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Here we investigate the behavior of the analytical and numerical solution of a nonlinear second
kind Volterra integral equation where the linear part of the kernel has a constant sign and we
provide conditions for the boundedness or decay of solutions and approximate solutions obtained
by Volterra Runge-Kutta and Direct Quadrature methods.

1. Introduction

In this paper we consider Volterra integral equations (VIEs) of Hammerstein type, that is,

y(t) = g(t) +
∫ t

0
k(t, s)f

(
y(s)

)
ds, (1.1)

where g, k, and f are given real-valued functions. This type of equation arises in problems
related to evolutionary processes in ecology, in nuclear reactors and in control theory (see,
e.g., [1], [2, Chapter 1], [3, Chapter 2] and references therein). There has been interest in the
literature over many years in studying the asymptotic behavior of the solution of (1.1) and,
in particular, many results appeared on the existence of solutions that decay to zero as t → ∞
for the convolution version of (1.1) (k(t, s) = k(t − s), see, e.g., [4, 5]). It is well known that in
the numerical solution of this type of equations, the discrete approximation should emulate
the features of the analytical solution, hence an analysis is due which correlates the behavior
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of the continuous and the discrete problem. There is a large literature in this sense, however
the most of the results refer to the linear version of (1.1) and many others to the convolution
case [6–9] which arises commonly in models of phenomena where no ageing or seasoning
and therefore no explicit dependence upon time are present. In this paper the kernel k in
(1.1) is not necessarily of convolution type and we only assume that the function f is regular
enough to guarantee the existence and the uniqueness of the solution and that g and k are
continuous functions (see, e.g., [10], [11, Chapter 4]). Our aim is to give sufficient conditions
under which the analytical solution of (1.1) and the numerical one provided by the “most
popular” linear (Volterra Direct Quadrature (VDQ)) and nonlinear (Volterra Runge-Kutta
(VRK)) methods have the same behavior. This of course in order to assure that the numerical
solution well emulates the analytical one. The starting idea for this kind of analysis comes
out from an investigation that the authors carried out in 2008 on a nonlinear Volterra discrete
equation [12] which turns out to be a discrete analogue of (1.1). The paper is organized as
follows. Section 2 is devoted to establishing bounds on the analytical solution of (1.1), on
[0, T] or on [0,∞), under certain conditions on k(·, ·), f(·), and g(·). Section 3 is devoted to
obtaining similar bounds for approximate solutions obtained by the two types of methods
mentioned above. In Section 3 some numerical experiments are reported.

2. The Behavior of the Analytical Solution

In this section we prove some results on the behavior of the solution y(t) of (1.1). It is assumed
that (1.1) is satisfied for t ∈ [0, T], where T is a positive constant of for t ∈ [0,∞). The
following theorem gives the conditions for y(t) to be bounded on [0, T], which is the extended
nonnegative real line in the latter case.

Theorem 2.1. Suppose that the following set of hypotheses hold:

(i) ∃f̃ ≥ 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) lim supx→−∞ f(x) = f < +∞,
(iii) k(t, s) ≤ 0, ∀s ≤ t, t ∈ [0, T],

(iv) ∃K̃ > 0 : supt∈[0,T]
∫ t

0 |k(t, s)|ds ≤ K̃, ∀t ∈ [0, T],

(v) ∃G1, G2 : G1 ≤ g(t) ≤ G2, ∀t ∈ [0, T],

then y(t) is bounded for t ∈ [0, T] and it is

G1 − K̃F∗ ≤ y(t) ≤ G2 + f̃K̃, (2.1)

where F∗ is a given positive constant.

Proof. From (ii) we have that

∃δ : f(x) ≤ f, ∀x ∈ (−∞, δ). (2.2)

From (i) and (iii) there results k(t, s)f(y(s)) ≤ −f̃k(t, s), hence

∫ t

0
k(t, s)f

(
y(s)

)
ds ≤ f̃

∫ t

0
|k(t, s)|ds ≤ f̃K̃, ∀t ∈ [0, T]. (2.3)
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From here and (v) there results

y(t) ≤ G2 + f̃K̃. (2.4)

Hence,

f
(
y
)
≤ max

{
f, max

x∈[δ,G2+f̃K̃]
f(x)

}
, (2.5)

where δ is defined in (2.2). This assures that the positive constant F∗ given by

F∗ = max

{
0,max

{
f, max

x∈[δ, G2+f̃K̃]
f(x)

}}
(2.6)

is such that ∀t ∈ [0, T], f(y) ≤ F∗. Therefore,

∫ t

0
k(t, s)f

(
y(s)

)
ds ≥ F∗

∫ t

0
k(t, s)ds ≥ −K̃F∗. (2.7)

Taking into account (v) we obtain

y(t) ≥ G1 − K̃F∗, (2.8)

which, together with (2.4) prove the result.

