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A hybrid impulsive pest control model with stage structure for pest and Holling II functional
response is proposed and investigated, in which the effects of impulsive pesticide input in the
environment and in the organism are considered. Sufficient conditions for global attractiveness of
the pest-extinction periodic solution and permanence of the system are obtained, which show that
there exists a globally asymptotically stable pest-extinction periodic solution when the number of
natural enemies released is more than some critical value, whereas the system can be permanent
when the number of natural enemies released is less than another critical value. Furthermore,
numerical simulations are carried out to illustrate our theoretical results and facilitate their
interpretation.

1. Introduction

Since the beginning of recorded history, outbreaks of pests have plagued humanity, coming
in direct competition with people for life-sustaining food. Reportedly, an estimated 67,000
different pest species attack agricultural crops, and about 35% of the yearly agricultural
crop production is lost to pests worldwide [1, 2]. That problem is one of how to control
or suppress damaging populations of pests over widespread areas. As we know, the most
effective strategy for controlling pests may be to combine methods in an approach known
as integrated pest management (IPM) that emphasizes preventing pest damage. In IPM,
information about pests and available pest-control methods (including biological, cultural,
and chemical) is used to manage pest damage by the most economical means and with the
least possible hazard to people, property, and environment [3–5].

Biological control of pests in agriculture is a method of controlling pests (including
insects, mites, weeds, and plant diseases) that relies on predation, parasitism, herbivory, or
other natural mechanisms. It can be an important component of integrated pest management
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(IPM) programs. It is defined as the reduction of pest populations by natural enemies
and typically involves an active human role such as augmentation which involves the
supplemental release of natural enemies. Biological control is not a ”quick fix” for most pest
problems. Natural enemies usually take longer to suppress a pest population than other
forms of pest-control, and farmers often regard this as a disadvantage. Cultural controls
are manipulations of the agroecosystem that make the cropping system less friendly to the
establishment and proliferation of pest populations. Although they are designed to have
positive effects on farm ecology and pest management, negative impacts may also result,
due to variations in weather or changes in crop management [6]. Another important method
for pest-control is chemical control. Chemical control is the approach of controlling pests
through the spraying pesticide which is liable to reduce the pest populations considerably
and which is indispensable when there are not enough natural enemies to decrease pest
populations. In most cropping systems, insecticides are still the principal means of controlling
pests once the economic threshold has been reached. They can be relatively cheap and are
easy to apply, fast acting, and in most instances reliable in controling the pests [7]. Despite
the advantages of conventional insecticides, the problems associated with their use have
been well documented. These include the resurgence of pest populations after decimation of
the natural enemies, development of insecticide-resistant populations, and negative impacts
on nontarget organisms within and outside the crop system [8]. When considering these
actions, in the process of effective control of pest, excessive use of a single control strategy
is undesirable. Wherever possible, different pest-control techniques should work together
rather than against each other. Even so, in many cases, the most effective release rate or
spraying rate has not been identified as it will vary depending on crop type and target host
density. Therefore, human beings have been forced to face the new challenge in the integrated
pest management (IPM) program. One of the most important questions in IPM is how many
natural enemies should be released and what fraction of the pest population should be killed
to avoid economic damage and reduce the pesticide applications when the pest population
reaches or exceeds the economic threshold level.

According to the idea of IPM, many mathematical models have been constructed
and studied for understanding the range of possible ecological interactions between pest,
natural enemy, and pesticides in the last decades. In order to consider the consequences
of especially spraying pesticide and introducing additional predators into a natural pest-
predator system, impulsive differential equations have been employed to describe such a
system by many researchers [9–13], and the references cited therein. Impulsive differential
equations are found in almost every domain of applied sciences [14, 15] and have been
studied in many investigations [16–18]. They generally describe phenomena which are
subject to steep or instantaneous changes. In IPM, impulsive reduction of the pest population
is possible by trapping the pests and/or by poisoning them with chemicals. An impulsive
increase of the natural enemy density can be achieved by releasing the natural enemy based
on laboratory breeding into the field [5, 11]. Unfortunately, most of the pest-control models in
the literature, which were modeled by impulsive differential equations, assume that at every
impulsive spraying period, the pest population (including the natural enemies) may be killed
immediately, and the instant killing rate of pesticide is a proportional constant. However, the
actual situation is not always the same. Generally, pesticide appears in environment first, then
it is absorbed by organism, and the individuals are affected, that is, the toxicity of pesticide
does not act on the organism at once; in other words, it will last for some time before toxins
are capable of decreasing the average growth rate of the species [19]. This fact urges us to
consider the effect of pollution time delay on the extinction and permanence of population in
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a polluted environment. With this in mind, it is necessary to introduce the pollution model to
model the process of pest-control problems and study its dynamics, and this is different from
the previous pest-control model which assumed that pests were reduced proportionally by
spraying pesticides.

As we know, since Hallam and his coworkers proposed a toxicant-population model in
the early 1980s [20–23], mathematical models of single or multiple populations with toxicant
effect have been constructed and studied extensively [19, 24–29]. However, the majority
of these studies have been focused on the effects of toxicant emitted into the environment
from industrial and household resources on biological species, and only a few attempts
have been made to combine pollution model to study pest-control problems with pesticide
(toxin) input. Recently, by using pollution model and impulsive delay differential equation,
Liu et al. [19] constructed, and investigated, a pest-control model with age structure for pest
by introducing a constant periodic pesticide input and releasing natural enemies at different
fixed moment. It is assumed in their model that each individual has the same dose response
parameter to the organismal toxicant concentration regardless of the difference in many
aspects between the immature and mature pest populations. However, in the natural world,
there are many species whose individual members have a life story that takes them through
two stages, immature and mature. Those species hatch from egg. Moreover, the immature
and mature species express great differences in many aspects. One of the facts is that only the
mature individuals are affected by the toxin (pesticide) and the immature individuals are not.
For example, locust and salt-cedar leaf beetle, and so forth, are such species whose immature
individuals (eggs) are protected by their eggshell and hardly injured by pesticides.

