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This paper investigates a dynamic mathematical model of fish algae consumption with an impul-
sive control strategy analytically. It is proved that the system has a globally asymptotically stable
algae-eradication periodic solution and is permanent by using the theory of impulsive equations
and small-amplitude perturbation techniques. Numerical results for impulsive perturbations
demonstrate the rich dynamic behavior of the system. Further, we have also compared biological
control with chemical control. All these results may be useful in controlling eutrophication.

1. Introduction

Controlling algae (in particular the deterioration of water caused by algae) has become
an increasingly complex issue over the past two decades because economic loss will be
enormous once the population of algae is out of control. At present, many of our lakes and
large areas of algae bloom outbreaks per year [1, 2]; in these lakes, ecological balance is
broken, the water quality is deteriorated, and human health is threatened. So research on how
to control the population of algae is of great important theoretic and practical significance.
Many methods have been used to control algal blooms.

Biological control is the practice of using natural enemies such as predators to suppress
a prey population, as has already been done for pest control [3, 4]. In addition to the classical
biological control based on predator-prey interaction, recently another form of biological
control based on fish-algae interaction is extensively used. Many reservoirs have used the
biological control methods to control algal blooms (they control algal blooms by stocking fish
in the reservoir to graze algae directly), which has been proved to be effective in preventing
the outbreak of algal blooms in East Lake in Wu Han province. However, many researchers
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doubt that this method is not only costly, but also cannot be effective in a few days. Another
commonly used method is chemical control (usually dilution of copper sulfate), and this
method can quickly kill a significant portion of the algae population, but it brings many
negative impacts. Wherever possible, different methods should work together rather than
against each other. In some cases, this can lead to synergy where the combined effect of
different methods is greater than would be expected from simply adding the individual
effects together [5]. Therefore, if we wish to eradicate the algae population, we should
implement an impulsive control strategy which includes chemical control and biological
control.

With the advance of the theory of impulsive differential equations [6, 7], impulsive
differential equations are used to describe the evolving process and the control process
of species [8–11], which make the models more reasonable [12–14]. Moreover, the theory
of impulsive differential equations is being recognized not only to be richer than the
corresponding theory of differential equations without impulses, but also to represent a more
natural framework for the mathematical modeling of real-world phenomenon [15, 16]. In this
paper, we construct a mathematical model combining the fact of period biological control
with chemical control; we first introduce a proportion periodic impulsive harvesting (fish)
and chemical poisoning for the algae at time t = (n+L−1)T , and then we introduce a constant
periodic releasing for natural enemies (fish) at time t = nT ; the system can be described as
follows:

dx(t)
dt

= ucx(t)
(
(1 − (x(t)/xm))
(1 − (x(t)/xh))

)
− c1x2(t) − u1x(t)y(t)

(x(t) + k1)
,

dy(t)
dt

= −u3y(t) +
u2x(t)y(t)
(x(t) + k1)

,

t /=nT, t /= (n + L − 1)T,

Δx(t) = −δ1x(t),
Δy(t) = −δ2y(t),

t = (n + L − 1)T,

Δx(t) = 0,

Δy(t) = p,
t = nT,

(1.1)

where x(t), y(t) are the densities of the algae and fish at time t, Δx(t) = x(t+) − x(t),
and Δy(t) = y(t+) − y(t); dx(t)/dt = ucx(t)((1 − (x(t)/xm))/(1 − (x(t)/xh))) is a math-
ematical model for a single population [17] and is established by Cui and Lawson; uc is
a growth parameter which is related to the biological characteristics of populations and the
rationalization of environmental resources; xm(0 ≤ xm/xh ≤ 1) is the maximum density of the
algae population (i.e., environmental carrying capacity); xh is a nutritional parameter which
is related to the resource conditions of the environment; u1x(t)/(x(t) + k1) is one of the most
well-known functional responses describing a prey-predator interaction, called Holling-Type
II functional response; c1 is the intraspecific competition rate of the algae; u3 is the average
mortality rate for fish; 0 ≤ δ1, δ2 ≤ 1 represent the fraction of the algae and fish which die due
to the harvesting or chemical poisoning at t = (n+L−1)T ; p > 0 is the number of fish released
at time t = nT ; T is the period of the impulsive effect; n is the set of all nonnegative integers.

