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This paper describes a design for a least mean square error estimator in discrete time systems
where the components of the state vector, in measurement equation, are corrupted by different
multiplicative noises in addition to observation noise. We show how known results can be
considered a particular case of the algorithm stated in this paper.

1. Introduction

It was back in 1960 when Kalman [1] introduced his well-known filter. Assuming that the
dynamic system is described through a state space model, Kalman considers the problem
of optimum linear recursive estimation. From this event much other research work was
developed including different hypothesis frameworks about system noises [2–5].

In all studies above mentioned the estimated signal (state vector) in measurement
equation is only corrupted by additive noise. Rajasekaran et al. [6] consider the problem
of linear recursive estimation of stochastic signals in the presence of multiplicative noise in
addition to measurement noise. When multiplicative noise is a Bernoulli random variable,
the system is called system with uncertain observations. Hadidi and Schwartz [7] investigate
for the existence of recursive least-squares state estimators, where uncertainty about
observations is caused by a binary switching sequence which is specified by a conditional
probability distribution and which enters the observation equation. The proposed solution
is revisited by Wang [8], proposing new formulations for the optimal filter and the one-step
predictor. The estimation problem about these systems has been extensively treated [9–11].
There have been other approaches as that of Zhang et al. [12], in which the authors consider
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the infinite horizon mixed H2/H∞ control for discrete-time stochastic systems with state and
disturbance-dependent noise. In a very recent study [13], the optimal H2 ltering problems
associated respectively with possible delay of one sampling period, uncertain observations
and multiple packet drop-outs are studied under a unied framework. In particular Sahebsara
et al. [13] propose the following observation equation:

y(t) = ξ(t)z(t) + (1 − ξ(t))y(t − 1), (1.1)

where z(t) is the m-real valued measured output, y(t) is the measurement received by the
estimator to be designed, and ξ(t) is a white binary distributed random variable with P{ξ(t) =
1} = α(t) and P{ξ(t) = 0} = 1 − α(t), where 0 ≤ α(t) ≤ 1 and is uncorrelated with other
random variables. The model introduced by Sahebsara et al. [13] describes packet drop-outs
in networked estimation. The model says that the latest measurement received will be used if
the current measurement is lost. Some other authors like Nakamori [14] focus their attention
on the recursive estimation technique using the covariance information in linear stationary
discrete-time systems when the uncertain observations are given.

We propose in this paper a design for a least mean square error (LMSE) estimator in
discrete-time systems where the components of the state vector, in measurement equation, are
corrupted by different multiplicative noises in addition to observation noise. The estimation
problems treated include one-stage prediction and filtering.

The presented algorithm can be considered as a general algorithm because, with
particular specifications, this algorithm degenerates in known results as in Kalman [1],
Rajasekaran et al. [6], Nahi [9], and Sánchez-González and Garcı́a-Muñoz [11]. It can also
be inferred that if multiplicative noises are Bernoulli random variables, such situation is
not, properly speaking, a system with uncertain observations because the components of the
state can be present in the observation with different probabilities. Therefore, the presented
algorithm solves the estimation problems in this new system specification with complete
uncertainty about signals.

2. Statement and Notation

We now introduce symbols and definitions used across the paper. Let the following linear
discrete-time dynamic system with n × 1 elements be the state vector x(k):

State Equation:

x(k + 1) = Φ(k + 1, k)x(k) + Γ(k + 1, k)ω(k), k ≥ 0,

x(0) = x0,
(2.1)

and m × 1 observation vector z(k) be given by
Observation Equation:

z(k) = H(k)γ̃(k)x(k) + v(k), k ≥ 0, (2.2)

where Φ(k + 1, k), Γ(k + 1, k), and H(k) are known matrices with appropriate dimensions.
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Usual and specific hypothesis regarding probability behavior for random variables is
introduced to formalize the model as follows:

(H.1) x0 is a centered random vector with variance-covariance matrix P(0),

(H.2) {ω(k), k ≥ 0} is centered white noise with E[ω(k)ωT(k)] = Q(k).

(H.3) γ̃(k) is a diagonal matrix

⎛

⎜

⎜

⎜

⎝

γ1(k)

. . .