Based on all the above points, in this paper, we propose and investigate a pest-control
model with a constant periodic pesticide input and natural enemies release at different
fixed moment, in which the effects of impulsive pesticide input in the environment and in
the organism are considered. Moreover, we assume that the pest individuals have two life
stages: immature (egg) and mature with a constant maturation time delay, pesticide (toxin)
has no effect on the immature individuals, and the capacity of the environment is so large
that the change of toxin in the environment that comes from uptake and egestion by the
organisms can be ignored. On the other hand, it is well known that functional response is a
basic modeling unit in community ecology [30]. So, we further assume that natural enemy
(predator) only feeds on mature pest (prey), and the functional response of natural enemy
(predator) to mature pest (prey) species takes the Holling type II form. Meanwhile, because
we may artificially pick on the appropriate releasing time when there is the lowest chance
of adversely affecting natural enemies; thus, we further assume that pesticide input has little
influence on the natural enemies, that is, the effect of pesticide input on natural enemies can
be ignored. We are interested in a theoretical study about the effects of our control tactics on
dynamical behavior of populations and attempt to obtain a theoretical threshold value which
determines extinction of pest species and permanence of the system.

The organization of this paper is as follows. In Section 2, we set up our model and
introduce some notations, definitions, and lemmas. In Section 3, sufficient conditions for
extinction of the pest species and permanence of the system are given, respectively. The
numerical simulations are carried out to study the effects of the impulsive varying parameters
on the system as well as to illustrate our theoretical results in Section 4. Finally, a brief
discussion is given to conclude this work.
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2. Model and Preliminaries

According to the above analysis and assumption, we construct a pest-control pollution model
with stage structure for the pest and Holling II functional response concerning integrated
control tactics. The model takes the following form:

dxj(t)
dt

= ax(t) − b1xj(t) − ae−b1τx(t − τ),

dx(t)
dt

= ae−b1τx(t − τ) − fx2(t) − βx(t)y(t)
η + x(t)

− rco(t)x(t),

dy(t)
dt

= λ
βx(t)y(t)
η + x(t)

− b2y(t), t /= (n + l − 1)T, t /=nT,

dco(t)
dt

= kce(t) − gco(t) −mco(t),

dce(t)
dt

= −hce(t),

Δxj(t) = 0, Δx(t) = 0, Δy(t) = μ1, Δco(t) = 0, Δce(t) = 0, t = (n + l − 1)T,

Δxj(t) = 0, Δx(t) = 0, Δy(t) = 0, Δco(t) = 0, Δce(t) = μ2, t = nT.

(2.1)

The initial conditions are

(
xj(t), x(t), y(t), co(t), ce(t)

)
=
(
φ1(t), φ2(t), φ3(t), φ4(t), φ5(t)

) ∈ C+
5 ,

C+
5 = C

(
[−τ, 0], R5

+

)
, t ∈ [−τ, 0], φi(0) > 0, i = 1, 2, 3, 4, 5,

(2.2)

where xj(t), x(t), and y(t) represent the density of the immature pest (egg), mature pest and
natural enemy at time t, respectively, ce(t) represents the concentration of pesticide in the
environment at time t; c0(t) represents the concentration of pesticide in the organism for the
mature pest at time t, a is the growth rate of the immature pest; b1 and b2 show the death
rate of the immature pest and natural enemy, respectively, τ represents a constant time to
maturity, f represents the intraspecific competition coefficient of mature species, expression
βx(t)/(η+x(t)) is Holling II functional response function, β > 0, η > 0, λ represents the rate of
conversion of consumed mature pest to natural enemy, r represents the decreasing rate of the
intrinsic growth rate associated with the uptake of pesticide in the organism for the mature
pest, kce(t) represents the organism’s net uptake pesticide from the environment, gc0(t) and
mc0(t) represent the egestion and depuration rates of pesticide in the organism for the mature
pest, respectively, −hce(t) represents the loss of pesticide in the environment due to natural
degradation, Δxj(t) = xj(t+) − xj(t), Δc0(t) = c0(t+) − c0(t), Δce(t) = ce(t+) − ce(t); 0 ≤ l ≤ 1, T
is the period of impulsive effect, n ∈ Z+ = {1, 2, . . .}, μ1 is the releasing amount of the natural
enemy at time t = (n + l − 1)T , and μ2 is the amount of pesticide input at time t = nT .
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Obviously, the first equation of system (2.1) can be written as

xj(t) =
∫ t

t−τ
ae−b1(t−s)x(s)ds, (2.3)

xj(0) =
∫0

−τ
aeb1sx(s)ds (2.4)

which means that the property of xj(t) can be investigated by x(t). Moreover, the condition
(2.4) presents the total surviving immature population from the observed birth on −τ ≤ t ≤ 0.
On the other hand, because the immature pest (egg) does little harm to the crops and it
cannot breed, we just need to consider the control of the mature pest. Meanwhile, note that
the variable xj(t) does not appear in the second, third, fourth, and fifth equations of system
(2.1); hence, we only need to consider the subsystem of (2.1) as follows:

dx(t)
dt

= ae−b1τx(t − τ) − fx2(t) − βx(t)y(t)
η + x(t)

− rco(t)x(t),
dy(t)
dt

= λ
βx(t)y(t)
η + x(t)

− b2y(t),

dco(t)
dt

= kce(t) − gco(t) −mco(t),
dce(t)
dt

= −hce(t),

t /= (n + l − 1)T, t /=nT,

Δx(t) = 0, Δy(t) = μ1, Δco(t) = 0, Δce(t) = 0, t = (n + l − 1)T,

Δx(t) = 0, Δy(t) = 0, Δco(t) = 0, Δce(t) = μ2, t = nT.