With model (1.1), we can take into account the effects in the external which can rapidly
change the population densities. Impulsive reduction of the algae population density is
possible after its partial destruction by poisoning with chemicals, and also impulsive increase
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of the fish population density is possible by artificial breeding or releasing the fish population;
therefore, we can use impulsive control strategy to eradicate the algae population.

2. Preliminaries and Mathematical Analysis

Let R+ = [0,∞), R2
+ = {X ∈ R2 | X > 0}. Denote that f = (f1, f2) is the map defined by the

right-hand sides of the first and second equations of system (1.1). Let V : R+ ×R2
+ → R+, then

V is said to belong to class V0 if

(1) V is continuous in ((n − 1)T, (n + l − 1)T] × R2
+, ((n + l − 1)T, nT] × R2

+, and
for each X ∈ R2

+, n ∈ N, lim(t,y)→ ((n+l−1)T+,X)V (t, y) = V ((n + l − 1)T+, X) and
lim(t,y)→ (nT+,X)V (t, y) = V (nT+, X) exist;

(2) V is locally Lipschitzian in X.

Definition 2.1. Let V ∈ V0; for (t, x) ∈ ((n − 1)T, (n + l − 1)T] × R2
+ and ((n + l − 1)T, nT] × R2

+,
the upper right derivative of V (t, X)with respect to the impulsive differential system (1.1) is
defined as

D+V (t, X) = lim
h→ 0+

sup
1
h

[
V
(
t + h,X + hf(t, X)

) − V (t, X)
]
. (2.1)

Remark 2.2. (1) The solution of system (1.1) is a piecewise continuous function withX : R+ →
R2

+, thenX(t) is continuous on ((n−1)T, (n+ l−1)T), and ((n+ l−1)T, nT). (2) The smoothness
properties of f guarantee the global existence and uniqueness of solution of system (1.1) (for
details, see book [6, 7]).

Lemma 2.3. Assume that X(t) is a solution of system (1.1) such that

(1) if X(0+) ≥ 0, then X(t) ≥ 0 for all t ≥ 0,

(2) if X(0+) > 0, then X(t) > 0, for all t > 0.

Lemma 2.4. There exists a positive constant M > 0 such that x(t) ≤ M and y(t) ≤ M for each
solution of system (1.1) with all t large enough.

If the algae population is eradicated, then system (1.1) will reduce to the following
system:

dy(t)
dt

= −u3y(t), t /= (n + l − 1)T, t /=nT,

y(t+) = (1 − δ2)y(t), t = (n + l − 1)T,

y(t+) = y(t) + p, t = nT,

y(0+) = y0.

(2.2)
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System (2.2) is a periodically forced linear system, then we get that

y∗(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p exp(−u3(t − (n − 1)T))
1 − (1 − δ2) exp(−u3T) , (n − 1)T < t ≤ (n + l − 1)T,

p(1 − δ2) exp(−u3(t − (n − 1)T))
1 − (1 − δ2) exp(−u3T) , (n + l − 1)T < t ≤ nT,

(2.3)

is a positive periodic solution of system (2.2) with the initial values

(
y∗(0+) = y∗(nT+) =

p

1 − (1 − δ2) exp(−u3T) , y
∗(lT+) =

p(1 − δ2) exp(−u3lT)
1 − (1 − δ2) exp(−u3T)

)
, (2.4)

since the general solution of (2.2) is

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − δ2)n−1
(
y(0+) − p

1 − (1 − δ2) exp(−u3T)
)
exp(−u3T) + y∗(t),

(n − 1)T < t ≤ (n + l − 1)T,

(1 − δ2)n
(
y(0+) − p

1 − (1 − δ2) exp(−u3T)
)
exp(−u3T) + y∗(t),

(n + l − 1)T < t ≤ nT.

(2.5)

Then the following results can be got easily.

Lemma 2.5. y∗(t) is a positive periodic solution of system (2.2), and for every solution y(t) of system
(2.2), one has y(t) → y∗(t) as t → ∞.

Therefore, system (2.2) has an algae-eradication periodic solution (0, y∗(t)).
After the preliminaries, it is necessary to give the main theorems of this paper. Now,

the conditions which assure the globally asymptotical stability of the an lgae-eradication
periodic solution (0, y∗(t)) are given.