γn(k)

⎞

⎟

⎟

⎟

⎠

, (2.3)

where {γi(k), k ≥ 0} is a scalar white sequence with nonzero mean mi(k) and
variance σii(k), i = 1, . . . , n. It is supposed that {γi(k), k ≥ 0} and {γj(k), k ≥ 0}
are correlated in the same instant and σij(k) = Cov(γi(k), γj(k)), i, j = 1, . . . , n. The
following matrix will be used later on:

M(k) =

⎛

⎜

⎜

⎜

⎝

m1(k)

. . .

mn(k)

⎞

⎟

⎟

⎟

⎠

. (2.4)

(H.4) {v(k), k ≥ 0} is a centered white noise sequence with variance

E
[

v(k)vT (k)
]

= R(k). (2.5)

(H.5) x0, {ω(k), k ≥ 0}, and {v(k), k ≥ 0} are mutually independent.

(H.6) The sequences {γi(k), k ≥ 0}, i = 1, . . . , n are independent of initial state

x0, {ω(k), k ≥ 0}, {v(k), k ≥ 0}. (2.6)

As we can observe, the components of the state vector, in the observation equation, are
corrupted by multiplicative noises in addition to measurement noise.

Let x̂(k/l) be the LMSE estimate of x(k) given observations z(0), . . . , z(l). e(k/l) =
x(k) − x̂(k/l) denoting the estimation error, and the corresponding covariance matrix is
P(k/l) = [e(k/l)eT(k/l)].

The LMSE linear filter and one-step ahead predictor of the state x(k) are presented in
the next section.
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3. Prediction and Filter Algorithm

Theorem 3.1. The one-step ahead predictor and filter are given by

x̂(k + 1/k) = Φ(k + 1, k)x̂(k/k), k ≥ 0,

x̂(0/ − 1) = 0,

x̂(k/k) = x̂(k/k − 1) + F(k)[z(k) −H(k)M(k)x̂(k/k − 1)], k ≥ 0.

(3.1)

The filter gain matrix verifies

F(k) = P(k/k − 1)M(k)HT (k)Π−1(k), (3.2)

where

Π(k) = H(k) ˜S(k)HT (k) +H(k)M(k)P(k/k − 1)M(k)HT (k) + R(k) (3.3)

with

˜S(k) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σ11(k)S11(k) σ12(k)S12(k) · · · σ1n(k)S1n(k)

σ12(k)S21(k) σ22(k)S22(k) · · · σ2n(k)S2n(k)

...
...

. . .
...

σ1n(k)S1n(k) σ2n(k)S2n(k) · · · σnn(k)Snn(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Sij(k) = IiS(k)ITj , where Ii =
(

0 0 · · · 0 1
(i)

0 · · · 0
)

1×n
,

S(k + 1) = Φ(k + 1, k)S(k)ΦT (k + 1, k) + Γ(k + 1, k)Q(k)ΓT (k + 1, k), k ≥ 0,

S(0) = P(0).

(3.4)

The prediction and filter error covariance matrices satisfy

P(k + 1/k) = Φ(k + 1, k)P(k/k)ΦT (k + 1, k) + Γ(k + 1, k)Q(k)ΓT (k + 1, k), k ≥ 0,

P(0/ − 1) = P(0),

P(k/k) = P(k/k − 1) − F(k)Π(k)FT (k), k ≥ 0.

(3.5)

Proof. By the state equation it is easy to prove that the predictor Φ(k + 1, k)x̂(k/k) satisfies
the orthogonal projection lemma (OPL) [15]. In the initial instant, the estimate of x(0) is its
mean, so that x̂(0/ − 1) = 0.

As a consequence of the orthogonal projection theorem [15], the state filter can be
written as a function of the one-step ahead predictor as

x̂(k/k) = x̂(k/k − 1) + F(k)δ(k), k ≥ 0, (3.6)
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where δ(k) = z(k) − ẑ(k/k − 1) is the innovation process. Its expression is obtained below.
Since ẑ(k/k − 1) is the orthogonal projection of z(k) onto the subspace generated by

observations {z(0), . . . , z(k − 1)}, we know that this is the only element in that subspace
verifying

E
[

z(k)zT (α)
]

= E
[

ẑ(k/k − 1)zT (α)
]

, α = 0, . . . , k − 1. (3.7)

Then, by the observation equation and the hypotheses (H.3)–(H.6), it can be seen that ẑ(k/k−
1) = H(k)M(k)x̂(k/k−1), and the innovation process for the problem we are solving is given
by

δ(k) = z(k) −H(k)M(k)x̂(k/k − 1). (3.8)

To obtain the gain matrix F(k), we observe that, given that the OPL holds, E[e(k/k)zT (k)] =
0, and we have

E
[

e(k/k − 1)zT (k)
]

= F(k)Π(k), (3.9)

where Π(k) are the covariance matrices of the innovation. From the observation equation and
the hypotheses (H.2)–(H.6), it can easily be checked that

E
[

e(k/k − 1)zT (k)
]

