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We propose a discrete model of mutualism with infinite deviating arguments, that is x1(n + 1) =
x1(n)exp{r1(n)[(K1(n)+α1(n)

∑∞
s=0 J2(s)x2(n−s))/(1+

∑∞
s=0 J2(s)x2(n−s))−x1(n−σ1(n))]}, x2(n+

1) = x2(n)exp{r2(n)[(K2(n) +α2(n)
∑∞

s=0 J1(s)x1(n− s))/(1+
∑∞

s=0 J1(s)x1(n− s))−x2(n−σ2(n))]}.
By some Lemmas, sufficient conditions are obtained for the permanence of the system.

1. Introduction

Chen and You [1] studied the following two species integro-differential model of mutualism:

dN1(t)
dt

= r1(t)N1(t)

[
K1(t) + α1(t)

∫∞
0 J2(s)N2(t − s)ds

1 +
∫∞
0 J2(s)N2(t − s)ds

−N1(t − σ1(t))

]

,

dN2(t)
dt

= r2(t)N2(t)

[
K2(t) + α2(t)

∫∞
0 J1(s)N1(t − s)ds

1 +
∫∞
0 J1(s)N1(t − s)ds

−N2(t − σ2(t))

]

,

(1.1)

where ri, Ki, αi, and σi, i = 1, 2 are continuous functions bounded above and below by positive
constants: ai > Ki, i = 1, 2; Ji ∈ C([0,+∞), [0,+∞)) and

∫∞
0 Ji(s)ds = 1, i = 1, 2. Using

the differential inequality theory, they obtained a set of sufficient conditions to ensure the
permanence of system (1.1). For more background and biological adjustments of system(1.1),
one could refer to [1–4] and the references cited therein.

However, many authors [5–12] have argued that the discrete time models governed
by difference equations are more appropriate than the continuous ones when the populations
have nonoverlapping generations. Also, since discrete time models can also provide efficient
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computational models of continuous models for numerical simulations, it is reasonable to
study discrete time models governed by difference equations. Another permanence is one of
the most important topics on the study of population dynamics. One of the most interesting
questions in mathematical biology concerns the survival of species in ecological models. It is
reasonable to ask for conditions under which the system is permanent.

Motivated by the above question, we consider the permanence of the following
discrete model of mutualism with infinite deviating arguments:

x1(n + 1) = x1(n) exp
{

r1(n)
[
K1(n) + α1(n)

∑∞
s=0 J2(s)x2(n − s)

1 +
∑∞

s=0 J2(s)x2(n − s)
− x1(n − σ1(n))

]}

,

x2(n + 1) = x2(n) exp
{

r2(n)
[
K2(n) + α2(n)

∑∞
s=0 J1(s)x1(n − s)

1 +
∑∞

s=0 J1(s)x1(n − s)
− x2(n − σ2(n))

]}

,

(1.2)

where xi(n), i = 1, 2 is the density of mutualism species i at the nth generation. For
{ri(n)}, {Ki(n)}, {αi(n)}, {Ji(n)}, and {σi(n)}, i = 1, 2 are bounded nonnegative sequences
such that

0 < rli ≤ rui , 0 < αl
i ≤ αu

i , 0 < Kl
i ≤ Ku

i , 0 < σl
i ≤ σu

i ,
∞∑

n=0

Ji(n) = 1. (1.3)

Here, for any bounded sequence {a(n)}, au = supn∈Na(n), al = infn∈Na(n).
Let σ = supn{σi(n), i = 1, 2}, we consider (1.2) together with the following initial

condition:

xi(θ) = ϕi(θ) ≥ 0, θ ∈ N[−τ, 0] = {−τ,−τ + 1, . . . , 0}, ϕi(0) > 0. (1.4)

It is not difficult to see that solutions of (1.2) and (1.4) are well defined for all n ≥ 0
and satisfy

xi(n) > 0, for n ∈ Z, i = 1, 2. (1.5)

The aim of this paper is, by applying the comparison theorem of difference equation
and some lemmas, to obtain a set of sufficient conditions which guarantee the permanence of
system (1.2).

2. Permanence

In this section, we establish permanence results for system (1.2).
Following Comparison Theorem of difference equation is Theorem 2.6 of [13, page

241].