Theorem 2.6. If

ucT − u1p
(
1 − δ2 exp(−u3lT) − (1 − δ2) exp(−u3T)

)
u3k1

(
1 − (1 − δ2) exp(−u3T)

) < ln
(

1
1 − δ1

)
, (2.6)

then the algae-eradication periodic solution (0, y∗(t)) is said to be globally asymptotically stable.
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Proof. The local stability of the periodic solution (0, y∗(t))may be determined by considering
the behavior of small-amplitude perturbations of the solution. Define x(t) = u(t), y(t) =
v(t) + y∗(t), then the Linearization of system (1.1) becomes

du(t)
dt

=
(
uc −

u1y
∗(t)
k1

)
u(t),

dv(t)
dt

= −u3v(t) +
u2u(t)y∗(t)

k1
,

t /=nT, t /= (n + L − 1)T,

Δu(t) = −δ1u(t),
Δv(t) = −δ2v(t),

t = (n + L − 1)T,

Δu(t) = 0,

Δv(t) = 0,
t = nT,

(2.7)

and as a result,

(
u(t)
v(t)

)
= Φ(t)

(
u(0)
v(0)

)
, 0 ≤ t < T, (2.8)

where Φ(t) satisfies

dΦ(t)
dt

=

⎛
⎜⎜⎜⎝
uc −

u1y
∗(t)
k1

0

u2y
∗(t)
k1

−u3

⎞
⎟⎟⎟⎠Φ(t), (2.9)

and Φ(0) = I, the identity matrix. The linearization of the third and fourth equations of (2.2)
becomes

(
u((n + l − 1)T+)
v((n + l − 1)T+)

)
=

(
1 − δ1 0

0 1 − δ2

)(
u((n + l − 1)T)
v((n + l − 1)T)

)
. (2.10)

The linearization of fifth and sixth equations of (2.2) becomes

(
u(nT+)
v(nT+)

)
=

(
1 0

0 1

)(
u(nT)
v(nT)

)
. (2.11)

The stability of the periodic solution (0, y∗(t)) is determined by the eigenvalues of

θ =

(
1 − δ1 0

0 1 − δ2

)(
1 0

0 1

)
Φ(t). (2.12)
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Therefore, all eigenvalues of θ are given by

λ1 = (1 − δ1) exp
(∫T

0

(
uc −

u1y
∗(t)
k1

)
dt

)
, λ2 = (1 − δ2) exp(−u3T) < 1. (2.13)

According to Floquet theory, (0, y∗(t)) is locally asymptotically stable if λ1 < 1, that is to say,

ucT − u1p
(
1 − δ2 exp(−u3lT) − (1 − δ2) exp(−u3T)

)
u3k1

(
1 − (1 − δ2) exp(−u3T)

) < ln
1

1 − δ1 . (2.14)

In the following, we prove the global attractivity. Choose a ε > 0 such that

ξ1 ≈ (1 − δ1) exp
(∫T

0

(
uc − u1

k1

(
y∗(t) − ε)

)
dt

)
< 1, (2.15)

and note that dy(t)/dt ≥ −u3y(t); from Lemma 2.5 and comparison theorem of impulsive
equation, we get

y(t) > y∗(t) − ε, (2.16)

for all sufficiently large t. For simplification, assuming (2.16) holds for all t ≥ 0. From (1.1)
and (2.16),

dx(t)
dt

≤ x(t)
(
uc − u1

k1

(
y∗(t) − ε)

)
, t /= (n + l − 1)T,

x(t+) = (1 − δ1)x(t), t = (n + l − 1)T,

(2.17)

which leads to

x((n + l)T) ≤ x((n + l − 1)T+) exp

(∫ (n+l)T

(n+l−1)T

(
uc − u1

k1

(
y∗(t) − ε)

)
dt

)

= x((n + l − 1)T)(1 − δ1) exp
(∫ (n+l)T

(n+l−1)T

(
uc − u1

k1

(
y∗(t) − ε)

)
dt

)

= x((n + l − 1)T)ξ1.

(2.18)

Hence, x((n + l)T) ≤ x(lT)ξn1 and x((n + l)T) → 0 as n → ∞. Therefore, x(t) → 0
when n → ∞, because 0 < x(t) < x((n+ l− 1)T)(1−δ1) exp(ucT) for (n+ l− 1)T < t ≤ (n+ l)T .

