 5 204.9916 1558825 311765
3 2 5 206.7242 1617823 323564
3 2 5 205.6871 1593561 318712
4 4 53 3598.3893 33991625 6798325
4 4 53 3612.5671 34043270 6808654
4 4 53 3574.3248 33933790 6786758
5 25 2 148.8163 1158671 244196
5 50 2 1084.7239 9234193 1924634
5 100 2 8891.1984 689656591 15316758
6 25 11 164.2165 1521146 306731
6 50 24 1297.7789 11205803 2467864
6 100 50 9045.2396 828917460 17328966

the symbols used are given as follows:

PN: the Nth problem.

DN: the dimension of objective function of a problem.

IN: the number of iteration cycles.

TI: the CPU time in seconds for the algorithm to stop.

TN: the number of filled function evaluations for the algorithm to stop.

FN: the number of objective function evaluations for the algorithm to stop.

Problem 1. One has

min f(x) = 100
(

x2 − x2
1

)2
+ (1 − x1)2 + 90

(

x4 − x2
3

)2
+ (1 − x3)2

+ 10.1
[

(x2 − 1)2 + (x4 − 1)2
]

+ 19.8(x2 − 1)(x4 − 1),

s.t. − 10 ≤ xi ≤ 10, xi is integer, i = 1, 2, 3, 4.

(4.1)

This problem has 214 ≈ 1.94 × 105 feasible points where 41 of them are discrete local
minimizers but only one of those discrete local minimizers is the discrete global minimum
solution: x∗

global = (1, 1, 1, 1) with f(x∗
global) = 0. We used three initial points in our

experiment: (9, 6, 5, 6), (10, 10, 10, 10), (−10,−10,−10,−10).
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Problem 2. One has

min f(x) = g(x)h(x),

s.t. xi = 0.001yi, −2000 ≤ yi ≤ 2000, yi is integer, i = 1, 2,
(4.2)

where

g(x) = 1 + (x1 + x2 + 1)2
(

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

)

,

h(x) = 30 + (2x1 − 3x2)2
(

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)

.

(4.3)

This problem has 40012 ≈ 1.60 × 107 feasible points. More precisely, it has 207 and 2
discrete local minimizers in the interior and the boundary of box −2.00 ≤ xi ≤ 2.00, i =
1, 2, respectively. Nevertheless, it has only one discrete global minimum solution: x∗

global =
(0.000,−1.000)with f(x∗

global) = 3. We used three initial points in our experiment: (2000, 2000),
(−2000,−2000), (1196, 1156).

Problem 3. One has

min f(x) = [1.5 − x1(1 − x2)]2 +
[

2.25 − x1

(

1 − x2
2

)]2
+
[

2.625 − x1

(

1 − x3
2

)]2
,

s.t. xi = 0.001yi, −104 ≤ yi ≤ 104, yi is integer, i = 1, 2.
(4.4)

This problem has 200012 ≈ 4.00 × 108 feasible points and many discrete local minimizers, but
it has only one discrete global minimum solution: x∗

global = (3, 0.5)with f(x∗
global) = 0. We used

three initial points in our experiment: (9997, 6867), (10000, 10000), (−10000,−10000).

Problem 4. One has

min f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4,

s.t. xi = 0.001yi, −104 ≤ yi ≤ 104, yi is integer, i = 1, 2, 3, 4.
(4.5)

This problem has 200014 ≈ 1.60 × 1017 feasible points and many local minimizers, but it has
only one global minimum solution: x∗

global = (0, 0, 0, 0) with f(x∗
global) = 0. We used three

initial points in our experiment: (1000,−1000,−1000, 1000), (10000,−10000,−10000, 10000),
(−10000, . . . ,−10000).

Problem 5. One has

min f(x) = (x1 − 1)2 + (xn − 1)2 + n
n−1∑

i=1

(n − i)
(

x2
i − xi+1

)2
,

s.t. − 5 ≤ xi ≤ 5, xi is integer, i = 1, 2, . . . , n.

(4.6)
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This problem has many local minimizers, but it has only one global minimum solution:
x∗
global = (1, . . . , 1) with f(x∗

global) = 0.
In this problem, we used initial point (5, . . . , 5) in our experiment for n = 25, 50, 100,

respectively.

Problem 6. One has

min f(x) =
n∑

i=1

x4
i +

(
n∑

i=1

xi

)2

,

s.t. − 5 ≤ xi ≤ 5, xi is integer, i = 1, 2, . . . , n.

(4.7)

This problem has many local minimizers, but it has only one global minimum solution:
x∗
global = (1, 1, . . . , 1) with f(x∗

global) = 0.
In this problem, we used initial point (5, . . . , 5) in our experiment for n = 25, 50, 100,

respectively.

5. Conclusions

We have proposed a new two-parameter filled function and presented a corresponding
filled function algorithm for the solution of the box constrained global nonlinear integer
programming problem. Numerical experiments are also implemented, and preliminary
computational results are reported. Our future work is to generalize the discrete filled
function techniques to mixed nonlinear integer global optimization problem.
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