Remark 2.2. The essence of the hypotheses of Theorem 2.1 are the following: the integrand
k(t, s)f(y(s)) has a negative linear part (k(t, s)), hence, when f(y) is allowed to become
positive and large, it is multiplied by a negative quantity so that the positive growth of y
is avoided. On the other hand, when f(y) is negative, it is also bounded from below by
hypothesis (i).

In the examples below we see some applications of the results proved in Theorem 2.1.
Of course, the bound (2.1) is not necessarily sharp (it depends on the shape of the function g)
and this is clear in Example 2.3, nevertheless the purpose of the previous result is to give some
information about the qualitative behavior of the solution also on an unbounded interval.

Example 2.3. Consider (1.1) with t ∈ [0, 1], k(t, s) = −e−s/(1 + t2), f(y) = (e3y − 1)/3 and g(t)
such that y(t) = t − 0.5. By Theorem 2.1 we obtain −1.12 ≤ y(t) ≤ 1.85, ∀t ∈ [0, 1].

Finer bounds are obtained in the following examples.

Example 2.4. Consider (1.1) with T ∈ [0, 1], k(t, s) = −e−s/(1 + t2), f(y) = −sin2y, and g(t)
such that y(t) = π/2. By (2.1) we obtain 1.23 ≤ y(t) ≤ 1.98, ∀t ∈ [0, 1].
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Example 2.5. Consider (1.1) with T ∈ [0, 1], k(t, s) = −e−s/(1 + t2), f(y) = ey, and g(t) such
that y(t) = t2 − 0.5. By (2.1) we obtain −1.22 ≤ y(t) ≤ 0.75, ∀t ∈ [0, 1].

In order to prove that the solution y(t) of (1.1) tends to zero as t → ∞, we need the
following lemma.

Lemma 2.6. Assume that

(i) ∃f̃ ≥ 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) xf(x) ≥ 0, ∀x ∈ R,

(iii) k(t, s) ≤ 0, ∀s ≤ t, t ≥ 0,

(iv) limt→∞ k(t, s) = 0,

(v) limt→∞ g (t) = 0,

(vi) y(t) ultimately nonnegative for t ≥ 0,

then limt→∞ y(t) = 0.

Proof. From hypothesis (vi) there exists t such that y(t) ≥ 0, for t > t. Assume t > t and write

y(t) = g(t) +
∫ t

0
k(t, s)f

(
y(s)

)
ds +

∫ t

t

k(t, s)f
(
y(s)

)
ds, (2.9)

in view of (ii) and (iii), we have

0 ≤ y(t) ≤ g(t) +
∫ t

0
k(t, s)f

(
y(s)

)
ds, (2.10)

which, taking into account (i), gives

0 ≤ y(t) ≤ g(t) − f̃
∫ t

0
k(t, s)ds. (2.11)

Finally, hypotheses (iv) and (v) and the Squeeze theorem prove the result stated in the
theorem.

Now the following theorem, which is the continuous analogue of Theorem 3.4 in [12]
can be proved.

Theorem 2.7. Assume that

(i) ∃f̃ ≥ 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) f is nondecreasing, xf(x) ≥ 0, ∀x ∈ R,

(iii) k(t, s) ≤ 0 for s ≤ t, t ≥ 0,

(iv) ∃K̃ > 0 : supt≥0

∫ t
0 |k(t, s)|ds ≤ K̃, ∀t ≥ 0,

(v) limt→∞ g(t) = 0,
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(vi) limt→∞ k(t, s) = 0,

(vii) −K̃f(−K̃f(−x)) > −x, ∀x > 0,

then limt→∞ y(t) = 0.