= P(k/k − 1)M(k)HT (k) (3.10)

and therefore F(k) = P(k/k − 1)M(k)HT (k)Π−1(k).
To obtain the covariance matrices of the innovation process, it can be seen that

δ(k) = H(k)γ̃(k)x(k) + v(k) −H(k)M(k)x̂(k/k − 1), (3.11)

and by adding and subtracting H(k)M(k)x(k),

δ(k) = H(k)
(

γ̃(k) −M(k)
)

x(k) + v(k) +H(k)M(k)e(k/k − 1). (3.12)

Then

Π(k) = E
[

δ(k)zT (k)
]

= H(k)E
[

(

γ̃(k) −M(k)
)

x(k)zT (k)
]

+ E
[

v(k)zT (k)
]

+H(k)M(k)E
[

e(k/k − 1)zT (k)
]

.

(3.13)
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Let us work out each of the terms in previous expression. By the observation equation we
have that

H(k)E
[

(

γ̃(k) −M(k)
)

x(k)zT (k)
]

= H(k)E
[

(

γ̃(k) −M(k)
)

x(k)xT (k)γ̃(k)
]

HT (k) +H(k)E
[

(

γ̃(k) −M(k)
)

x(k)vT (k)
]

,

(3.14)

and according to hypotheses in (H.4)–(H.6) the second term can be cancelled. Adding and
subtracting H(k)E[(γ̃(k) −M(k))x(k)xT(k)M(k)]HT (k),

H(k)E
[

(

γ̃(k) −M(k)
)

x(k)zT (k)
]

= H(k)E
[

(

γ̃(k) −M(k)
)

x(k)xT (k)
(

γ̃(k) −M(k)
)

]

HT (k)

+H(k)E
[

(

γ̃(k) −M(k)
)

x(k)xT (k)
]

M(k)HT (k),

(3.15)

where the second term is zero by (H.3) and (H.6). According to (H.6), if we label Sij(k) =
E[xi(k)xj(k)] for i, j = 1, . . . , n, we get

˜S(k) ≡ E
[

(

γ̃(k) −M(k)
)

x(k)xT (k)
(

γ̃(k) −M(k)
)

]

= E

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

γ1(k) −m1(k)
)

x1(k)
(

γ2(k) −m2(k)
)

x2(k)

...
(

γn(k) −mn(k)
)

xn(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

γ1(k) −m1(k)
)

x1(k)
(

γ2(k) −m2(k)
)

x2(k)

...
(

γn(k) −mn(k)
)

xn(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

T
⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

σ11(k)S11(k) σ12(k)S12(k) · · · σ1n(k)S1n(k)

σ12(k)S12(k) σ22(k)S22(k) · · · σ2n(k)S2n(k)

...
...

. . .
...

σ1n(k)S1n(k) σ1n(k)S2n(k) · · · σnn(k)Snn(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(3.16)

Therefore

H(k)E
[

(

γ̃(k) −M(k)
)

x(k)zT (k)
]

= H(k) ˜S(k)HT (k). (3.17)

On the other hand, by the observation equation and (H.4)–(H.6),

E
[

v(k)zT (k)
]

= E
[

v(k)xT (k)γ̃(k)
]

HT (k) + E
[

v(k)vT (k)
]

= R(k). (3.18)



Discrete Dynamics in Nature and Society 7

By the same reasons,

H(k)M(k)E
[

e(k/k − 1)zT (k)
]

= H(k)M(k)E
[

e(k/k − 1)xT (k)
]

M(k)HT (k)

= H(k)M(k)P(k/k − 1)M(k)HT (k).
(3.19)

Shortly, the covariance matrices of the innovations process verify

Π(k) = H(k) ˜S(k)HT (k) + R(k) +H(k)M(k)P(k/k − 1)M(k)HT (k). (3.20)

To obtain the components Sij(k) of the ˜S(k), we only need to observe that

Sij(k) = IiS(k)ITj , (3.21)

where S(k) = E[x(k)xT(k)] and Ii = (0 0 · · · 0 1
(i)

0 · · · 0)1× n . The following

recursive expression of S(k) is immediate given that {ω(k), k ≥ 0} is a white noise sequence
and independent of x(0):

S(k + 1) = Φ(k + 1, k)S(k)ΦT (k + 1, k) + Γ(k + 1, k)Q(k)ΓT (k + 1, k), k ≥ 0,

S(0) = P(0).
(3.22)

The expression of the prediction error covariance matrices

P(k + 1/k) = Φ(k + 1, k)P(k/k)ΦT (k + 1, k) + Γ(k + 1, k)Q(k)ΓT (k + 1, k) (3.23)

is immediate since e(k + 1/k) = Φ(k + 1, k)e(k/k) + Γ(k + 1, k)ω(k).
In the other hand, given that e(k/k) = e(k/k − 1) − F(k)δ(k) then

