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Dynamic properties are investigated in the coupled system of three maps with symmetric nearest
neighbor coupling and periodic boundary conditions. The dynamics of the system is controlled
by certain coupling parameters. We show that, for some values of the parameters, the system
exhibits nontrivial collective behavior, such as multiple bifurcations, and chaos. We give computer
simulations to support the theoretical predictions.

1. Introduction

Coupled maps is one of the most interesting topics on spatial extended systems. Bifurcation
and chaos of coupled maps generated by iterated maps of nonlinear difference equations
have attracted considerable attention in both theoretical studies and practical applications [1].
When many identical maps are coupled to a larger system (coupled map lattices or CML), the
system can exhibit nontrivial collective behavior, such as stability, multiple bifurcations, and
chaos [2–7]. In this paper, we extend this work by considering three-dimensional discrete
dynamical systems which arise from three coupled one-dimensional maps with delay. In
general, delayed coupled maps of three maps with symmetric nearest neighbor coupling and
periodic boundary conditions can be described as

xn+1 = axn + αf(xn) + β
[
xn−k − yn−k

]
+ β[xn−k − zn−k],

yn+1 = ayn + αf
(
yn
)
+ β
[
yn−k − zn−k

]
+ β
[
yn−k − xn−k

]
,

zn+1 = azn + αf(zn) + β[zn−k − xn−k] + β
[
zn−k − yn−k

]
,

(1.1)

where α, β, and a are parameters.
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Symmetry breaking Hopf bifurcations from steady states to periodic orbits can
occur in systems with some symmetry. The coexistence of more chaotic attractors in phase
space is phenomenon that has been proven to exist in many fields of science. There are
many researches of equivariant bifurcations of ODEs. We refer the readers to the study
by Golubitsky et al. in [8]. But, until now, there are fewer papers to discuss equivariant
bifurcation problems in maps, which motivates us to write this paper. The goal of this paper
is to investigate how parameters affect coupled maps with delay (1.1) by using the symmetric
groups theory of Chossat and Golubitsky [9].

Accordingly, the paper is organized as follows. In Sections 2 and 3, we show that
the structure of system (1.1) can be represented by a dihedral group D3. The generalized
center subspace is invariant under the action of the symmetry group, and the center manifold
reduction can be performed in such a way that the reduced equations commute with the
restricted action of the symmetry group. We obtain some important results about the stability
and chaos and spontaneous bifurcations of multiple branches of periodic solutions and their
spatiotemporal patterns, which describe the oscillatory mode of each oscillator. Finally, some
numerical simulations are carried out to support the analysis results, and the existence of
chaotic attractors is also exhibited numerically.

2. D3-Equivariant and Linear Stability of Coupled Maps

Assume that Xn = (xn, yn, zn)
T . Equation (1.1) can be rewritten as

Xn+1 =

⎛

⎝
a 0 0
0 a 0
0 0 a

⎞

⎠Xn +

⎛

⎝
α 0 0
0 α 0
0 0 α

⎞

⎠

⎛

⎜⎜
⎝

f((Xn)1)

f((Xn)2)

f((Xn)3)

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎝

2β −β −β
−β 2β −β
−β −β 2β

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

(Xn−k)1

(Xn−k)2

(Xn−k)3

⎞

⎟⎟
⎠. (2.1)

Throughout this section, to establish the main results for (1.1), we make the following
hypothesis on the activation functions in (2.1):

(H1) : f : R → R is a C1-smooth function with f(0) = 0, f ′(0) = 1.

Under the assumptions (H1), the origin (0,0,0) is an equilibrium of (1.1). Linearizing
system (2.1) about origin (0,0,0) gives the following linear system:

Yn+1 =

⎛

⎝
a + α 0 0

0 a + α 0
0 0 a + α

⎞

⎠Yn +

⎛

⎜⎜
⎝

2β −β −β
−β 2β −β
−β −β 2β

⎞

⎟⎟
⎠Yn−k. (2.2)

Lemma 2.1. Both systems (2.1) and (2.2) areD3-equivariant whereD3 is the dihedral group of order
6.

Proof. D3 can be generated by matrices

P =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠, Q =

⎛

⎝
−1 0 0
0 −1 0
0 0 −1

⎞

⎠. (2.3)
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Hence,

D3 =
{
I3, P, P

2, Q,QP,QP 2
}
. (2.4)

For all G ∈ D3, we have

G

⎛

⎜⎜
⎝

⎛

⎝
a 0 0
0 a 0
0 0 a

⎞

⎠Xn +

⎛

⎜
⎝

2β −β −β
−β 2β −β
−β −β 2β

⎞

⎟
⎠Xn−k +

⎛

⎝
α 0 0
0 α 0
0 0 α

⎞

⎠

⎛

⎜⎜
⎝

f((Xn)1)

f((Xn)2)

f((Xn)3)

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠

=

⎛

⎝
a 0 0
0 a 0
0 0 a

⎞

⎠GXn +

⎛

⎜
⎝

2β −β −β
−β 2β −β
−β −β 2β

⎞

⎟
⎠GXn−k +

⎛

⎝
α 0 0
0 α 0
0 0 α

⎞

⎠

⎛

⎜⎜
⎝

f((GXn)1)

f((GXn)2)

f((GXn)3)

⎞

⎟⎟
⎠,

G

⎛

⎜
⎝

⎛

⎝
a + α 0 0

0 a + α 0
0 0 a + α

⎞

⎠Yn +

⎛

⎜
⎝

2β −β −β
−β 2β −β
−β −β 2β

⎞

⎟
⎠Yn−k

⎞

⎟
⎠

=

⎛

⎝
a + α 0 0

0 a + α 0
0 0 a + α

⎞

⎠GYn +

⎛

⎜
⎝

2β −β −β
−β 2β −β
−β −β 2β

⎞

⎟
⎠GYn−k.