(2.5)

The initial conditions for system (2.5) are

(
x(t), y(t), co(t), ce(t)

)
=
(
φ2(t), φ3(t), φ4(t), φ5(t)

) ∈ C+
4 ,

C+
4 = C

(
[−τ, 0], R4

+

)
, t ∈ [−τ, 0], φi(0) > 0, i = 2, 3, 4, 5.

(2.6)

Furthermore, since c0(t) and ce(t) are the concentration of toxicant, to ensure 0 ≤ c0(t) ≤ 1
and 0 ≤ ce(t) ≤ 1, we assume that condition g ≤ k ≤ g +m, μ2 ≤ 1 − e−hT holds in this paper.
Meanwhile, considering the biological meaning, we assume that k < h.

In Sections 3 and 4, we mainly consider the global stability of pest-extinction solution
and the uniform permanence of system (2.1); before introducing our main results, we give
some preliminaries needed in next sections.

Let R+ = [0,∞) and R5
+ = {X ∈ R5 : X > 0}. Denote F = (f1, f2, f3, f4, f5) as the

map defined by the right hand of system (2.1). The solution of (2.1), denoted by X(t) =
(xj(t), x(t), y(t), co(t), ce(t)) : R+ → R5

+, is continuous on ((n − 1)T, (n + l − 1)T] and ((n + l −
1)T, nT]. X((n + l − 1)T+) = limt→ (n+l−1)T+X(t) and X(nT+) = limt→nT+X(t) exist. Obviously,
the global existence and uniqueness of solutions of (2.1) is guaranteed by the smoothness
properties of F (see [15]). Furthermore, the following lemma is easily obtained.
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Lemma 2.1. If X(t) is a solution of system (2.1) with (φ1(t), φ2(t), φ3(t), φ4(t), φ5(t)) > 0 (−τ ≤
t ≤ 0), then X(t) > 0 for all t ≥ 0.

Consider the following system

dy(t)
dt

= −b2y(t), t /= (n + l − 1)T,

Δy(t) = μ1, t = (n + l − 1)T.

(2.7)

Lemma 2.2 (see [19]). System (2.7) has a unique positive periodic solution given by

y∗(t) =
μ1e

−b2[t−(n+l−1)T]

1 − e−b2T
, for (n + l − 1)T < t ≤ (n + l)T (2.8)

which is globally asymptotically stable.

Consider the following system

dv(t)
dt

= p − qv(t), t /= (n + l − 1)T,

Δv(t) = μ, t = (n + l − 1)T.
(2.9)

Lemma 2.3 (see [19]). System (2.9) has a unique positive periodic solution given by

υ∗(t) =
p

q
+
μe−q[t−(n+l−1)T]

1 − e−qT , for (n + l − 1)T < t ≤ (n + l)T (2.10)

which is globally asymptotically stable.

Now we consider some basic properties of the following subsystem of system (2.5)

dco(t)
dt

= kce(t) − gco(t) −mco(t),

dce(t)
dt

= −hce(t), t /=nT

Δco(t) = 0, Δce(t) = μ2, t = nT,

0 ≤ co(0) ≤ 1, 0 ≤ ce(0) ≤ 1.

(2.11)
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Lemma 2.4 (see [19]). System (2.11) has a unique positive T -periodic solution given by

c∗0(t) = c
∗
0(0)e

−(g+m)(t−nT) +
kc∗e(0)

[
e−(g+m)(t−nT) − e−h(t−nT)]

h − g −m ,

c∗e(t) = c
∗
e(0)e

−h(t−nT),

c∗0(0) =
kc∗e(0)

[
e−(g+m)T − e−hT]

(
h − g −m)[

1 − e−(g+m)T
] ,

c∗e(0) =
μ2

1 − e−hT ,

(2.12)

for nT < t ≤ (n + 1)T , which is globally asymptotically stable.

Lemma 2.5 (see [19]). Considering the following equation

dx(t)
dt

= ax(t − τ) − bx(t) − cx2(t), (2.13)

where a, b, c, and τ are all positive constants, x(t) > 0 for −τ ≤ t ≤ 0, one has

(1) if a < b, then limt→+∞x(t) = 0;

(2) if a > b, then lim
t→+∞

x(t) = (a − b)/c.

Definition 2.6. System (2.5) is said to be permanent if there are constants M1,M2 > 0
(independent of initial value) and a finite time T0 such that for every positive solution
(x(t), y(t), co(t), ce(t)) ∈ R+

4 with initial conditions, (2.6) satisfies M1 ≤ x(t) ≤ M2, M1 ≤
y(t) ≤ M2, M1 ≤ co(t) ≤ M2, M1 ≤ ce(t) ≤ M2 for all t ≥ T0. Hence, T0 may depend on the
initial conditions (2.6).

3. Extinction and Permanence

Firstly, we show that all solutions of system (2.1) are uniformly ultimately bounded.

Theorem 3.1. There exists a constant L > 0 such that xj(t) ≤ L/λ, x(t) ≤ L/λ, y(t) ≤ L, co(t) ≤ L,
ce(t) ≤ L for each solution (xj(t), x(t), y(t), co(t), ce(t)) of system (2.1) with large enough t.