Proof. From Lemma 2.6 it is obvious that if y(t) is ultimately nonnegative the desired result
is true. So, let us proceed by contradiction and assume that

lim inf
t→+∞

y(t) = y < 0, (2.12)

which leads to

∀ε > 0, ∃δ : t > δ =⇒ y(t) > y − ε. (2.13)

Let us denote by Λ(x) the continuous function

Λ(x) = −K̃f
(
x − K̃f

(
y − x

))
− 2x, (2.14)

for which, by virtue of (vii), Λ(0) = −K̃f(−K̃f(y)) > y. Since Λ is a continuous function,
there exists ε0 > 0 such that Λ(ε0) > y or equivalently

∃ε0 : −ε0 − K̃f
(
ε0 − K̃f

(
y − ε0

))
> y + ε0. (2.15)

Moreover, by the definition (2.13) of the inferior limit, for the same ε0 there exists δ0 such that
t > δ0 ⇒ y(t) > y − ε0. Since f is nondecreasing (ii)), then

f
(
y(t)

)
≥ f

(
y − ε0

)
, t > δ0, (2.16)

with f(y − ε0) < 0 in view of (ii) (recall that y < 0).
Now, assume that t > δ0 and rewrite (1.1) in the following form:

y(t) = g(t) +
∫δ0

0
k(t, s)f

(
y(s)

)
ds +

∫ t

δ0

k(t, s)f
(
y(s)

)
ds. (2.17)

Then, from (2.16) and (iii) we obtain

y(t) ≤ g(t) +
∫δ0

0
k(t, s)f

(
y(s)

)
ds − K̃f

(
y − ε0

)
, t > δ0. (2.18)

Since the hypotheses (v) and (vi) assure that, for any fixed T

lim
t→∞

(
g(t) +

∫T

0
k(t, s)f

(
y(s)

)
ds

)
= 0, (2.19)
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we have that ∃δ1 : ∀t > δ1, −ε0 < g(t) +
∫δ0

0 k(t, s)f(y(s))ds < ε0 and hence, from (2.18)
∀t > δ2 = max{δ1, δ0} there results y(t) < ε0 − K̃f(y − ε0). Since f is nondecreasing, we have

f
(
y(t)

)
< f

(
ε0 − K̃f

(
y − ε0

))
, ∀t > δ2, (2.20)

and hence

∫ t

δ2

k(t, s)f
(
y(s)

)
ds ≥ −f

(
ε0 − K̃f

(
y − ε0

))
K̃. (2.21)

From (2.21) it is

y(t) ≥ g(t) +
∫δ2

0
k(t, s)f

(
y(s)

)
ds − f

(
ε0 − K̃f

(
y − ε0

))
K̃, t > δ2, (2.22)

and, once again, from (2.19) we get that there exists ε0 and δ3 such that for all t > δ3

y(t) ≥ −ε0 − f
(
ε0 − K̃f

(
y − ε0

))
K̃, (2.23)

and therefore, for (2.15), y(t) > y + ε0. This contradicts the assumption (2.12), therefore y(t)
is ultimately nonnegative and the desired result comes out.

Of course hypothesis (vii) may appear quite restrictive, however, the following remark
is useful to find examples of functions satisfying it.

Remark 2.8. It can be easily seen that Theorem 2.7 remains valid if instead of (i), (ii), and (vii)
we assume that there exists a function φ, satisfying (i), (ii), and (vii) such that

0 ≤ f
(
y
)
≤ φ

(
y
)
, y ≥ 0,

0 ≥ f
(
y
)
≥ φ

(
y
)
, y < 0.

(2.24)

This, of course, enlarge the class of problems to which Theorem 2.7 can be applied. Namely,
the function φ(y) = (eαy−1)/α satisfies (i), (ii), and (vii) for any α > 0 and K̃ < 1. For different
α we can construct a variety of functions f such that (2.24) holds (see [12, Remark 3.7] for
some plots of admissible functions f). Moreover, we note that functions of the type φ, which
satisfies (2.24), directly arise in many applications concerning the spread of an epidemic in a
population (see, e.g., [2, Example 2.3]).
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3. The Behavior of the Numerical Solution

In this section we want to prove that under some additional mild hypotheses on the kernel k
the most popular numerical methods applied to (1.1) inherit the asymptotic behavior of the
analytical solution. We consider here the partition

ΠN = {tn : 0 = t0 < t1 < · · · tN = T} (3.1)

of the time interval [0, T] and we assume that the stepsize h = tn+1 − tn, n = 0, . . . ,N − 1 is
constant. In agreement with the continuous case we prove the following theorems in [0, T]
and the results obtained can be easily generalized to the case t ∈ [0,+∞). So, N can be the
natural infinity if T is the real point at plus infinity.