Lemma 2.1. Let k ∈ N+
k0

= {k0, k0 + 1, . . . , k0 + l, . . .}, r ≥ 0. For any fixed k, g(k, r) is a non-
decreasing function with respect to r, and for k ≥ k0, following inequalities hold: y(k + 1) ≤
g(k, y(k)), u(k + 1) ≥ g(k, u(k)). If y(k0) ≤ u(k0), then y(k) ≤ u(k) for all k ≥ k0.
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Now let us consider the following single species discrete model:

N(k + 1) = N(k) exp{a(k) − b(k)N(k)}, (2.1)

where {a(k)} and {b(k)} are strictly positive sequences of real numbers defined for k ∈ N =
{0, 1, 2, . . .} and 0 < al ≤ au, 0 < bl ≤ bu. Similar to the proof of Propositions 1 and 3 in [6], we
can obtain the following.

Lemma 2.2. Any solution of system (2.1) with initial conditionN(0) > 0 satisfies

m ≤ lim
k→+∞

infN(k) ≤ lim
k→+∞

supN(k) ≤ M, (2.2)

where

M =
1
bl

exp{au − 1}, m =
al

bu
exp

{
al − buM

}
. (2.3)

Lemma 2.3 (see [14]). Let x(n) and b(n) be nonnegative sequences defined on N, and c ≥ 0 is a
constant. If

x(n) ≤ c +
n−1∑

s=0

b(s)x(s), for n ∈ N, (2.4)

then

x(n) ≤ c
n−1∏

s=0
[1 + b(s)], for n ∈ N. (2.5)

Lemma 2.4 (see [2]). Let x : Z → R be a nonnegative bounded sequences, and let H : N → R be
a nonnegative sequence such that

∑∞
n=0 Ji(n) = 1. Then

lim
n→+∞

inf x(n) ≤ lim
n→+∞

inf
n∑

s=−∞
H(n − s)x(s)

≤ lim
n→+∞

sup
n∑

s=−∞
H(n − s)x(s) ≤ lim

n→+∞
supx(n).

(2.6)

Proposition 2.5. Let (x1(n), x2(n)) be any positive solution of system (1.2), then

lim
n→+∞

supxi(n) ≤ Mi, i = 1, 2, (2.7)

where

Mi = exp
{
2rui

[
Ku

i + αu
i

]}
, i = 1, 2. (2.8)
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Proof. Let (x1(n), x2(n)) be any positive solution of system (1.2), then from the first equation
of system (1.2) we have

x1(n + 1) ≤ x1(n) exp
{

r1(n)
[
K1(n) + α1(n)

∑∞
s=0 J2(s)x2(n − s)

1 +
∑∞

s=0 J2(s)x2(n − s)

]}

= x1(n) exp
{

r1(n)
[

K1(n)
1 +

∑∞
s=0 J2(s)x2(n − s)

+
α1(n)

∑∞
s=0 J2(s)x2(n − s)

1 +
∑∞

s=0 J2(s)x2(n − s)

]}

≤ x1(n) exp
{

r1(n)
[
K1(n)

1
+
α1(n)

∑∞
s=0 J2(s)x2(n − s)

∑∞
s=0 J2(s)x2(n − s)

]}

= x1(n) exp{r1(n)[K1(n) + α1(n)]}
≤ x1(n) exp

{
ru1
[
Ku

1 + αu
1

]}
.

(2.9)

Let x1(n) = exp{u1(n)}, then

u1(n + 1) ≤ u1(n) + ru1
[
Ku

1 + αu
1

]
= ru1

[
Ku

1 + αu
1

]
+

n∑

s=0

b(s)x(s), (2.10)

where

b(s) =

⎧
⎨

⎩

0, 0 ≤ s ≤ n − 1,

1, s = n.
(2.11)

When u1(n) is nonnegative sequence, by applying Lemma 2.3, it immediately follows that

u1(n + 1) ≤ 2ru1
[
Ku

1 + αu
1

]
. (2.12)

When u1(n) is negative sequence, (2.12) also holds. From (2.12), we have

lim
n→+∞

supx1(n) ≤ exp
{
2ru1

[
Ku

1 + αu
1

]}
:= M1. (2.13)

By using the second equation of system (1.2), similar to the above analysis, we can obtain

lim
n→+∞

supx2(n) ≤ exp
{
2ru2

[
Ku

2 + αu
2

]}
:= M2. (2.14)

This completes the proof of Proposition 2.5.