Obviously, when the pest individuals are entirely absent from the model, that is,
x(t) = 0 for t ≥ 0, y(t) satisfies the system (2.7). Accordingly, by Lemmas 2.2 and 2.4, we
can get that system (2.1) exists for an immature and mature pest-extinction periodic solution
(0, 0, y∗(t), c∗o(t), c

∗
e(t)), whose global attractiveness is equivalent to global attractiveness of the

mature pest-extinction periodic solution (0, y∗(t), c∗o(t), c
∗
e(t)) of system (2.5). In the following,

we give the sufficient conditions for global attractiveness of solution (0, y∗(t), c∗o(t), c
∗
e(t)).

If we denoteA = e−b2T/(1−e−b2T ), B = k[e−(g+m)T−e−hT]e−(g+m)T/(h−g−m)(1−e−hT)[1−
e−(g+m)T], b = min{b1, b2, h−k, g+m}, σ1 = eblT/(ebT −1), σ2 = ebT/(ebT −1),M0 = λ(a+b)2/4f ,
then we have the following.
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Theorem 3.2. The mature pest-extinction periodic solution (0, y∗(t), c∗o(t), c
∗
e(t)) of system (2.5) is

globally attractive provided that

μ1 >
ae−b1τ

(
bλη +M0

) − (
bληrB − σ2bae

−b1τ +M0rB
)
μ2 − σ2rbBμ

2
2

b
(
βλA − σ1ae−b1τ + σ1rBμ2

) (3.1)

holds true.

Remark 3.3. The pest-extinction periodic solution (0, 0,y∗(t), c∗o(t), c
∗
e(t)) of system (2.1) is also

globally attractive if the condition (3.1) holds.

Now, we give the sufficient conditions for permanence of system (2.5). If we denote
σ = 1/(1−e−b2T ), δ = k[e−(g+m)T−e−hT]/(h−g−m)(1−e−hT)[1−e−(g+m)T]+k/|h−g−m|(1−e−hT),
and then we have the following.

Theorem 3.4. System (2.5) is permanent provided that

μ1 <
η
(
ae−b1τ − rδμ2

)

βσ
(3.2)

holds true.

Remark 3.5. System (2.1) is also permanent if the condition (3.2) holds.

For convenience, the proofs of Theorems 3.1, 3.2, and 3.4 are given in Appendices A–C,
respectively.

The above results show that many factors including maturation time delay, functional
response of the predator, the organism’s net uptake pesticide from the environment, the
egestion and depuration rates of pesticide in an organism, the loss of pesticide in the
environment due to natural degradation, the natural enemy releasing amount, the pesticide
spraying amount, and the releasing and spraying period, can induce variation in the
characteristics of populations. Meanwhile, the results imply that the modelling methods
described can help in the design of appropriate control strategies and assist management
decision-making. In fact, the conditions (3.1) and (3.2) imply that there exist two theoretical
criteria values in system (2.1), which can be, respectively, denoted as follows:

μ∗
1 =

ae−b1τ
(
bλη +M0

) − (
bληrB − σ2bae

−b1τ +M0rB
)
μ2 − σ2rbBμ

2
2

b
(
βλA − σ1ae−b1τ + σ1rBμ2

) ,

μ∗∗
1 =

η
(
ae−b1τ − rδμ2

)

βσ
.

(3.3)

Moreover, if μ1 > μ∗
1, the pest-extinction periodic solution is globally asymptotically stable;

if μ1 < μ∗∗
1 , the insect pests and the natural enemies can coexist, that is, system (2.1) that
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we consider permanent. It is well known that, in a definitive ecological environment, the
appropriate artificial release of natural enemies and spraying of pesticides play an important
role in the success of pest-control. Due to the antagonism between chemical and biological
methods, we should reduce the pesticide application to avoid antagonism and especially
negative impacts on nontarget organisms. Theorems 3.2 and 3.4 indicate that we can choose
the appropriate impulsive parameters to reduce pests to tolerable levels with little economical
cost and minimal effect on the environment. Therefore, our impulsive strategy is more
effective than the classical one if the chemical control is adopted rationally. To confirm our
mathematical findings and facilitate their interpretation, we proceed to investigate further by
using numerical simulations in the following section.

4. Numerical Simulations

In this section, numerical simulations are carried out to investigate effects of impulsive
varying parameters on dynamical behaviors of system (2.1) as well as to illustrate our
theoretical results. Owing to the lack of biologically realistic parametric values, the solution
of the system with initial conditions in the first octant is obtained numerically for biologically
feasible ranges of parametric values dominated by Theorems 3.2 and 3.4. For convenience,
we assume that some parametric values of system (2.1) are kept as

a = 0.8, b1 = 0.9, τ = 0.7, f = 0.2, β = 0.9, η = 1, r = 0.7, b2 = 0.3,

λ = 0.9, k = 1, g = 0.5, m = 0.7, h = 2, l = 0.1, T = 2, μ2 = 0.1.
(4.1)

Firstly, we give numerical results of the system, in which there are no impulsive
perturbations (including natural enemy releasing and pesticide spraying), in other words,
that is the unforced system of (2.1). The model takes the following form:

dxj(t)
dt

= ax(t) − b1xj(t) − ae−b1τx(t − τ),

dx(t)
dt

= ae−b1τx(t − τ) − fx2(t) − βx(t)y(t)
η + x(t)

,

dy(t)
dt

= λ
βx(t)y(t)
η + x(t)

− b2y(t),

(4.2)

where the value of parameters for model (4.2) can be seen in (4.1). We can easily plot the time
series of every population and phase portrait of the system and find that the solution of (4.2)
with initial values xj(0) = 0.2, x(0) = 0.1, and y(0) = 0.1 would tend to a positive equilibrium
solution (see Figures 1(a) and 1(b) in details). From the following discussion, we can observe
that the solution of the unforced system would become unstable via impulsive perturbation.
Further, it indicates that the system is impulsively controllable.