3.1. Volterra Runge-Kutta Methods

Let us consider the classical m-stage Volterra Runge-Kutta methods of extended type [13,
Chapter 4]:

yn+1 = Fn(tn+1) + h
m∑
j=1

bjk
(
tn+1 +

(
γj − 1

)
h, tn + cjh

)
f
(
Ynj

)
, n = 0, . . . ,N − 1, (3.2)

Yni = Fn(tn + θih) + h
m∑
j=1

aijk
(
tn + dijh, tn + cjh

)
f
(
Ynj

)
, i = 1, . . . , m, (3.3)

with

Fn(t) = g(t) + h
n−1∑
l=0

m∑
j=1

bjk
(
t +

(
γj − 1

)
h, tl + cjh

)
f
(
Ylj

)
, n = 0, 1, . . . ,N − 1, (3.4)

where yn ≈ y(tn) and b = (b1, . . . , bm)
T , γ = (γ1, . . . , γm)

T , θ = (θ1, . . . , θm)
T , A = (aij)i,j=1,...,m,

and D = (dij)i,j=1,...,m are the given coefficients of the method [13, page 170].
The following lemmas are useful to prove the main result of this section.

Lemma 3.1. Assume that

(i) ∃K̃ > 0 : supt≥0

∫ t
0 |k(t, s)|ds ≤ K̃, t ∈ [0, T],

(ii) |k(t, s)| is ultimately nonincreasing with respect to s, ∀t ∈ [0, T].

Then ∀s ≤ t, ∃K∗(s) such that |k(t, s)| ≤ K∗(s), ∀t ∈ [0, T].

Proof. The proof is obvious and therefore is omitted.

Lemma 3.2. Assume that the following hypotheses on the problem (1.1) and on the method coefficients
in (3.1), (3.4) hold:

(i) ∃f̃ > 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) lim supx→−∞ f(x) = f < +∞,
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(iii) k(t, s) ≤ 0, ∀s ≤ t, t ∈ [0, T],

(iv) ∃K̃ > 0 : supt≥0

∫ t
0 |k(t, s)|ds ≤ K̃, ∀t ∈ [0, T],

(v) ∃G1, G2 : G1 ≤ g(t) ≤ G2, t ∈ [0, T],

(vi) |k(t, s)| ultimately nonincreasing with respect to s, ∀t ∈ [0, T],

(vii) bj ≥ 0, j = 1, . . . , m.

Then, ∀t ∈ [0, T] and n = 0, 1, . . . ,N the following upper bound for the lag term Fn(t) holds:

Fn(t) ≤ G2 + f̃K̃ + hC3, (3.5)

where C3 is a positive constant.

Proof. For (i) it is f(Ylj) > −f̃ , then for (iii) and (vii)

Fn(t) ≤ g(t) + hf̃
n−1∑
l=0

m∑
j=1

bj
∣∣k(t + (

γj − 1
)
h, tl + cjh

)∣∣. (3.6)

According to (vi), there exists n such that ∀s ≥ tn, |k(t + (γj − 1)h, s)| is nonincreasing with
respect to s. Hence, for n = n + 1, . . . ,N let us rewrite (3.4)