Next, we prove that y(t) → y∗(t) as t → ∞. For 0 < ε < (u3k1/u2), there must
exist a T ′ > 0 such that 0 < x(t) < ε, t ≥ T ′. Without any loss of generality, we assume that
0 < x(t) < ε for all t ≥ 0, then from system (1.1),

−u3y(t) ≤
dy(t)
dt

≤
(
−u3 + u3k1

u2
ε

)
y(t). (2.19)
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From Lemma 2.5 and comparison theorem of impulsive equation, z1(t) ≤ y(t) ≤ z2(t)
and z1(t) → y∗(t), z2(t) → y∗(t) as t → ∞, where z1(t) and z2(t) are solutions of

dz1(t)
dt

= −u3z1(t), t /= (n + l − 1)T, t /=nT,

z1(t+) = (1 − δ2)z1(t), t = (n + l − 1)T,

z1(t+) = z1(t) + p, t = nT,

z1(0+) = y(0+),

(2.20)

dz2(t)
dt

=
(
−u3 + u3k1

u2
ε

)
z2(t), t /= (n + l − 1)T, t /=nT,

z2(t+) = (1 − δ2)z2(t), t = (n + l − 1)T,

z2(t+) = z2(t) + p, t = nT,

z2(0+) = y(0+),

(2.21)

respectively,

z2
∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p exp((−u3 + (u3k1/u2)ε)(t − (n − 1)T))
1 − (1 − δ2) exp((−u3 + (u3k1/u2)ε)T)

,

(n − 1)T < t ≤ (n + l − 1)T,

p(1 − δ2) exp((−u3 + (u3k1/u2)ε)(t − (n − 1)T))
1 − (1 − δ2) exp((−u3 + (u3k1/u2)ε)T)

,

(n + l − 1)T < t ≤ nT.

(2.22)

Therefore, for any ε1 > 0, there exists a T1 > 0 such that

z∗1(t) − ε1 ≤ y(t) ≤ z∗2(t) + ε1, for t > T1. (2.23)

Let ε → 0 such that

y∗(t) − ε1 ≤ y(t) ≤ y∗(t) + ε1, (2.24)

for t large enough, which implies y(t) → y∗(t) as t → ∞. This completes the proof.

Now, we investigate the permanence of system (1.1).

Theorem 2.7. System (1.1) is permanent provided

ucT − u1p
(
1 − δ2 exp(−u3lT) − (1 − δ2) exp(−u3T)

)
u3k1

(
1 − (1 − δ2) exp(−u3T)

) > ln
(

1
1 − δ1

)
(2.25)

holds true.
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Proof. Let X(t) = (x(t), y(t)) be any solution of system (1.1) with X(0) > 0. From Lemma 2.4,
there exists a positive constant M such that x(t) ≤ M and y(t) ≤ M for t large enough.
From (2.16), we have y(t) > y∗(t) − ε for all sufficiently large t and some ε such that y(t) ≥
p(1 − δ2) exp(−u3 T)/(1 − (1 − δ2) exp(−u3T)) − ε ≈ ζ2 for t large enough. Therefore, it is
only necessary to find an ζ1 > 0 such that x(t) ≥ ζ1 for t large enough. We prove this in the
following two steps.

Step 1. Let 0 < ζ3 < u3k1/u2, ε1 > 0 be small enough such that

ψ ≈ uc
(
1 − ζ3

xm

)
T − c1ζ3T − u1ε1

k1
T

− u1
k1

(
u1p
(
1 − δ2 exp((−u3 + (u3k1/u2)ζ3)lT) − (1 − δ2) exp((−u3 + (u3k1/u2)ζ3)T)

)
(u3 − (u3k1/u2)ζ3)k1

(
1 − (1 − δ2) exp((−u3 + (u3k1/u2)ζ3)T)

)
)

> 1,
(2.26)

then it is easy to prove that x(t) < ζ3 cannot hold for all t. Otherwise,

dy(t)
dt

≤
(
−u3 + u3k1

u2
ζ3

)
y(t), t /= (n + l − 1)T, t /=nT,

y(t+) = (1 − δ2)y(t), t = (n + l − 1)T,

y(t+) = y(t) + p, t = nT,

y(0+) = y0.

