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A filled function approach is proposed for solving a non-smooth unconstrained global
optimization problem. First, the definition of filled function in Zhang (2009) for smooth global
optimization is extended to non-smooth case and a new one is put forwarded. Then, a novel
filled function is proposed for non-smooth the global optimization and a corresponding non-
smooth algorithm based on the filled function is designed. At last, a numerical test is made. The
computational results demonstrate that the proposed approach is effcient and reliable.

1. Introduction

Because of advances in science, economics and engineering, studies on global optimization
for multi-minimum nonlinear programming problem (P ′) : minx∈Rnf(x) have become a
topic of great concern. There are two difficulties faced by global optimization, one is how
to leave the current solution for a better one, another is how to decide the current solution
is a global one. So far, most existing methods deal only with the first issue. Among these
methods, the filled function method is a practical useful tool for global optimization. It was
first put forwarded by [1] for smooth unconstrained global optimization. The idea behind
the filled function methods is to construct an auxiliary function that allows us to escape
from a given local minimum of the original objective function. It consists of two phase: local
minimization and filling. The two phases are used alternately until a global minimizer of (P ′)
is found. The method has been further developed by [2–8]. In practical problems, however,
objective functions are not always smooth, so several scholars have extended the filled
function method for smooth global optimization to non-smooth cases(see [9]). In this paper,
we modify the concept of filled function presented by [10] and propose a novel class of filled
function for non-smooth the global optimization. This paper is divided into 6 sections. The
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next section presents some non-smooth preliminaries. In Section 3, the modified concept of
the filled function for non-smooth global optimization is introduced, a novel class of filled
function is given and its properties are investigated. In Section 4, a filled function algorithm
is proposed. Section 5 presents some encouraging numerical results. Last, in Section 6, the
conclusion is given.

2. Non-Smooth Preliminaries

To introduce the concept of the filled function approach for non-smooth global optimization,
we recall some definitions and lemmas on non-smooth optimization which would be used in
the next section.

Definition 2.1. LetX be a subset ofRn.A function f : X → R is said to be Lipschitz continuous
with a constant L on X provided that, for some scalar L > 0, one has

∣
∣f(x) − f

(

y
)∣
∣ ≤ L
∥
∥x − y

∥
∥ (2.1)

for all points x, y ∈ X.

Definition 2.2 (see [11]). Let f be Lipschitz with constant L at the point x, the generalized
gradient of f at x is defined as

∂f(x) =
{

ξ ∈ Rn :< ξ, d ≷< f0(x;d), ∀d ∈ X
}

, (2.2)

where f0(x;d) = lim supy→x,t↓0((f(y + td)−f(y))/t) is the generalized directional derivative
of f(x) in the direction d at x.

Lemma 2.3 (see [11]). Let f be Lipschitz with constant L at the point x, then

(a) f0(x;d) is finite, sublinear and satisfies

∣
∣
∣f0(x;d)

∣
∣
∣ ≤ L‖d‖. (2.3)

(b) As a function of (x, d), f0(x;d) is super-semicontinuous; as a function of d, it is Lipschitz
with constant L.

(c) ∂Σsifi(x) ⊆ Σsi∂fi(x), for ∀si ∈ R.

(d) ∂f(x)is a nonempty compact convex set, and to any ξ ∈ ∂f(x), one has ‖ξ‖ ≤ L.

(e) ∀d ∈ X, f0(x;d) = max{< ξ, d >: ξ ∈ ∂f(x)}.

Lemma 2.4 (see [11]). If x∗ is a local minimizer of f(x), then 0 ∈ ∂f(x∗).

3. A New Filled Function and Its Properties

Consider problem(P ′). To begin with, this paper makes the following assumptions.

Assumption 3.1. f(x) is Lipschitz continuous with a constant L on Rn.
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Assumption 3.2. f(x) is coercive, that is, f(x) → +∞ as ‖x‖ → +∞.