From theoretical criteria values formula (3.3) and the above parameter hypothesis
(4.1), by a straightforward calculation, we can obtain that two theoretical criteria values of
system (2.1) are μ∗

1 = 5.5247 and μ∗∗
1 = 0.1654, respectively.

Let μ1 > μ∗
1 = 5.5247, that is, the condition (3.1) holds true; we know that the pest-

extinction periodic solution is globally asymptotically stable from Theorem 3.2. that is, if we
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Figure 1: Dynamical behavior of system (4.2) with a = 0.8, b1 = 0.9, τ = 0.7, f = 0.2, β = 0.9, η = 1, b2 = 0.3,
λ = 0.9, initial values xj(0) = 0.2, x(0) = 0.1, y(0) = 0.1. (a) Time series of system (4.2). (b) Phase portrait
of system (4.2).

let μ1 = 5.6 > μ∗
1, a typical pest-eradication periodic solution of system (2.1) with initial

values xj(0) = 0.2, x(0) = 0.1, y(0) = 0.1, co(t) = 0.01, and ce(t) = 0.01 is shown in Figure 2(a),
where we observe how the predator (natural enemy) y(t) and the concentration and ce(t)
of pesticide in the environment and the concentration c0(t) of pesticide in the organism
periodically oscillate; in contrast, both the immature pest xj(t) and mature pest x(t) rapidly
decrease to zero. If we continue to increase μ1 and let μ1 = 6.5 > μ∗

1 and μ1 = 7.5 > μ∗
1, from

Figures 2(b) and 2(c), the same phenomenon as above can be observed, respectively. This
illustrates that the pest-extinction periodic solution of system (2.1) is globally asymptotically
stable.

Let μ1 < μ∗∗
1 = 0.1654, that is, the condition (3.2) holds true; we know that system

(2.1) that we consider is permanent from Theorem 3.4. That is, if we let μ1 = 0.16 < μ∗∗
1 , a

positive periodic solution of system (2.1) with initial values xj(0) = 0.2, x(0) = 0.1, y(0) = 0.1,
co(t) = 0.0, ce(t) = 0.01 is shown in Figure 3, where we observe that each population of system
(2.1) can coexist on a stable limit cycle. If we continue to decrease μ1, and let μ1 = 0.12 < μ∗∗

1
and μ1 = 0.08 < μ∗∗

1 , from Figures 4 and 5, the same phenomenon as above can be observed,
respectively. This illustrates that system (2.1) is permanent.

We must emphasize here that condition (3.1) and condition (3.2) are the only sufficient
conditions which, respectively, assure global attractiveness of the pest-extinction periodic
solution of system (2.1) and permanence of the populations. Accordingly, μ∗

1 = 5.5247 and
μ∗∗

1 = 0.1654 are only two theoretical criteria values, not the threshold. Concerning the
mathematical formula of theoretical threshold, we leave this for future work. We only give
here an approximate threshold which can be obtained by numerical simulations. Indeed, by
plotting the bifurcation diagram, we may observe that the theoretical threshold of parameter
μ1 is approximately equal to 0.29 (see Figure 6 in details). That is to say, when μ1 > 0.29, the
pest-extinction periodic solution of system (2.1) is globally asymptotically stable; reversely,
when μ1 < 0.29, system (2.1) that we consider is permanent.
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Figure 2: Dynamical behavior (extinction) of system (2.1) with a = 0.8, b1 = 0.9, τ = 0.7, f = 0.2, β = 0.9,
η = 1, r = 0.7, b2 = 0.3, λ = 0.9, k = 1, g = 0.5, m = 0.7, h = 2, l = 0.1, T = 2, μ2 = 0.1, initial values xj(0) = 0.2,
x(0) = 0.1, y(0) = 0.1, co(t) = 0.01, ce(t) = 0.01 (∗corresponding theoretical criteria value: μ∗

1 = 5.5247. (a)
Time-series of system (2.1) with μ1 = 5.6. (b) Time-series of system (2.1) with μ1 = 6.5. (c) Time-series of
system (2.1) with μ1 = 7.5.

According to the bifurcation theory, the properties of a dynamic system depend
on certain parameter, and dynamic system with different parameters may have different
dynamic behaviors. The above numerical results that we have investigated depend on
parameter μ1, that is, μ1 is control parameter. In fact, from condition (3.1) and condition
(3.2), the control parameter may also choose the other parameter as T , μ2, l, or τ , and then
the same argument as above can be continued. We only give here two numerical examples.
Figure 7(a) is plotted by changing the parameter τ = 0.7 of Figure 3 to τ = 1.5. Figure 7(b) is
plotted by changing the parameter T = 2 of Figure 3 to T = 1. As against Figure 3, Figure 7
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Figure 3: Dynamical behavior (permanence) of system (2.1) with a = 0.8, b1 = 0.9, τ = 0.7, f = 0.2, β = 0.9,
η = 1, r = 0.7, b2 = 0.3, λ = 0.9, k = 1, g = 0.5, m = 0.7, h = 2, l = 0.1, and T = 2, and μ2 = 0.1; initial value
xj(0) = 0.2, x(0) = 0.1, y(0) = 0.1, co(t) = 0.01, and ce(t) = 0.01 (∗corresponding theoretical criteria value:
μ∗∗

1 = 0.1654). (a) Time-series of system (2.1) with μ1 = 0.16. (b) Solution xj(t), x(t), y(t) with μ1 = 0.16 will
finally tend to a T -periodic solution.
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Figure 4: Dynamical behavior (permanence) of system (2.1) with a = 0.8, b1 = 0.9, τ = 0.7, f = 0.2, β = 0.9,
η = 1, r = 0.7, b2 = 0.3, λ = 0.9, k = 1, g = 0.5, m = 0.7, h = 2, l = 0.1, T = 2, and μ2 = 0.1, initial values
xj(0) = 0.2, x(0) = 0.1, y(0) = 0.1, co(t) = 0.01, and ce(t) = 0.01 (∗corresponding theoretical criteria value:
μ∗∗