(2.5)

For discussing the linear stability and Hopf bifurcations of (2.1), we need to consider
the characteristic equation for (2.2). We can induce the method of Zhang and Zheng [10] to
mark Mn+1 = AMn, where

Mn =
(
xn, xn−1, xn−2, . . . , xn−k, yn, yn−1, yn−2, . . . , yn−k, zn, zn−1, zn−2, . . . , zn−k

)T
,

A =

⎛

⎜
⎝

R1 R2 R2

R2 R1 R2

R2 R2 R1

⎞

⎟
⎠

(3k+3)×(3k+3)

,

R1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a + α 0 · · · · · · 0 2β

1 0 · · · · · · · · · 0
0 1 0 · · · · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(k+1)×(k+1)

,

R2 =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 · · · · · · 0 −β
0 0 · · · · · · · · · 0
0 0 0 · · · · · · 0
0 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

(k+1)×(k+1)

. (2.6)
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The characteristic equation for (2.2) is given by

|λE −A| =
[
λk+1 − (a + α)λk

][
λk+1 − (a + α)λk − 3β

]2
= Δ1Δ2

2 = 0, (2.7)

where

Δ1 = λk+1 − (a + α)λk,

Δ2 = λk+1 − (a + α)λk − 3β.
(2.8)

The equation Δ1 = 0 has a k-fold root λ = 0 and a simple root λ = a + α. Assuming that
a + α < 1, we only need to analyze the distribution of the roots of Δ2 = 0.

In what follows, the analysis on the distribution of the roots to (2.7) is based on the
conclusion given in [10]: the sum of the order of the zeros of (2.7) can change only if a zero
appears or accesses the unit circle as parameters a, α, and β are varied.

Theorem 2.2. Let a + α < 1.

(1) The zero solution of (2.1) is local asymptotically stable if (a, α) ∈ E = {(a, α) | [(a + α −
1)2 − 9β2] ≥ 2|a + α|, a + α < 1, a, α ∈ R}.

(2) Equation (2.1) has equivariant bifurcation at the origin:

(1◦) if βj = [1+ (a+α)2 − 2(a+α) cosω]1/2/3 (j = 0, 1, . . . , k − 1), thenD3-equivariant
Hopf bifurcation occurs;

(2◦) if a + α + 3β = 1, then the D3-equivariant pitchfork bifurcation occurs;

(3◦) if 1 + a + α = (−1)k+13β, then the D3-equivariant doubling bifurcation occurs.

Proof. Consider Δ2 = 0.

(1) It is clears that Δ2 = 0 has roots λ = 1 if a+α+3β = 1 and λ = −1 if 1+a+α = (−1)k+13β.

(2) It is observed that, if β = 0, then Δ2 = 0 has simple root λ1 = a + α with |λ1| < 1 and
λ2 = 0 with multiplies k.

(3) Let λ = eiω be a root of Δ2 = 0, then we have

βj =

[
1 + (a + α)2 − 2(a + α) cosω

]1/2

3
(
j = 0, 1, . . . , k − 1

)
,

sin(k + 1)ω − e−a sin kω = 0,

ω ∈
(
jπ

k
,

(
j + 1

)
π

k + 1

)

for j = 0, 1, . . . , k − 1.

(2.9)
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Figure 1: The origin is local asymptotically stable for parameters a = 0.5, α = 0.48, and β = −0.18.

(4) One, moreover, has

dλ

dβ

∣∣∣∣
β=βj

=
2(k + 1) sinω − 2 sin(k + 1)ω cosω

sin kω
∣∣(k + 1)eiωk − (a + α)keiω(k+1)

∣∣2
> 0. (2.10)

Using the theorem of [10], the conclusions are obtained.

3. Multiple Bifurcations

Recently, there has been an increasing interest in the multistability problem in dynamical
systems theory. The purpose of this section is to explore the coexistence of multiple stable
patterns such as multiple periodic orbits of maps (2.1).

Let βj = ([1 + (a + α)2 − 2(a + α) cosω]1/2/3) (j = 0, 1, . . . , k − 1). We will consider the
periodic solutions of (2.1).

Assume that

g : R2n × R −→ R2n (3.1)

and that (Dg)(0,0) has eigenvalues e±2πiθ, each with multiplicity n, where θ /= 0, 1/2.
Denote by SPT the subspace of PT consisting of all T -periodic solution of (2.1) under

condition (2.4). Let Σ be a subgroup and let (Σ, SPT ) be fixed-point subspace of SPT .