Note that Assumption 3.2 implies the existence of a compact set X whose interior
contains all minimizers of f(x). We assume that the value of f(x) for x located on the
boundary of X is greater than the value of f(x) for any x inside X. Then the original problem
is equivalent to problem (P) : minx∈Xf(x).

Assumption 3.3. f(x) has only a finite number of different minimal function values in X.

Let x∗ be a local minimizer of (P). In [10], the filled function for smooth global
optimization was defined as follows.

Definition 3.4. A function P(x, x∗) is called a filled function of f(x) at a local minimizer x∗, if
P(x, x∗) has the following properties:

(1) x∗ is a strict maximizer of P(x, x∗).

(2) P(x, x∗) has no stationary points in the region S1 = {x ∈ X \ {x∗} : f(x) ≥ f(x∗)}.
(3) If x∗ is not a global minimizer of (P), then P(x, x∗) has at least one minimizer in the

region S2 = {x ∈ X : f(x) < f(x∗)}.

This paper extends about definition to non-smooth case and gives the following
definition of a filled function.

Definition 3.5. A function P(x, x∗) is called a filled function of f(x) at a local minimizer x∗, if
P(x, x∗) has the following properties:

(1) x∗ is a strict maximizer of P(x, x∗).

(2) One has 0/∈ ∂P(x, x∗), for any x ∈ S1 = {x ∈ X : f(x) ≥ f(x∗), x /=x∗}.
(3) If x∗ is not a global minimizer of (P), then P(x, x∗) has at least one minimizer in the

region S2 = {x ∈ X : f(x) < f(x∗)}.

For convenience, we use L(P) and G(P) to denote the set of local minimizers and the
set of global minimizers of problem (P), respectively.

In what follows, we first design a function ϕ(t) satisfying the following conditions:

(1) ϕ(0) = 0,

(2) ∀t ∈ [−t1,∞), ϕ′(t) > 0 (where t1 ≥ 0),

(3) limt→+∞(tϕ′(t)/ϕ(t)) = 0,

(4) ϕ′′(t) ≤ 0 for any t ≥ 0.

Some examples of the function ϕ(t) with the properties 1–4 are ln(1 + t), t/(1 + t),
1 − exp(−t).

Now, a filled function with two parameters for non-smooth global optimization is
constructed as follows

F
(

x, x∗, q, r
)

=
1

1 + q‖x − x∗‖ϕ
(

q
∣
∣f(x) − f(x∗) + r

∣
∣
)

, (3.1)

where q > 0 and r > 0 are parameters, r satisfies 0 < r < f(x∗) − f(xG),where xG ∈ G(P).
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Next, we will show that the function F(x, x∗, q, r) is a filled function satisfying
Definition 3.5.

Theorem 3.6. Let x∗ ∈ L(P). If q > 0 is large enough such that L > (ϕ′(qr)/ϕ(qr)), then x∗ is a
strict maximizer of F(x, x∗, q, r).

Proof. Since x∗ ∈ L(P), there exists a neighborhood O(x∗, δ) of x∗ with δ > 0 such that f(x) ≥
f(x∗) for all x ∈ O(x∗, δ)

⋂
X and x /=x∗. By the mean value theorem, it follows that

F
(

x, x∗, q, r
)

=
ϕ
(

q
(

f(x) − f(x∗) + r
))

1 + q‖x − x∗‖ ≤ ϕ
[

q(L‖x − x∗‖ + r)
]

1 + q‖x − x∗‖

=
ϕ
(

qr
)

+ qL‖x − x∗‖ϕ′[qr + θqL‖x − x∗‖]

1 + q‖x − x∗‖

≤ ϕ
(

qr
)

+ qL‖x − x∗‖ϕ′(qr
)

1 + q‖x − x∗‖ ,

(3.2)

where θ ∈ (0, 1).
By the property (3) of ϕ(t), when q is sufficiently large such that

q > qr
ϕ′(qr
)