1 = 0.1654. (a) Time-series of system (2.1) with μ1 = 0.12. (b) Solution xj(t), x(t), y(t) with μ1 = 0.12 will
finally tend to a T -periodic solution.

implies that long maturation time delay and short impulsive period may induce variation in
the characteristics of populations and cause pests eradication.
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Figure 5: Dynamical behavior (permanence) of system (2.1) with a = 0.8, b1 = 0.9, τ = 0.7, f = 0.2, β = 0.9,
η = 1, r = 0.7, b2 = 0.3, λ = 0.9, k = 1, g = 0.5, m = 0.7, h = 2, l = 0.1, T = 2, μ2 = 0.1, initial values xj(0) = 0.2,
x(0) = 0.1, y(0) = 0.1, co(t) = 0.01, ce(t) = 0.01 (∗corresponding theoretical criteria value: μ∗∗

1 = 0.1654. (a)
Time series of system (2.1) with μ1 = 0.08. (b) Solution xj(t), x(t), y(t) with μ1 = 0.08 will finally tend to a
T -periodic solution.
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Figure 6: Bifurcation diagrams of system (2.1), showing the effect of μ1 with a = 0.8, b1 = 0.9, τ = 0.7,
f = 0.2, β = 0.9, η = 1, r = 0.7, b2 = 0.3, λ = 0.9, k = 1, g = 0.5, m = 0.7, h = 2, l = 0.1, T = 2, and μ2 = 0.1,
initial values xj(0) = 0.2, x(0) = 0.1, y(0) = 0.1, co(t) = 0.01, and ce(t) = 0.01. (a) x(t) is plotted for μ1 over
[0.05, 6]. (b) y(t) is plotted forμ1 over [0.05, 6].

5. Conclusion

In this paper, in order to investigate the consequences of periodically spraying pesticides
and releasing natural enemies at different fixed moment in pest-natural enemy system,
a hybrid impulsive pest-control model with stage structure for pest and Holling II
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Figure 7: Dynamical behavior (extinction) of system (2.1) with a = 0.8, b1 = 0.9, f = 0.2, β = 0.9, η = 1,
r = 0.7, b2 = 0.3, λ = 0.9, k = 1, g = 0.5, m = 0.7, h = 2, l = 0.1, and μ2 = 0.1, initial values xj(0) = 0.2,
x(0) = 0.1, y(0) = 0.1, co(t) = 0.01, and ce(t) = 0.01. (a) Time series of system (2.1) with τ = 1.5,T = 2,
μ1 = 0.16. (b) Time series of system (2.1) with τ = 0.7, T = 1, and μ1 = 0.16.

functional response is proposed, in which the effects of impulsive pesticide input in
the environment and in the organism are considered. Sufficient conditions for global
attractiveness of the pest-extinction periodic solution and permanence of the system
have been obtained, which shows that there exists a globally asymptotically stable pest-
eradication periodic solution when the number μ1 of natural enemies released is more
than some critical value μ∗

1 (see Figure 2), whereas the system can be permanent when
the number μ1 of natural enemies released is less than another critical value μ∗∗

1 (see
Figures 3, 4, and 5). Meanwhile, numerical simulation results for biologically feasible
ranges of parametric values can confirm our mathematical findings and facilitate their
interpretation. We also note that the conditions for the extinction or permanence in
system (2.1) are quite different from the corresponding system (4.2) without impulse. For
example, the system (4.2) has a positive equilibrium which is orbitally asymptotically
stable (see Figure 1); however, this properties are changed via additional impulsive
perturbation (see Figures 2–7). Furthermore, by plotting the bifurcation diagram (see
Figure 6), we obtained the theoretical threshold of control parameter μ1, which is crucial
for extinction or permanence of the population if the other parameters of system (2.1)
are fixed. Finally, the numerical results, which show that long maturation time delay
and short impulsive period may cause pests eradicat, have been given (see Figure 7).
Obviously, these results indicate that the models proposed in this paper can help
us understand pest-natural enemy interactions, to design appropriate control strategies
and to make management decisions in insect pest-control. We would like to mention
here that an interesting but challenging problem associated with the studies of system
(2.1) should be how to optimize the number of periodically releasing natural enemy
and the dosage of spraying pesticides to reduce pests to tolerable levels with little
economical cost and minimal effect on the environment. We leave this for future
work.
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Appendices

A. Proof of Theorem 3.1

Define V (t) = λxj(t)+λx(t)+y(t)+co(t)+ce(t), b = min{b1, b2, h−k, g+m}. When t /= (n+l−1)T
and t /=nT , we have

dV (t)
dt

+ bV (t) ≤ λ(a + b)x(t) − fλx2(t) ≤M0, (A.1)

where M0 = λ(a + b)2/(4f). In addition, V ((n + l − 1)T+) = V ((n + l − 1)T) + μ1, V (nT+) =
V (nT) + μ2.