Fn(t) ≤ g(t) + hf̃
n−1∑
l=0

m∑
j=1

bj
∣∣k(t + (

γj − 1
)
h, tl + cjh

)∣∣

+ hf̃
m∑
j=1

bj
n−1∑
l=n

∣∣k(t + (
γj − 1

)
h, tl + cjh

)∣∣.
(3.7)

and recall that for any nonincreasing function η(t) ≥ 0 in [t1, tn−1], we have h
∑n

j=1 η(tj) ≤∫ tn
t0
η(t)dt. Then, for n = n + 1, . . . ,N

Fn(t) ≤ g(t) + hf̃
n−1∑
l=0

m∑
j=1

bj
∣∣k(t + (

γj − 1
)
h, tl + cjh

)∣∣

+ hf̃
m∑
j=1

bj
∣∣k(t + (

γj − 1
)
h, tn + cjh

)∣∣ + f̃ m∑
j=1

bj

∫ tn

tn

∣∣k(t + (
γj − 1

)
h, s

)∣∣ds.
(3.8)

Now, recalling that
∑m

j=1 bj = 1, according to Lemma 3.1, and using hypothesis (iv) we

have that there exists a constant C̃ > 0 such that

Fn(t) ≤ g(t) + hf̃
n−1∑
l=0

m∑
j=1

bj
∣∣k(t + (

γj − 1
)
h, tl + cjh

)∣∣ + hC̃ + f̃K̃, n = n + 1, . . . ,N. (3.9)
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Since the summation in (3.9) is finite, by hypothesis (v) and, once again, using the result in
Lemma 3.1, we get

Fn(t) ≤ G2 + f̃K̃ + hC1, n = n + 1, . . . ,N. (3.10)

For n ≤ n the whole summation appearing in (3.4) is finite and so there exists a constant C2

such that

Fn(t) ≤ G2 + hC2, n ≤ n. (3.11)

The result stated in the theorem follows with C3 = min{C1, C2}.

Lemma 3.3. Assume that hypotheses (i)–(vii) of Lemma 3.2 hold, moreover let

(viii) aij ≥ 0, for i ≥ j.

Then there exists a positive constant C such that

Ynj ≤ G2 + f̃K̃ + hC, n = 0, . . . ,N, j = 1, . . . , m. (3.12)

Proof. Let us consider the last stage

Yn,m = Fn(tn + θmh) + h
m∑
j=1

amjk
(
tn + dmjh, tn + cjh

)
f
(
Yn,j

)
, (3.13)

it can be easily seen that, because of (i), (iii), and (viii) it is

Yn,m ≤ Fn(tn + θmh) + hf̃
m∑
j=1

amj
∣∣k(tn + dmjh, tn + cjh)∣∣. (3.14)

Moreover, because of (vi) and Lemma 3.1 there exists K∗ and αm such that

∣∣k(tn + dmjh, tn + cjh)∣∣ ≤ K∗, ∀n, (3.15)

Yn,m ≤ G2 + f̃K̃ + hαm. (3.16)

Proceeding as in the proof of Theorem 2.1, it follows that

f(Yn,m) ≤ Fm(h), n = 0 . . . ,N, (3.17)
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where Fm(h) = max{0,max{f,maxx∈[δ,G+f̃K̃+hαm]
f(x)}} and δ is defined in the proof of

Theorem 2.1. Now, rewrite Yn,m−1 in the following way:

Yn,m−1 = Fn(tn + θm−1h) + h
m−1∑
j=1

am−1,jk
(
tn + dm−1,jh, tn + cjh

)
f
(
Yn,j

)

+ ham−1,mk(tn + dm−1,mh, tn + cmh)f(Yn,m),

(3.18)

and observe the two possible cases that may occur.
(a) am−1,m < 0. Then am−1,mk(tn +dm−1,mh, tn + cmh) ≥ 0 and hence, for (3.17) and (3.15),

ham−1,mk(tn + dm−1,mh, tn + cmh)f(Yn,m)

≤ hFm(h)|am−1,m| · |k(tn + dm−1,mh, tn + cmh)| ≤ hFm(h)|am−1,m|K∗.
(3.19)

By recalling that am−1,j ≥ 0, j = 1, . . . , m − 1, the first summation in (3.18) can be bounded by
proceeding as for the previous stage, therefore there exists αm−1 such that Yn,m−1 ≤ G + f̃K̃ +
hαm−1.

(b) am−1,m ≥ 0. Then, the same procedure as the one used for the Yn,m stage can be
applied.

Applying the same procedure to Yn,m−2, Yn,m−3, . . . , Yn,1, the desired result follows with
C = max{α1, . . . , αm}.