P(k/k) = P(k/k − 1) − E
[

e(k/k − 1)δT (k)
]

FT (k)

− F(k)E
[

δ(k)eT(k/k − 1)
]

+ F(k)Π(k)FT (k).
(3.24)

It can be observed that

E
[

δ(k)eT (k/k − 1)
]

= E
[

z(k)eT(k/k − 1)
]

−H(k)M(k)E
[

x̂(k/k − 1)eT (k/k − 1)
]

, (3.25)

where the second term cancels according to OPL, and by (3.9) it is obtained that

E
[

δ(k)eT (k/k − 1)
]

= Π(k)FT (k) (3.26)

and then P(k/k) = P(k/k − 1) − F(k)Π(k)FT (k).
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Next, we see how some known results can be considered as particular specifications
of the general model proposed in this paper.

(i) If γ1(k) = · · · = γn(k) = 1, the state vectors are not corrupted by a multiplicative
noise, then

γ̃(k) =M(k) = In×n,

σij(k) = 0, ∀i, j
(3.27)

and our algorithm degenerates in Kalman’s [1] algorithm.

(ii) If γ1(k) = · · · = γn(k) = U(k) where {U(k), k ≥ 0} is a scalar white sequence
with nonzero mean m(k) and variance n(k), we end up with Rajasekaran’s et al. [6]
framework, γ̃(k) = U(k)In×n, where the state vector (all components) is corrupted
by multiplicative noise. In this case,

M(k) = m(k)In×n,

σij(k) = n(k), ∀i, j
(3.28)

and the presented algorithm collapses in Rajasekaran’s.

(iii) If γ1(k) = · · · = γn(k) = γ(k) where {γ(k), k ≥ 0} is a sequence of Bernoulli
independent random variable with P[γ(k) = 1] = p(k), then γ̃(k) = γ(k)In×n
and we end up with Nahi’s [9] framework, where the state vector is present in
the observation with probability p(k). In this case,

M(k) = p(k)In×n,

σij(k) = p(k)
(

1 − p(k)
)

, ∀i, j,
(3.29)

and the new algorithm collapses in Nahi’s one.

(iv) If γ1(k) = · · · = γp(k) = 1 and γp+1(k) = · · · = γn(k) = γ(k) where {γ(k), k ≥ 0} is
a sequence of Bernoulli independent random variable with P[γ(k) = 1] = p(k),
the observations can include some elements of the state vector not ensureing
the presence of the resting others (Sánchez-González and Garcı́a-Muñoz [11]
framework). In this case

M(k) =

(

Ip×p 0p×(n−p)
0(n−p)×p I(n−p)×(n−p)

)

,

σij(k) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, i, j ≤ p,

0, i ≤ p, j > p,

0, i > p, j ≤ p,

p(k)
(

1 − p(k)
)

, i, j > p,

(3.30)

and the new algorithm degenerates in Sanchez and Garcı́a’s.
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Figure 1: x1(k) and x̂1(k/k) versus k.

Another interesting situation appears when some of the components in the state vector are
present in the observation but appear with different probabilities. Such a situation is not a
system with uncertain observations. The present algorithm solves estimation problems in
this type of system; it is only necessary to suppose that the multiplicative noises are different
Bernoulli random variables.

4. Some Numerical Simulation Examples

We show now some numerical examples to illustrate the filtering and prediction algorithm
presented in Theorem 3.1.

Example 4.1. We consider the following linear system described by the dynamic equation:

(

x1(k + 1)

x2(k + 1)

)

=

(

0.06 0.67

0.60 0.23

)(

x1(k)

x2(k)

)

+

(

0.02

0.24

)

ω(k), k ≥ 0,

(

x1(0)

x2(0)

)

=

(

x10

x20

)

,

z(k) =
(

0.85 0.42
)

(

γ1(k) 0

0 γ2(k)

)(

x1(k)

x2(k)

)

+ v(k), k ≥ 0,

(4.1)

where {ω(k), k ≥ 0} is centered Gaussian white noise with Q(k) = 2.89; x10 and x20

are centered Gaussian random variables with variances equal to 0.5; {γ1(k), k ≥ 0} and
{γ2(k), k ≥ 0} are Gaussian white noises with means 2 and 3 and variances σ11 and σ22,
respectively; {γ1(k), k ≥ 0} and {γ2(k), k ≥ 0} are independent; {v(k), k ≥ 0} is centered
Gaussian white noise with variance R = 0.1.