By a straightforward calculation, when 0 < (n + l − 1)T < nT < t < (n + 1 + l − 1)T , we
have

V (t) ≤ V (0)e−bt +
∫ t

0
M0e

−b(t−s)ds +
n∑

i=1

(
μ1e

−b[t−(i+l−1)T] + μ2e
−b(t−iT)

)
, (A.2)

and when 0 < nT < (n + 1 + l − 1)T < t < (n + 1)T , we have

V (t) ≤ V (0)e−bt +
∫ t

0
M0e

−b(t−s)ds +
n+1∑

i=1

(
μ1e

−b[t−(i+l−1)T]
)
+

n∑

i=1

(
μ2e

−b(t−iT)
)
. (A.3)

Accordingly, we have

V (t) ≤ M0

b
+
μ1e

blT + μ2e
bT

ebT − 1
Δ= L as t → ∞. (A.4)

So V (t) is uniformly ultimately bounded. By the definition of V (t), we have xj(t) ≤
L/λ, x(t) ≤ L/λ, y(t) ≤ L, co(t) ≤ L, ce(t) ≤ L for large enough t. The proof is completed.

B. Proof of Theorem 3.2

Suppose that (x(t), y(t), co(t), ce(t)) is any solution of system (2.5) with initial conditions
(2.6). From system (2.5), we have

dy(t)
dt

≥ −b2y(t), t /= (n + l − 1)T,

Δy(t) = μ1, t = (n + l − 1)T.

(B.1)
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By Lemma (2.2), we know that u∗(t) = μ1e
−b2[t−(n+l−1)T]/(1−e−b2T ) is the unique positive

periodic solution of impulsive differential equation as follows:

du(t)
dt

= −b2u(t), t /= (n + l − 1)T,

Δu(t) = μ1, t = (n + l − 1)T.
(B.2)

By comparison theorem of impulsive equation [15], for any small enough ε1 > 0, there
exists an integer N1 such that

y(t) > u∗(t) − ε1, for (N1 + l − 1)T < t ≤ (N1 + l)T. (B.3)

Accordingly, we obtain

y(t) > μ1A − ε1, for (N1 + l − 1)T < t ≤ (N1 + l)T. (B.4)

On the other hand, from Lemma 2.4, we can easily obtain that for any small enough ε2 > 0,
there exists an integer N2 such that

co(t) > μ2B − ε2, for N2T < t ≤ (N2 + 1)T. (B.5)

Leting T̃ = max{(N1 + l − 1)T,N2T}, from the first equation of system (2.5), (B.4), (B.5), and
Theorem 3.1, we have

dx(t)
dt

< ae−b1τx(t − τ) −
[
β
(
μ1A − ε1

)

η + L/λ
+ r

(
μ2B − ε2

)
]

x(t) − fx2(t), for t > T̃ + τ, (B.6)

where L = M0/b + (μ1e
blT + μ2e

bT)/(ebT − 1) = M0/b + μ1σ1 + μ2σ2 is obtained from Proof of
Theorem 3.1. In the following we consider the comparison equation

dz(t)
dt

= ae−b1τz(t − τ) −
[
β
(
μ1A − ε1

)

η + L/λ
+ r

(
μ2B − ε2

)
]

z(t) − fz2(t). (B.7)

Because the condition (3.1) is equivalent to the condition ae−b1τ < βAμ1/(η + L/λ) + rBμ2,
therefore, we can choose ε1 > 0 and ε2 > 0 small enough such that

ae−b1τ <
β
(
μ1A − ε1

)

η + L/λ
+ r

(
μ2B − ε2

)
. (B.8)

For any solution z(t) of (B.7), by Lemma 2.5 and (B.8), we can get limt→+∞z(t) = 0. Thus
by the comparison theorem in delay differential equation and Lemma 2.1, we obtain that
limt→+∞x(t) ≤ limt→+∞z(t) = 0, and limt→+∞x(t) = 0.
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Further, for any small enough ε3 > 0 and large enough t, we have 0 < x(t) < ε3.
Without loss of generality, we may assume 0 < x(t) < ε3 for t ≥ 0. And then from system
(2.5), we obtain

dy(t)
dt

≤ λβLε3

η + ε3
− b2y(t), t /= (n + l − 1)T,

Δy(t) = μ1, t = (n + l − 1)T.

(B.9)

By Lemma 2.3 and the comparison theorem in impulsive differential equation [15], for any
ε4 > 0 is small enough, when large enough t, we have

y(t) < Y ∗(t) + ε4, (B.10)

where Y ∗(t) = λβLε3/b2(η + ε3) + μ1e
−b2[t−(n+l−1)T]/(1 − e−b2T ) for (n + l − 1)T < t ≤ (n + l)T is

the unique positive periodic solution of impulsive differential equation as follows

dY (t)
dt

=
λβLε3

η + ε3
− b2Y (t), t /= (n + l − 1)T,

ΔY (t) = μ1, t = (n + l − 1)T.

(B.11)

Combining (B.3) with (B.10), when t is large enough, we obtain

u∗(t) − ε1 < y(t) < Y ∗(t) + ε4 (B.12)

which implies limt→+∞y(t) = y∗(t) since ε1, ε3, ε4 are all sufficiently small positive constants.
Moreover, by Lemma 2.4, when t → +∞, we have co(t) → c∗o(t), ce(t) → c∗e(t). Thus the
proof is completed.

C. Proof of Theorem 3.4

Suppose that (x(t), y(t), co(t), ce(t)) is any solution of system (2.5) with initial conditions
(2.6). By Theorem 3.1, we have proved that there exists a constant L = M0/b + (μ1e

blT +
μ2e

bT )/(ebT − 1) > 0 such that x(t) ≤ L/λ, y(t) ≤ L, co(t) ≤ L, ce(t) ≤ L for large enough t.
From Proof of Theorem 3.2, we know that y(t) > μ1A − ε1, co(t) > μ2B − ε2 for large enough
t (see (B.4), and (B.5)). By Lemma 2.4, we easily obtain that ce(t) > μ2e

−hT/(1 − e−hT) − ε2 for
large enough t. Thus, from Definition 2.6, we only need to find a constant M1 > 0 such that
x(t) ≥M1 for t large enough. We will do it in the following two steps.