Lemma 3.1 (see [8]). Let Σ be a subgroup such that dimFix(Σ, SPT ) = 2. Assume that the
eigenvalues cross the unit circle with nonzero speed. Then generically there exists a unique branch
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Figure 2: Completely symmetrical periodic solution of (xn, yn); antisymmetrical periodic solutions
(xn, zn), (yn, zn).

of g-invariant circles emanating from the trivial fixed point x = 0, and this branch is tangent to
Fix(Σ) ⊂ R2n × R at x = 0.

Consider the subgroup of D3:

Σ1 =
{
I9, P, P

2
}
, Σ1 = (P, θ(t))

{
P, θ(ωt) = ωt − 2π

3

}
,

Σ2 = {I9, Q}, Σ2 = (Q, θ(t)){Q, θ(ωt) = ωt},

Σ3 = {I9, QP}, Σ3 = (QP, θ(t)){QP, θ(ωt) = ωt − π}.

(3.2)

It is clear that

(1) dimFix(Σ1x, SPT ) = 2,

(2) dimFix(Σ2x, SPT ) = 2,

(3) dimFix(Σ3x, SPT ) = 2.

(3.3)

System (2.1) is equivariant with respect to the D3-action where the subgroups Σ1, Σ2,
and Σ3 of D3 act by permutation (sending xi to xi+1) and by interchanging (sending xi to
x3−i).

Applying Lemma 3.1 of the symmetric Hopf bifurcation theorem for maps, eight
branches of asynchronous periodic solutions are obtained due to their corresponding two-
dimensional fixed-point subspace. More precisely, we have the following theorem.
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Figure 3: Three waveforms have 2π/3ω out of phase.

Theorem 3.2. Assume that βj is defined as in (2.9). When near β = βj , there exist eight branches
of asynchronous periodic solutions of period PT near 2π/ω, bifurcated simultaneously from the zero
solution of system (2.1), and these are

(1) two phase-locked oscillations, xi(n) = xi−1(n ± PT/3) = xi−1(n ± 2π/3ω);

(2) three mirror-reflecting waves, xi(n) = xj(n)/=xk(n);

(3) three standing, xj(n) = xi(n + PT/2) = xi(n + π/ω).

To illustrate analytical results found, let us consider the following example:

xn+1 = axn + α tanh(xn) + β
(
xn−2 − yn−2

)
+ β(xn−2 − zn−2),

yn+1 = ayn + α tanh
(
yn
)
+ β
(
yn−2 − zn−2

)
+ β
(
yn−2 − xn−2

)
,

zn+1 = azn + α tanh(zn) + β(zn−2 − xn−2) + β
(
zn−2 − yn−2

)
.

(3.4)

Firstly, we choose parameters such that (2.9) met. When a = 0.5, and α = 0.48, β =
−0.18, we have the result that the origin of (3.4) is local asymptotically stable. See Figure 1.

Next, one possible choice of the parameters is a = 0.5, α = 0.48, and β = −0.21. In
this case, multiple branches of asynchronous periodic solutions appear. These solutions are
shown in Figures 2-3.

It is shown that, in Figures 1, 2, and 3 for different values of parameters, system (3.4)
exhibits its different dynamics. At first, the trivial solution is local asymptotically stable, then
loses its stability, and several different periodic patterns described by the equivariant Hopf
bifurcation can be observed, which depend on different values of parameters.
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Figure 4: Time series for (n, xn); (n, yn); (n, zn).
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Figure 5: Phase portrait of the chaotic attractor (xn, yn).

4. Chaos and Lyapunov Exponents

The presence of chaos in discrete dynamic systems is well known. In this section, the
numerical method is used to indicate the chaotic behavior of system (3.4). Analytic approach
is usually limited to some simple cases in studying nonlinear systems, and numerical
simulation by computer is more efficient sometimes. Therefore, we study the chaos of (3.4)
by numerical methods.
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Figure 6: Phase portrait of the chaotic attractor (xn, zn).
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Figure 7: Phase portrait of the chaotic attractor (yn, zn).

We notice that, when a = 0.6, α = 0.66, and β = −0.21, system (3.4) has coexistence of
chaotic attractors. See Figures 4, 5, 6, 7.

Lyapunov exponents are a quantitative measure for distinguishing among the various
types of orbits based upon their sensitive dependence on the initial conditions and are used
to determine the stability of any steady-state behavior, including chaotic solutions.

The Lyapunov exponents for a = 0.6, α = 0.66, and β = −0.21 are calculated by means
of Matlab and are illustrated in Figure 8.

5. Conclusions

In this paper we have shown a rich dynamics in a new class coupled maps described by
(1.1). In particular, we have demonstrated that system (1.1) with very simple connection
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Figure 8: Lyapunov exponents of system (3.4) when a = 0.6, α = 0.66, β = −0.21.

matrices can exhibit stability-to Multiple bifurcations-to-chaos when a parameter varies.
These properties are similar to those in symmetric delayed differential equations. It is
expected that finding more such simple coupled maps would be helpful for studying the
role of symmetry in discrete system.
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