ϕ
(

qr
)
L

r
, (3.3)

we have that

ϕ
(

qr
)

+ qL‖x − x∗‖ϕ′(qr
)

1 + q‖x − x∗‖ <
ϕ
(

qr
)

+ q‖x − x∗‖ϕ(qr)

1 + q‖x − x∗‖ = ϕ
(

qr
)

= F
(

x∗, x∗, q, r
)

. (3.4)

Therefore we obtain that

F
(

x, x∗, q, r
)

< F
(

x∗, x∗, q, r
)

for any x ∈ O(x∗, δ)
⋂

X with x /=x∗. (3.5)

Hence, x∗ is a strict maximizer of F(x, x∗, q, r).

Theorem 3.7. Assume that x∗ ∈ L(P). To any x ∈ S1, if q > 0 is large enough such that qL(1 +
M)(ϕ′(qr)/ϕ(qr)) < 1, where M = maxx∈X‖x − x∗‖, then one has 0/∈ ∂F(x, x∗, q, r). In other
words, x is not a stationary point of F(x, x∗, q, r).

Proof. We first note that for any x ∈ S1, one has f(x) ≥ f(x∗), x /=x∗, and

∂F
(

x, x∗, q, r
) ⊂ qϕ′(q

(

f(x) − f(x∗) + r
))

1 + q‖x − x∗‖ ∂f(x) − qϕ
(

q
(

f(x) − f(x∗) + r
))

(

1 + q‖x − x∗‖)2
x − x∗

‖x − x∗‖. (3.6)
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Denoting d = (x − x∗)/‖x − x∗‖, for any ξ ∈ ∂F(x, x∗, q, r), there exists η ∈ ∂f(x) such
that

〈ξ, d〉 =

〈

qϕ′(q
(

f(x) − f(x∗) + r
))

1 + q‖x − x∗‖ η − qϕ
(

q
(

f(x) − f(x∗) + r
))

(

1 + q‖x − x∗‖)2
x − x∗

‖x − x∗‖ ,
x − x∗

‖x − x∗‖

〉

=
qϕ
(

q
(

f(x)−f(x∗)+r
))

(

1+q‖x−x∗‖)2
×
[

ϕ′(q
(

f(x)−f(x∗)+r
))

ϕ
(

q
(

f(x) −f(x∗)+r
)) × 1+q‖x−x∗‖

‖x−x∗‖ ×(x−x∗)Tη−1
]

≤ qϕ
(

q
(

f(x) − f(x∗) + r
))

(

1 + q‖x − x∗‖)2
[

ϕ′(qr
)

ϕ
(

qr
)

(

1 + qM
)

Ł − 1

]

≤ qϕ
(

q
(

f(x) − f(x∗) + r
))

(

1 + q‖x − x∗‖)2
[

Lqr
ϕ′(qr
)

ϕ
(

qr
)
(1 +M)
r − 1

]

< 0.

(3.7)

So, to any ξ ∈ ∂F(x, x∗, q, r), one has ξTd < 0. Then 0/∈ ∂F(x, x∗, q, r).

Theorem 3.8. Assume that x∗ ∈ L(P) \ G(P). Then there exists a point x∗
0 ∈ S2 = {x|f(x) <

f(x∗), x ∈ X} such that x∗
0 is a minimizer of F(x, x∗, q, r).

Proof. Since x∗ ∈ L(P) \ G(P), then there exists a point x∗∗ ∈ G(P) such that f(x∗∗) < f(x∗).
Now, by the choice of parameter of r, one has

f(x∗∗) − f(x∗) + r < 0, (3.8)

so that there exists at least one point x∗
0 ∈ X, such that

f
(

x∗
0
) − f(x∗) + r = 0. (3.9)

It follows that F(x∗
0, x

∗, q, r) = 0. On the other hand, by the definition of F(x, x∗, q, r),we have
F(x, x∗, q, r) ≥ 0. Therefore, we conclude F(x, x∗, q, r) ≥ F(x∗

0, x
∗, q, r) for all x ∈ X, which

implies that x∗
0 is a minimizer of F(x, x∗, q, r).