Lemma 3.4. Assume that all the hypotheses of Lemma 3.3 hold. Then there exist two positive
constants C4 and C5 such that

Fn(t) ≥ G1 − F̃(h)K̃ + hC4, n = 0, 1, . . . ,N, t ∈ [0, T],

Yn,j ≥ G1 − F̃(h)K̃ + hC5, n = 0, 1, . . . ,N, j = 0, . . . , m.
(3.20)

Proof. In view of Lemma 3.3 and by taking into account hypothesis (ii) we can define

F̃(h) = max

{
0,max

{
f, max

x∈[δ,G2+f̃K̃+hC]
f(x)

}}
, (3.21)

with δ given in (2.2), such that f(Yl,j) ≤ F̃(h), l ≥ 0, 1 ≤ j ≤ m. Therefore,

h
n−1∑
l=0

m∑
j=1

bjk
(
t +

(
γj − 1

)
h, tl + cjh

)
f
(
Yl,j

)
≥ F̃(h)

n−1∑
l=0

m∑
j=1

bjk
(
t +

(
γj − 1

)
h, tl + cjh

)

= −F̃(h)
n−1∑
l=0

m∑
j=1

bj
∣∣k(t + (

γj − 1
)
h, tl + cjh

)∣∣.
(3.22)



Discrete Dynamics in Nature and Society 11

Now, proceeding as in the proof of Lemma 3.2 and because of (v), we have

Fn(t) ≥ G1 − F̃(h)
[
K̃ + hC1

]
, (3.23)

which is is equivalent to the first of (3.20). What is more, from (i) and (3.21), we have

−f̃ < f
(
Yn,j

)
≤ F̃(h), ∀n ≤ j ≤ m, (3.24)

and, taking into account (3.15), it can be easily proved that there exists a constant β such that

h
m∑
j=1

ai,jk
(
tn + di,jh, tn + cjh

)
f
(
Yn,j

)
≥ hβ, ∀i = 1, . . . , m. (3.25)

From here and (3.6) for Yn,i given in (3.3) holds:

Yn,i ≥ G1 − F̃(h)K̃ + hC5, (3.26)

which corresponds to the second of (3.20).

Now, we are ready to prove our result on the boundedness of the numerical solution
yn of (3.1)–(3.4).

Theorem 3.5. Assume that all the hypotheses of Lemma 3.3 hold. Then there exist two positive
constants A and B such that

G1 − F̃(h)K̃ +Ah ≤ yn ≤ G2 + f̃K̃ + Bh, n = 0, 1, . . . ,N. (3.27)

Proof. From Lemma 3.2 it is

yn+1 ≤ G2 + f̃K̃ + hC1 + h
m∑
j=1

bjk
(
tn+1 +

(
γj − 1

)
h, tn,j

)
f
(
Yn,j

)
. (3.28)

Since (i), (iii), (vii), and Lemma 3.1 hold, there exists a positive constant B such that

yn+1 ≤ G2 + f̃K̃ + Bh. (3.29)

Moreover, from (3.20) and (3.21), we immediately have

yn+1 ≥ G1 + F̃(h)K̃ + hC4 + hCF̃(h), (3.30)

that, together with (3.29), gives the result stated in the theorem.

Observe that, in agreement with the continuous case, N is allowed to be∞.
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As we could expected because of the convergence of the method the following result
can be observed.

Corollary 3.6. The numerical and analytical solutions are bounded by the same constants as the step-
size h goes to zero.

Proof. The desired result comes immediately from (3.27) and (2.1) and observing that for F̃(h)
defined in (3.21), we have

lim
h→ 0

F̃(h) = F∗, (3.31)

with F∗ given in (2.6).

Observe that the hypotheses (vii) and (viii) on the coefficients of the methods are not
restrictive at all because they are satisfied by any VRK method.

A similar result can be easily proved on VRK methods of mixed type. Compared with
(3.1)–(3.4), such methods present a different expression of the lag-term formula, that is,

Fn(t) = g(t) + h
n∑
l=0

wn,lk(t, tl)f
(
yl
)
, (3.32)

where wn,l are given weights of a quadrature formula.
The proof of the following theorem has the same plot as the one of Theorem 3.5 and

therefore, it is omitted.