Using the estimation algorithm of Theorem 3.1, we can calculate the filtering estimate
x̂(k/k) of the state recursively. Figures 1 and 2 illustrate the state xi(k) and the filter x̂i(k/k),
for i = 1, 2, versus k for the multiplicative Gaussian observation noises γ1 → N(2,

√
0.5) and

γ2 → N(3,
√

0.1). The state is represented with black and the filter with red color.
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Table 1: MSV of filtering errors x1(k) − x̂1(k/k), k = 1, 2, . . . , 200.

σ22 = 0.1 σ22 = 0.5 σ22 = 1
σ11 = 0.1 0.0171184 0.0194455 0.020916
σ11 = 0.5 0.022236 0.0211678 0.022704
σ11 = 1 0.0232388 0.023623 0.0237136

Table 2: MSV of filtering errors x2(k) − x̂2(k/k), k = 1, 2, . . . , 200.

σ22 = 0.1 σ22 = 0.5 σ22 = 1
σ11 = 0.1 0.0556318 0.0656372 0.0671069
σ11 = 0.5 0.0698304 0.0703345 0.0690113
σ11 = 1 0.0739651 0.075727 0.0730605

Tables 1 and 2 show the mean-square values (MSVs) of the filtering errors xi(k) −
x̂i(k/k) for i = 1, 2 and k = 1, 2, . . . , 200 corresponding to multiplicative white observation
noises:

γ1: N
(

2,
√

0.1
)

; N
(

2,
√

0.5
)

; N
(

2,
√

1
)

,

γ2: N
(

3,
√

0.1
)

; N
(

3,
√

0.5
)

; N
(

3,
√

1
)

.

(4.2)

Example 4.2. We consider a linear system described by (4.1) where {γ1(k), k ≥ 0} and
{γ2(k), k ≥ 0} are sequences of independent Bernoulli random variables being 1 with
probabilities p1 and p2, respectively.

Figures 3 and 4 illustrate the state xi(k) and the filter x̂i(k/k), for i = 1, 2, versus k for
the multiplicative observation noises γ1 → Bernoulli(0.5) and γ2 → Bernoulli(1). The state
is represented with red and the filter with black color.

Tables 3 and 4 show the mean-square values (MSVs) of the filtering errors xi(k) −
x̂i(k/k) for i = 1, 2 and k = 1, 2, . . . , 200 corresponding to multiplicative white observation
noises:

γ1: Bernoulli(0.1), Bernoulli(0.5), Bernoulli(1),

γ2: Bernoulli(0.1), Bernoulli(0.5), Bernoulli(1).
(4.3)

As we can observe, the simulation graphs and the MSVs of the filtering in both
examples show the effectiveness of the new algorithm.

5. Conclusions

For linear discrete-time stochastic systems where the components of the state vector are
corrupted by different multiplicative noises added to the observation noises we have derived
the optimal linear estimators including filter, predictor, and smoother in the minimum
variance sense by applying the innovation analysis approach. Our solutions are given in
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Figure 2: x2(k) and x̂2(k/k) versus k.
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Figure 3: x1(k) and x̂1(k/k) versus k.
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Figure 4: x2(k) and x̂2(k/k) versus k.

Table 3: MSV of filtering errors x1(k) − x̂1(k/k), k = 1, 2, . . . , 200.

p2 = 0.1 p2 = 0.5 p2 = 1
p1 = 0.1 0.0948355 0.0696956 0.0273215
p1 = 0.5 0.0616283 0.049987 0.0333839
p1 = 1 0.013194 0.0197576 0.0154067
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Table 4: MSV of filtering errors x2(k) − x̂2(k/k), k = 1, 2, . . . , 200.

p2 = 0.1 p2 = 0.5 p2 = 1
p1 = 0.1 0.211223 0.164514 0.0634171
p1 = 0.5 0.184817 0.155435 0.09182
p1 = 1 0.154539 0.130428 0.0708851

terms of general expressions for the innovations, cevariance matrices, and gain and have the
interesting fact that they result in different well-known scenarios; in particular, four of them
can be considered; particularized cases of our algorithm when different values of the noise
are considered, those cases are those of Kalman [1], Rajasekaran et al. [6], Nahi [9], and more
recently Sánchez-González and Garcı́a-Muñoz [11].
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[10] A. H. Hermoso and J. L. Pérez, “Linear estimation for discrete-time systems in the presence of time-
correlated disturbances and uncertain observations,” IEEE Transactions on Automatic Control, vol. 39,
no. 8, pp. 1636–1638, 1994.
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