(2.27)

Then, y(t) ≤ z(t) and z(t) → z∗(t) (t → ∞), where z(t) is the solution of

dz(t)
dt

=
(
−u3 + u3k1

u2
ζ3

)
z(t), t /= (n + l − 1)T, t /=nT,

z(t+) = (1 − δ2)z(t), t = (n + l − 1)T,

z(t+) = z(t) + p, t = nT,

z(0+) = y(0+),

(2.28)

z∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p exp((−u3 + (u3k1/u2)ε)(t − (n − 1)T))
1 − (1 − δ2) exp((−u3 + (u3k1/u2)ε)T)

,

(n − 1)T < t ≤ (n + l − 1)T,

p(1 − δ2) exp((−u3 + (u3k1/u2)ε)(t − (n − 1)T))
1 − (1 − δ2) exp((−u3 + (u3k1/u2)ε)T)

,

(n + l − 1)T < t ≤ nT.

(2.29)
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Therefore, there exists a T1 > 0 such that

y(t) ≤ z(t) ≤ z∗(t) + ε1, (2.30)

and it follows that

dx(t)
dt

≥ x(t)
(
uc

(
1 − ζ3

xm

)
− c1ζ3 − u1

k1
(z∗(t) + ε1)

)
, t /= (n + l − 1)T,

x(t+) = (1 − δ1)x(t), t = (n + l − 1)T,

(2.31)

for t ≥ T1. Let (N + l − 1)T ≥ T1, integrating (2.31) on ((n + l − 1)T, (n + l)T], n ≥N, so

x((n + l)T) ≥ x((n + l − 1)T)(1 − δ1) exp
(∫ (n+l)T

(n+l−1)T

(
uc

(
1 − ζ3

xm

)
− c1ζ3 − u1

k1
(z∗(t) + ε1)

)
dt

)

= x((n + l − 1)T)ψ,
(2.32)

then x((N + n + l)T) ≥ x((N + l)T)ψn → ∞ when n → ∞; it is a contradiction because x(t)
is ultimately bounded. Therefore, there exists a t1 > 0 such that x(t1) ≥ ζ3.

Step 2. If x(t) ≥ ζ3 for all t > t1, then the proof will be complete. Otherwise, let t∗ =
inft>t1{x(t) < ζ3}, then there are two possible cases for t∗.

Case 1. If t∗ = (n1 + l − 1)T, n1 ∈ N, then x(t) ≥ ζ3 for t ∈ [t1, t∗] and (1 − δ1)ζ3 ≤ x(t∗+) =
(1 − δ1)x(t∗) < ζ3, and select n2, n3 ∈N such that

(n2 − 1)T >
ln
(
ε1/M + p

)
(−u3 + (u3k1/u2)ζ3)

,

(1 − δ1)n2 exp
(
n2ψ1T

)
ψn3 > (1 − δ1)n2 exp

(
(n2 + 1)ψ1T

)
ψn31 > 1,

(2.33)

where ψ1 = uc(1 − (ζ3/xm)) − c1ζ3 − (u1/k1)M < 0. Let T ′ = n2T + n3T ; it is claimed here
that there must be a t2 ∈ (t∗, t∗ + T ′] such that x(t2) > ζ3. Otherwise, considering (2.28) with
z(t∗+) = y(t∗+), it follows that

z(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − δ2)n−(n1+1)
(
z(n1T+) − p

1 − (1 − δ2) exp((−u3 + (u3k1/u2)ζ3)T)

)

× exp
(
−u3 + u3k1

u2
ζ3

)
(t − n1T) + z∗(t), (n − 1)T < t ≤ (n + l − 1)T,

(1 − δ2)n−n1
(
z(n1T+) − p

1 − (1 − δ2) exp((−u3 + (u3k1/u2)ζ3)T)

)

× exp
(
−u3 + u3k1

u2
ζ3

)
(t − n1T) + z∗(t), (n + l − 1)T < t ≤ nT,

(2.34)
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and n1+1 ≤ n ≤ n1+n2+n3. Therefore, |z(t)−z∗(t)| < (M+p) exp((−u3+(u3k1/u2)ζ3)(t−n1T)) <
ε1 and y(t) ≤ z(t) ≤ z∗(t) + ε1 for n1T + (n2 − 1)T ≤ t ≤ t∗ + T ′ which implies that (2.31) holds
for t∗ + n2T ≤ t ≤ t∗ + T ′. So as in Step 1,

x(t∗ + T) ≥ x(t∗ + n2T)ψn3 . (2.35)