Theorem 3.6–3.3 state clearly that the proposed filled function satisfies the properties
1–3 of Definition 3.5.

Theorem 3.9. Suppose that x1, x2 ∈ S1 and ‖x1 − x∗‖ > ‖x2 − x∗‖ > 0.

(a) If there exists a constant B > 0 such that limt→+∞ϕ(t) = B, then, for sufficiently large
q > 0, one has F(x1, x

∗, q, r) < F(x2, x
∗, q, r).

(b) If there exists a constantC > 0 such that limt→+∞(ϕ(t)/ ln(1+t)) = C, then for sufficiently
large q > 0, it holds F(x1, x

∗, q, r) < F(x2, x
∗, q, r).
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Proof. Let x1, x2 ∈ S1, that is f(x1) ≥ f(x∗), f(x2) ≥ f(x∗). For simplicity, let f̂1 = f(x1) −
f(x∗) + r, f̂2 = f(x2) − f(x∗) + r.

(a) In this case, we can see that

lim
q→+∞

ϕ
(

qf̂2
)

ϕ
(

qf̂1
) = 1 ,

lim
q→+∞

1 + q‖x2 − x∗‖
1 + q‖x1 − x∗‖ =

‖x2 − x∗‖
‖x1 − x∗‖ < 1,

(3.10)

since limt→+∞ϕ(t) = B and ‖x1 − x∗‖ > ‖x2 − x∗‖ > 0.
Therefore, for large q, there exists

ϕ
(

qf̂2
)

ϕ
(

qf̂1
) >

1 + q‖x2 − x∗‖
1 + q‖x1 − x∗‖ . (3.11)

It follows that F(x1, x
∗, q, r) < F(x2, x

∗, q, r).
(b) If ϕ(t) = ln(1 + t) and q > 0 is sufficiently large, then

ln
(

1 + qf̂2
)

ln
(

1 + qf̂1
) >

1 + q‖x2 − x∗‖
1 + q‖x1 − x∗‖ . (3.12)

Thus, we have F(x1, x
∗, q, r) < F(x2, x

∗, q, r).
If ϕ(t)/= ln(1 + t) but limt→+∞(ϕ(t)/ ln(1 + t)) = C, then

lim
q→+∞

ϕ
(

qf̂2
)

ϕ
(

qf̂1
) = lim

q→+∞

⎡

⎢
⎣

ϕ
(

qf̂2
)

ln
(

1 + qf̂2
) ·

ln
(

1 + qf̂1
)

ϕ
(

qf̂1
) ·

ln
(

1 + qf̂2
)

ln
(

1 + qf̂1
)

⎤

⎥
⎦ = 1,

ϕ
(

qf̂2
)

ϕ
(

qf̂1
) >

1 + q‖x2 − x∗‖
1 + q‖x1 − x∗‖ .

(3.13)

Therefore, F(x1, x
∗, q, r) < F(x2, x

∗, q, r).

4. Solution Algorithm

In this section, we state our algorithm(NFFA)] for non-smooth global optimization based on
the previous proposed filled function.
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Algorithm NFFA

Initialization Step:

(1) Set a disturbance δ = 0.1.
(2) Choose an upper bound qU > 0 of q, for example, set qU := 108.
(3) Set q̂ = 10.
(4) Choose directions ek, k = 1, 2, . . . , k0, where k0 ≥ 2n, n is the number of variables.
(5) Specify an initial point x ∈ X to start phase 1 of the algorithm.
(6) Set r = 10−6.
(7) Set k := 1.