Theorem 3.7. Assume that

(i) ∃f̃ ≥ 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) lim supx→−∞ f(x) = f < +∞,
(iii) k(t, s) ≤ 0, ∀s ≤ t, t ∈ [0, T],

(iv) ∃K̃ > 0 : supt≥0

∫ t
0 |k(t, s)|ds ≤ K̃, ∀t ∈ [0, T],

(v) ∃G1, G2 : G1 ≤ g(t) ≤ G2, ∀t ∈ [0, T],

(vi) |k(t, s)| nonincreasing with respect to s, t ∈ [0, T],

(vii) wn,j ≥ 0, n = 0, . . . ,N, j = 0, . . . , n,

(viii) ai,j ≥ 0, i ≥ j,

then, for yn solution of (3.1)–(3.3) with (3.32), we have the following bounds for n = 0, . . . ,N:

G1 − F̃(h)K̃ +A1h ≤ yn ≤ G2 + K̃f̃ + B1h, (3.33)

where A1 and B1 are two positive constants.

Remark 3.8. If the hypotheses of Theorem 2.1, which assure the boundedness of y(t), are
compared with those of Theorems 3.5 and 3.7 for the boundedness of yn, we note the
following. Besides the natural assumption on the coefficients of the numerical methods, only
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the hypothesis (vi) on the monotonicity of |k(t, s)| has been added. In this sense we can claim
that under mild additional conditions on the kernel k, the behavior of the analytical solution
is inherited by the numerical one.

3.2. Volterra Direct Quadrature Methods

A general VDQ method for solving VIEs of the type (1.1), defined on the mesh (3.1), reads

yn = g(tn) + h
n∑
l=0

wn,lk(tn, tl)f
(
yl
)
, n = 0, 1, . . . ,N, (3.34)

where wn,l are given weights that satisfy

0 < wn,l < 1, l = 0, 1, . . . , n, n = 0, 1, . . . ,N, . (3.35)

The following theorems represent the discrete analogues of Theorems 2.1 and 2.7, where, due
to the linearity of the method, the Volterra discrete equation (3.34) can be interpreted as the
discrete counterpart of (1.1).

Theorem 3.9. Assume that

(i) ∃f̃ ≥ 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) lim supx→−∞ f(x) = f < +∞,
(iii) k(t, s) ≤ 0, ∀s ≤ t, t ∈ [0, T],

(iv) ∃K̃ > 0 : supt≥0

∫ t
0 |k(t, s)|ds ≤ K̃, ∀t ∈ [0, T],

(v) ∃G1, G2 : G1 ≤ g(t) ≤ G2, ∀t ∈ [0, T],

(vi) |k(t, s)| nonincreasing with respect to s, t ∈ [0, T],

(vii) wn,l ≥ 0, n = 0, 1, . . . ,N, l = 0, . . . , n,

then yn is bounded and it is, for n = 0, . . . ,N

G1 − F̃(h)K̃ +A2h ≤ yn ≤ G2 + f̃K̃ + B2h, (3.36)

where A2 and B2 are positive constants and limh→ 0 F̃(h) = F∗.

Proof. From (i) and (iii) there results k(tn, tl)f(yl) < −f̃k(tn, tl) hence, by taking into account
(vi), we get

h
n∑
l=0

wnl|k(tn, tl)|f
(
yl
)
≤ f̃

[
h|k(tn, 0)| +

∫ tn

0
|k(tn, s)|ds

]
. (3.37)

Thus, taking into account Lemma 3.1 and the hypothesis (v) of the theorem, we have

yn ≤ G2 + f̃K̃ + C6h. (3.38)
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Once again

f
(
yn

)
≤ max

{
f, max

y∈[δ,G2+f̃K̃+C6h]
f
(
y
)}

, (3.39)

with δ given in (2.2). If we define

F̃(h) = max

{
0,max

{
f, max

y∈[δ,G2+f̃K̃+C6h]
f
(
y
)}}

, (3.40)

then

f
(
yn

)
≤ F̃(h), n = 0 . . . ,N, lim

h→ 0
F̃(h) = F∗, (3.41)

where F∗ is given in (2.6). Proceeding as in the proof of Theorem 2.1, we get

yn ≥ G1 +
n∑
l=0

k(tn, tl)f
(
yl
)
≥ G1 − F̃(h)

n∑
l=0

|k(tn, tl)| ≥ G1 − F̃(h)
(
K̃ + C1h

)
. (3.42)

This last inequality, together with (3.38) and the second of (3.41) gives the desired result.