From system (1.1)

dx(t)
dt

≥ x(t)
(
uc

(
1 − ζ3

xm

)
− c1ζ3 − u1

k1
M

)
, t /= (n + l − 1)T,

x(t+) = (1 − δ1)x(t), t = (n + l − 1)T,

(2.36)

for t ∈ [t∗, t∗ + n2T]. Integrating (2.36) on t ∈ [t∗, t∗ + n2T] such that

x(t∗ + n2T) ≥ ζ3(1 − δ1)n2 exp
(
n2ψ1T

)
, (2.37)

thus, x(t∗ + T ′) ≥ ζ3(1 − δ1)n2 exp(n2ψ1T)ψn3 > ζ3, which is a contraction.
Let t2 = inft>t∗{x(t) > ζ3}, then x(t) ≤ ζ3 when t ∈ (t∗, t2) and x(t2) = ζ3. For t ∈ (t∗, t2),

x(t) ≥ ζ3(1 − δ1)n2+n3 exp
(
(n2 + n3)ψ1T

)
. (2.38)

Let ζ′1 = ζ3(1 − δ1)n2+n3 exp((n2 + n3)ψ1T), then we have x(t) ≥ ζ′1 for t ∈ (t∗, t2). For
t > t2, the same arguments can be continued since x(t2) ≥ ζ3.

Case 2. If t∗ /= (n1 + l − 1)T, n1 ∈ N, then x(t) ≥ ζ3 for t ∈ [t1, t∗], and x(t∗) = ζ3; suppose that
t∗ ∈ ((n′1 + l − 1)T, (n′1 + l)T), n1 ∈N. There are also two possible cases for t ∈ (t∗, (n′1 + l)T).

Subcase 1. If x(t) ≤ ζ3 for all t ∈ (t∗, (n′1 + l)T), as in Case 1, we can prove that there must be a
t′1 ∈ [(n′1 + l)T, (n

′
1 + l)T + T ′] such that x(t′1) > ζ3. Here, we omit it.

Let t3 = inft>t∗{x(t) > ζ3}, then x(t) ≤ ζ3 when t ∈ (t∗, t3) and x(t3) = ζ3. For t ∈ (t∗, t3)

x(t) ≥ ζ3(1 − δ1)n2+n3 exp
(
(n2 + n3 + 1)ψ1T

)
. (2.39)

Let ζ1 = ζ3(1−δ1)n2+n3 exp((n2+n3+1)ψ1T) < ζ′1, then x(t) ≥ ζ1 for t ∈ (t∗, t3), and when
t > t3, the same arguments can be got since x(t3) ≥ ζ3.

Subcase 2. There exists a t ∈ (t∗, (n′1 + l)T) such that x(t) > ζ3. Let t4 = inft>t∗{x(t) > ζ3} such
that x(t) ≤ ζ3 when t ∈ (t∗, t4) and x(t4) = ζ3. When t ∈ (t∗, t4), the inequality (2.36) holds.
Integrating (2.36) on t ∈ (t∗, t4), then

x(t) ≥ x(t∗) exp(ψ1(t − t∗)
) ≥ ζ3 exp(ψ1T

)
> ζ1. (2.40)
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Figure 1: Dynamic behavior of system (1.1). When T < Tmax ≈ 9, the algae will be eradicated. Time series
evolving according to biological control system (1.1) of (a) the algae population x, (b) the fish population
y.

Since x(t4) ≥ ζ3 for t > t4, the same arguments can be continued. Therefore, x(t) > ζ1 for
t > t1, so system (1.1) is permanent. The proof is complete.

3. Numerical Analysis

3.1. Bifurcation Analysis

The global dynamical behavior and the permanence of system (1.1) are investigated using
numerical simulations; the following parameters and initial values were considered to
substantiate our theoretical results: u1 = 0.175, u2 = 0.3, u3 = 0.18, uc = 0.5, xm = 15, xh = 20,
k1 = 0.6, c1 = 0.05, δ1 = 0.4, δ2 = 0.4, p = 4, L = 0.07, x0 = 0.5, and y0 = 0.5.
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Figure 2: (a) A period T attractor when T = 10, (b) time series algae population when T = 10.