Main Step

(1) Starting from x ∈ X, activate a non-smooth local minimization procedure to minimize
f(x), and find its local minimizer x∗

1.
(2) Let q = 1.
(3) Construct the filled function as follows:

F
(

x, x∗
1, q, r
)

=
1

1 + q‖x − x∗
1‖

ϕ
(

q
∣
∣f(x) − f

(

x∗
1

)

+ r
∣
∣
)

. (4.1)

(4) else If k > k0, then go to 6.
Use x := x∗

1 + δek as an initial point, minimize the filled function problem(FP) :
minx∈XF(x, x∗

1, q, r) by implementing a non-smooth local minimization procedure and obtain
a local minimizer xk.

(5) If xk satisfies f(xk) < f(x∗
1), then set x := xk and k := 1. Use point x as a new

initial point, minimize problem (P) by implementing a local search procedure and obtain
another local minimizer x∗

2 of f(x) such that f(x∗
2) < f(x∗

1), set x
∗
1 := x∗

2, go to 2; Otherwise,
set k := k + 1, go to 4.

(6) Increase q by setting q := q̂q.
(7) If q ≤ qU, then set k := 1, go to 3; else the algorithm is incapable of finding a better

local minimizer, the algorithm stops and x∗
1 is taken as a global minimizer.

The motivation and mechanism behind this algorithm are explained below.
In Step 4 of the Initialization step, we choose direction ek, k = 1, 2, . . . , k0 as positive

and negative unit coordinate vectors, where k0 = 2n. For example, when n = 2, the directions
can be chosen as (1, 0), (0, 1), (−1, 0), (0,−1).

In Steps 1, 4 and 5 of the Main step, we minimize problem (P) by applying non-
smooth local optimization algorithms, such as Hybrid Hooke and Jeeves-Direct Method for
Non-smooth Optimization[12], Mesh Adaptive Direct Search Algorithms for Constrained
Optimization [13], Bundle methods, Powell’s method, and so forth. In particular, the Hybrid
Hooke and Jeeves-Direct Method is more preferable to others, since it is guaranteed to find a
local minimum of a non-smooth function subject to simple bounds.

Recall from Theorems 3.7 and 3.8 that the value of q should be selected sufficiently
large. In Main Step 2, we first set q = 1, then it is gradually increased until it reaches the
preset upper bound qU. If the parameter q exceeds qU and we cannot find a point x ∈ X
such that f(x) < f(x∗

1), then we believe that there does not exist a better local minimizer of
problem (P), the current local minimizer is taken as a global minimizer and the algorithm is
terminated.
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5. Numerical Experiment

In this section, we apply the above algorithm to several test problems to demonstrate its
efficiency. All the numerical experiments are implemented in Fortran 95, under Windows XP
and Pentium (R) 4 CPU 2.80GMHZ. In our programs, the filled function is of the form

F
(

x, x∗, q, r
)

=
1

1 + q‖x − x∗‖ log
(

1 + q
∣
∣f(x) − f(x∗) + r

∣
∣
)

. (5.1)

In non-smooth case, we obtain a local minimizer by using the Hybrid Hooke and Jeeves-
Direct Method. In smooth case, we apply the PRP Conjugate Gradient Method to get the
search direction and the Armijo line search to get the step size. The numerical results prove
that the proposed approach is efficient.

Problem 5.1.

min f(x) =
∣
∣
∣
∣

x − 1
4

∣
∣
∣
∣
+
∣
∣
∣
∣
sin
(

π

(

1 +
x − 1
4

))∣
∣
∣
∣
+ 7

s.t. − 10 ≤ x ≤ 10.

(5.2)

The global minimum solution: x∗ = 1.0000 and f(x∗) = 7.0000. In this experiment, we used
an initial point x0 = 8. The algorithm can successfully obtain the global minimizer. The time
to reach the global minimizer is 21.7842 seconds. The numbers of the filled function and the
original objective function being calculated in the algorithm are 953 and 1167, respectively.