(1) we prove that there exists a constant m1 > 0 such that x(t) < m1 cannot hold for all
t ≥ t0. Otherwise, there is a constant t0 > 0 such that x(t) < m1 for all t ≥ t0. Thus, from system
(2.5), when t ≥ t0, we have

dy(t)
dt

<
λβm1L

η +m1
− b2y(t), t /= (n + l − 1)T,

Δy(t) = μ1, t = (n + l − 1)T.

(C.1)
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By Lemma (2.4) and comparison theorem of impulsive equation [15], for any ε > 0 small
enough, there exists a T1 ≥ t0 such that

y(t) <
λβm1L

b2
(
η +m1

) +
μ1

1 − e−b2T
+ ε =

λβm1L

b2
(
η +m1

) + μ1σ + ε. (C.2)

For the above ε, by Lemma 2.4, there exists a T2 ≥ t0 such that

co(t) < μ2δ + ε, for t > T2. (C.3)

Because the first equation of (2.5) can be rewritten as

dx(t)
dt

=
[
ae−b1τ − fx(t) − βy(t)

η + x(t)
− rco(t)

]
x(t) − ae−b1τ

d

dt

∫ t

t−τ
x(s)ds. (C.4)

Now, we define

V (t) = x(t) + ae−b1τ

∫ t

t−τ
x(s)ds. (C.5)

By calculating the derivative of V (t) along system (2.5), we have

dV (t)
dt

=
[
ae−b1τ − fx(t) − βy(t)

η + x(t)
− rco(t)

]
x(t). (C.6)

Let T̂ = max{T1, T2}, then for t > T̂ , combining (C.2), (C.3), and (C.6), we have

dV (t)
dt

>

[

ae−b1τ − fm1 −
β

η

(
λβm1L

b2
(
η +m1

) + μ1σ + ε

)

− r(μ2δ + ε
)
]

x(t). (C.7)

Since condition (3.2) holds, we can choose m1 and ε to be small enough such that

ae−b1τ > fm1 +
β

η

(
λβm1L

b2
(
η +m1

) + μ1σ + ε

)

+ r
(
μ2δ + ε

)
. (C.8)
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Leting m2 = mint∈[T̂ ,T̂+τ]x(t), we show that x(t) ≥ m2 for t > T̂ . Otherwise, there is a

nonnegative constant T3 such that x(t) ≥ m2 for t ∈ [T̂ , T̂ + τ + T3], x(T̂ + τ + T3) = m2,
and x′(T̂ + τ + T3) < 0. Further, from the first equation of (2.5), we obtain that

dx
(
T̂ + τ + T3

)

dt
= ae−b1τx

(
T̂ + T3

)
− fx2

(
T̂ + τ + T3

)

−
βx

(
T̂ + τ + T3

)
y
(
T̂ + τ + T3

)

η + x
(
T̂ + τ + T3

) − rc0

(
T̂ + τ + T3

)
x
(
T̂ + τ + T3

)

≥ m2

[

ae−b1τ − fm1 −
β

η

(
λβm1L

b2
(
η +m1

) + μ1σ + ε

)

− r(μ2δ + ε
)
]

> 0.

(C.9)

This is a contradiction. So, we obtain that x(t) ≥ m2 for t > T̂ . Combining (C.7) and (C.8), we
have

dV (t)
dt

>

[

ae−b1τ − fm1 −
β

η

(
λβm1L

b2
(
η +m1

) + μ1σ + ε

)

− r(μ2δ + ε
)
]

m2 > 0, (C.10)

for t > T̂ . It implies that as t → +∞, V (t) → +∞. Meanwhile, by the definition of V (t), we
easily obtained that V (t) ≤ L(1 + τae−b1τ)/λ. This is contradiction. Hence, for any constant
t0 > 0,x(t) < m1 cannot hold for all t ≥ t0.

(2) If x(t) ≥ m1 holds true for all large enough t, then our aim is obtained. Otherwise,
x(t) is oscillatory about m1. Thus there exist two positive constant t, θ such that x(t) = x(t +
θ) = m1 and x(t) ≤ m1 for t < t < t + θ. Let m3 = min{m1/2, m1e

−(f/λ+β/η+r)τL}. In the
following, we firstly show that x(t) ≥ m3 for t ≤ t ≤ t + θ and then address that x(t) ≥ m3 for t
large enough.

From system (2.5), we know that x(t) is continuous and bounded. So, there exists a
constant T4 (0 < T4 < τ and independent of the choice of t) such that x(t) ≥ m1/2 for all
t ≤ t ≤ t+T4. Moreover, when t is large enough, by Theorem 3.1 and the first equation of (2.5),
we have

dx(t)
dt

≥ −
(
f

λ
+
β

η
+ r

)
Lx(t), for t ≤ t ≤ t + θ. (C.11)

Accordingly, if θ ≤ T4, our aim is obtained; if T4 < θ ≤ τ , from (C.11), we have

x(t) ≥ m1e
−(f/λ+β/η+r)τL for t < t ≤ t + θ ≤ t + τ. (C.12)

It is obvious that x(t) ≥ m3 for t ≤ t ≤ t + θ; if θ > τ , from (C.11), we can obtain that x(t) ≥ m3

for t < t ≤ t + τ . The same argument can be continued, so we can obtain that x(t) ≥ m3 for
t + τ < t ≤ t + θ. Since two positive constants, t, θ, are arbitrarily chosen, we only assure t to
be large enough, and then we get that x(t) ≥ m3 for t large enough.

According to the above analysis, we can find a constant M1 > 0 such that x(t) ≥ M1

for large enough t. Thus the proof is completed.
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