From Theorem 2.6, it is known that algae-eradication periodic solution is globally
asymptotically stable when T < Tmax; this algae-eradication periodic solution (0, y∗(t)) is
shown in Figure 1. It is clear that the variable predator y oscillates in a stable cycle, but the
algae x rapidly decrease to zero, and Tmax ≈ 9. If the period of the pulses T is larger than
Tmax, then the algae-eradication periodic solution becomes unstable, and it is possible that
the algae and the fish population can coexist on a limit cycle when T > Tmax (Figure 2), so
system (1.1) can be permanent from Theorem 2.7. As the period of pulses increases, system
(1.1) exhibits rich dynamic behaviors. In Figure 3, the typical bifurcation diagrams for system
(1.1) were displayed with respect to T in the range T ∈ [9, 33]. When 9 < T < 10.6, we can
see T -period solution of system (1.1), and T -period solution is stable. When T > 12.2, system
(1.1) becomes unstable, and there is a cascade of period-doubling bifurcations leading to
chaos (Figure 4). As T further increases, the bifurcation diagrams show that system (1.1)
exhibits rich dynamics including period-halving bifurcation, symmetry breaking pitchfork
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Figure 3: Bifurcation diagrams for system (1.1) showing the effect of T with p = 4; we keep other
parameters the same. (a) x versus T , (b) y versus T .

bifurcation, period-doubling bifurcation, quasiperiod oscillations, narrow or wide periodic
windows, and crisis.

Then, we investigate the effect of the number of fish released p to vary for system (1.1).
Figure 5 shows the typical bifurcation diagrams of p for 0 < p < 9; it is clear that with the
increasing number of fish released, system (1.1) shows complex behaviors including period-
doubling bifurcations, chaotic band with wide or narrow periodic windows, crisis, tangent
bifurcations, and period-halving bifurcation. When p > 8.55, the algae will be eradicated, and
the algae-eradication periodic solution occurs.

3.2. The Largest Lyapunov Exponent

Convincing evidence for deterministic chaos has come from several recent experiments
[18, 19]. From these results, the problem of detecting and quantifying chaos has become an
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Figure 4: Strange attractor. (a) Chaotic attractor when T = 11, (b) time series of algae population when
T = 11.

important one; it is clear that chaos plays a very significant role in these studies [20, 21].
Therefore, the largest Lyapunov exponent is considered to be the most useful diagnostic
tool for chaotic systems [22–25]. The largest Lyapunov exponent λ must be positive for a
chaotic attractor; otherwise, if λ is negative, the system will enter a stable state or become a
periodic attractor. Reviewing the bifurcation diagram in Figures 3 and 5, we can calculate the
corresponding largest Lyapunov exponent (T ranging from 9 to 23, p ranging from 0 to 6.2)
for system (1.1). The output is shown in Figure 6.

4. Conclusions

In this paper, the effects of impulsive perturbations on a algae-fish consumption model have
been investigated. The local and global stability of the algae-eradication periodic solution
have been proved when the period of the pulses is less than critical values. In addition,
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Figure 5: Bifurcation diagrams for system (1.1) showing the effect of p with T = 20; we keep other
parameters the same. (a) x versus p, (b) y versus p.

conditions for the permanence of the system have been given by comparison theorem when
the period of the pulse is larger than critical values. The largest Lyapunov exponent has been
used to confirm the existence of chaotic dynamics.

From Theorem 2.6, the algae-eradication periodic solution is globally asymptotically
stable when T < Tmax. Therefore, in order to eradicate the algae population, we can take
impulsive control strategy considering the effect caused by the chemical control to the
environment and the cost of biological control when T < Tmax. If we drive the fish population
in a small pool or harvest the fish, then chemical poisoning will kill the algae population in
large quantities, and the damage to fish population will be very small. If we only choose
chemical control strategy (p = 0), from Theorem 2.6, the algae population and the fish
population will be eradicated when T < (1/uc) ln(1/(1 − δ1)) ≈ 1.03; in this case, chemical
control will not only destroy the biodiversity, but also cause damage to the environment,
that is not desirable. If we only choose biological control strategy (δ1 = 0, δ2 = 0) and keep
other parameters the same, then we have T < 15.6; it is clear that biological control will cost
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Figure 6: (a) The largest Lyapunov exponent (T ranging from 9 to 23) for system (1.1); (b) the largest
Lyapunov exponent (p ranging from 0 to 6.2) for system (1.1).

much and take a long time to eradicate the algae population. Therefore, we should combine
chemical control with biological control in order to control algal blooms efficiently.
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