Problem 5.2.

min f(x) = |x − 2|(1 + 10|sin(x + 2)|) + 3

s.t. − 10 ≤ x ≤ 10.
(5.3)

The global minimum solution: x∗ = 2.0000 and f(x∗) = 3.0000. In this experiment, we used
an initial point x0 = −5. The algorithm can successfully obtain the global minimizer. The time
to reach the global minimizer is 23.9746 seconds. The numbers of the filled function and the
original objective function being calculated in the algorithm are 8195 and 9479, respectively.

Problem 5.3.

min f(x) = max
{

5x1 + x2,−5x1 + x2, x
2
1 + x2

2 + 4x2

}

s.t. − 4 ≤ x1 ≤ 4,−4 ≤ x2 ≤ 4.
(5.4)

The global minimum solution: x∗ = (0,−3) and f(x∗) = −3. In this experiment, we used an
initial point x0 = (−4, 2). The algorithm can successfully obtain the global minimizer. The time
to reach the global minimizer is 28.5745 seconds. The numbers of the filled function and the
original objective function being calculated in the algorithm are 1986 and 2488, respectively.
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Problem 5.4.

min f(x) = −20 exp
⎛

⎝−0.2
√
√
√
√

1
n

n∑

i=1

|xi|
⎞

⎠ − exp

(

1
n

n∑

i=1

cos(2πxi)

)

+ 20

s.t. − 20 ≤ xi ≤ 30, i = 1, 2, . . . , n.

(5.5)

For any n, the global minimum solution: x∗ = (0, 0, . . . , 0) and f(x∗) = −2.7183. In this
experiment, we considered n = 10 and used x0 = (−10,−10, . . . ,−10) as an initial point.
The algorithm can successfully obtain the global minimizer. The time to reach the global
minimizer is 93.6783 seconds. The numbers of the filled function and the original objective
function being calculated in the algorithm are 7631 and 9739, respectively.

Problem 5.5.

min f(x) = max
j=1,...,m

n∑

i=1

(ixi − 1)2

i + j − 1
+ min

j=1,...,m

n∑

i=1

(ixi − 1)2

i + j − 1

s.t. − 10 ≤ xi ≤ 10, i = 1, . . . , n.

(5.6)

For any n,m, the global minimum solution: x∗ = (1, 0.5, . . . , 0.1) and f(x∗) = 0. In this
experiment, we considered n = 15, m = 15, and used x0 = (−7,−7, . . . ,−7) as an initial point.
The algorithm can successfully obtain the global minimizer. The time to reach the global
minimizer is 149.5783 seconds. The numbers of the filled function and the original objective
function being calculated in the algorithm are 9761 and 14264, respectively.

Problem 5.6.

min f(x) =
π

n

(

10 sin2πx1 + g(x) + (xn − 1)2
)

s.t. − 10 ≤ xi ≤ 10, i = 1, 2, . . . , n,
(5.7)

where g(x) =
∑n−1

i=1 [(xi − 1)2(1 + 10 sin2πxi+1)]. For any n, the global minimum solution: x∗ =
(1, 1, . . . , 1) and f(x∗) = 0. In this experiment, we considered n = 20, and used x0 = (7, 7, . . . , 7)
as an initial point. The algorithm can successfully obtain the global minimizer. The time to
reach the global minimizer is 172.8436 seconds. The numbers of the filled function and the
original objective function being calculated in the algorithm are 12674 and 16774, respectively.

6. Conclusions

In this paper, we first give a definition of a filled function for a non-smooth unconstrained
minimization problem and construct a new filled function with two parameters. Then,
we design an elaborate solution algorithm based on this filled function. Finally, we make
a numerical test. The computational results suggest that this filled function approach is
efficient. Of course, the efficiency of the proposed filled function approach relies on the non-
smooth local optimization procedure. Meanwhile, from the numerical results, we can see that
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algorithm can move successively from one local minimum to another better one, but in most
cases, we have to use more time to judge the current point being a global minimizer than to
find a global minimizer. However, the global optimality conditions for continuous variables
are still open problem, in general. The criterion of the global minimizer will provide solid
stopping conditions for a continuous filled function method.
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