Now we are in the position of stating the permanence of system (1.2).
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Theorem 2.6. Under the assumption(1.3), system (1.2) is permanent, that is, there exist positive
constants mi,Mi, i = 1, 2 which are independent of the solutions of system (1.2) such that, for any
positive solution (x1(n), x2(n)) of system(1.2) with initial condition (1.4), one has

mi ≤ lim
n→+∞

infxi(n) ≤ lim
n→+∞

supxi(n) ≤ Mi, i = 1, 2. (2.15)

Proof. By applying Proposition 2.5, we see that to end the proof of Theorem 2.6 it is enough
to show that under the conditions of Theorem 2.6

lim
n→+∞

inf xi(n) ≥ mi. (2.16)

From Proposition 2.5, For all ε > 0, there exists a N1 > 0, N1 ∈ N, For all n > N1,

xi(n) ≤ Mi + ε. (2.17)

According to Lemma 2.4, from (2.13) and (2.14) we have

lim
n→+∞

sup
∞∑

s=0

Ji(s)xi(n − s) = lim
n→+∞

sup
n∑

k=−∞
Ji(n − k)xi(k) ≤ Mi, i = 1, 2. (2.18)

For above ε > 0, according to (2.18), there exists a positive integerN2, such that, for all n > N2,

∞∑

s=0

Ji(s)xi(n − s) ≤ Mi + ε, i = 1, 2. (2.19)

Thus, for all n > max{N1,N2} + σ, from the first equation of system(1.2), it follows that

x1(n + 1) ≥ x1(n) exp

{

r1(n)

[
Kl

1

1 + (M2 + ε)
− (M1 + ε)

]}

≥ x1(n) exp

{
rl1K

l
1

1 + (M2 + ε)
− ru1 (M1 + ε)

}

.

(2.20)

It follows that, for n ≥ σ1(n),

n−1∏

i=n−σ1(n)

x1(i + 1) ≥
n−1∏

i=n−σ1(n)

x1(i) exp

{
rl1K

l
1

1 + (M2 + ε)
− ru1 (M1 + ε)

}

. (2.21)

Hence

x1(n) ≥ x1(n − σ1(n)) exp

{
rl1K

l
1

1 + (M2 + ε)
σl
1 − ru1 (M1 + ε)σu

1

}

. (2.22)
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In other words,

x1(n − σ1(n)) ≤ x1(n) exp

{

− rl1K
l
1

1 + (M2 + ε)
σl
1 + ru1 (M1 + ε)σu

1

}

. (2.23)

From the first equation of system (1.2) and (2.23), for all n > max{N1,N2}+σ, it follows that

x1(n + 1) ≥ x1(n) exp

{

− rl1K
l
1

1 + (M2 + ε)
− ru1 exp

{

− rl1K
l
1

1 + (M2 + ε)
σl
1 + ru1 (M1 + ε)σu

1

}

x1(n)

}

.

(2.24)

By applying Lemmas 2.1 and 2.2 to (2.24), it immediately follows that

lim
n→+∞

infx1(n) ≥
rl1K

l
1

ru1 (1 + (M2 + ε))
exp

{
rl1K

l
1

1 + (M2 + ε)
σl
1 − ru1 (M1 + ε)σu

1

}

× exp

{
rl1K

l
1

1 + (M2 + ε)
− ru1 exp

{

− rl1K
l
1

1 + (M2 + ε)
σl
1 + ru1 (M1 + ε)σu

1

}

M1

}

.

(2.25)

Setting ε → 0, it follows that

lim
n→+∞

infx1(n) ≥
rl1K

l
1

ru1 (1 +M2)
exp

{
rl1K

l
1

1 +M2
σl
1 − ru1M1σ

u
1

}

× exp

{
rl1K

l
1

1 +M2
− ru1 exp

{

− rl1K
l
1

1 +M2
σl
1 + ru1M1σ

u
1

}

M1

}

.

(2.26)

Similar to the above analysis, from the second equation of system (1.2), we have that

lim
n→+∞

infx2(n) ≥
rl2K

l
2

ru2 (1 +M1)
exp

{
rl2K

l
2

1 +M1
σl
2 − ru2M2σ

u
2

}

× exp

{
rl2K

l
2

1 +M1
− ru2 exp

{

− rl2K
l
2

1 +M1
σl
2 + ru2M2σ

u
2

}

M2

}

.

(2.27)

This completes the proof of Theorem 2.6.
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