In the case of VDQ methods we are also able to prove that, under the hypothesis of
Theorem 2.7, also the numerical solution vanishes. This, of course, assures that the asymptotic
behavior of the exact and the approximate solutions coincide. First of all, we enunciate the
following Lemma which represents the discrete analogue of Lemma 2.6 and whose proof is
then omitted.

Lemma 3.10. Assume that

(i) ∃f̃ ≥ 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) xf(x) ≥ 0, ∀x ∈ R,

(iii) k(t, s) ≤ 0, ∀s ≤ t, t ≥ 0,

(iv) limt→∞ k(t, s) = 0,

(v) limt→∞ g(t) = 0,

(vi) yn ultimately nonnegative,

then limn→∞ yn = 0, n = 0, . . . ,N.

The following result is the discrete counterpart of Theorem 2.7 and could be derived
from the proof of Theorem 3.4 in [12]. We report here the proof for the particular form of the
Volterra discrete equation (3.34).
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Figure 1: Numerical solution for the problem (1.1) described in Example 2.3.

Theorem 3.11. Assume that

(i) ∃f̃ ≥ 0 : f(x) ≥ −f̃ , ∀x ∈ R,

(ii) f is nondecreasing, xf(x) ≥ 0, ∀x ∈ R,

(iii) k(t, s) ≤ 0 for s ≤ t and t ≥ 0,

(iv) ∃K̃ > 0 : supt≥0

∫ t
0 |k(t, s)|ds ≤ K̃, t ≥ 0,

(v) limt→∞ g(t) = 0,

(vi) limt→∞ k(t, s) = 0,

(vii) −K̃f(−K̃f(−x)) > −x, ∀x > 0,

(viii) |k(t, s)| ultimately nonincreasing with respect to s, for t ≥ 0,

(ix) wn,l ≥ 0, n = 0, . . . ,N, l = 0, . . . , n,

then limn→∞ yn = 0.

Proof. By absurd, assume that the sequence yn given by (3.34) is not ultimately nonnegative,
that is,

lim inf
n→+∞

yn = γ < 0, (3.43)

which leads to

∀ε > 0, ∃ρ > 0 : n > ρ =⇒ yn > γ − ε. (3.44)
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Figure 2: Numerical solution for the problem (1.1) described in Example 2.5.

Denote by Λ(x) the function

Λ(x) = −K̃f
(
x − K̃f

(
γ − x

))
− 2x. (3.45)

Now, proceeding as in Theorem 2.7, we can prove that ∃ε0 > 0, and ∃n3 > 0 such that ∀n > n3

yn ≥ −ε0 − f
(
ε0 − K̃f

(
γ − ε0

))
K̃, (3.46)

and hence, yn ≥ γ + ε0. This contradicts (3.43), which is therefore absurd. Hence, yn is
ultimately nonnegative and Lemma 3.10 holds.

3.3. Numerical Experiments

In this section, we report some numerical experiments that show the application of our results
in the study of the behavior of the numerical solutions provided by VRK and VDQ methods
for some nonlinear problems. First we consider VRK methods and numerically solve, by a
Radau IIa type formula of order 3 (see [13]) the problems described in Examples 2.3 and 2.5
of Section 2. In Figures 1 and 2 we observe that the behavior of the numerical solution yn with
respect to the analytical bounds given in Theorem 2.1 is consistent with the theory developed
in Section 3.
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Figure 3: Numerical solution for the problem (1.1) described in (3.47).

In Figure 3 we report the result of an experiment on (1.1) with

k(t, s) =
−e−s

(1 + t2)
,

f
(
y
)
= −sin2y,

g(t) =
1

(1 + t2)
,

(3.47)

by a DQ method based on the trapezoidal rule of order 2. We do not know the solution, but
thanks to Theorems 3.11 and 2.7, we can predict that the numerical solution yn tends to zero
as n → +∞ just like the analytical one, and this is exactly the behavior we observe in the plot.
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