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Let a, b be two integers with b − a ≥ 5 and let T2 = {a + 2, a + 3, . . . , b − 2}. We show the existence
of solutions for nonlinear fourth-order discrete boundary value problem Δ4u(t − 2) = f(t, u(t),
Δ2u(t − 1)), t ∈ T2, u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0 under a nonresonance condition
involving two-parameter linear eigenvalue problem. We also study the existence and multiplicity
of solutions of nonlinear perturbation of a resonant linear problem.

1. Introduction

The deformations of an elastic beam whose both ends are simply supported are described by
a fourth-order two-point boundary value problem

y′′′′ + g(x)y = e(x), 0 < x < 1,

y(0) = y(1) = y′′(0) = y′′(1) = 0
(1.1)

See studies by Aftabizadeh [1] and Gupta in [2]. The existence of solutions of nonlinear
boundary value problems of fourth-order differential equations has been studied by many
authors; see [1–12] and the references therein. For example, Aftabizadeh [1] proved an
existence theorem for nonlinear boundary value problems

y′′′′ = f
(
x, y, y′′), 0 < x < 1,

y(0) = y0, y′′(0) = y1, y(1) = y0, y′′(1) = y1,
(1.2)
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under several conditions that f is a bounded function. Yang [3] obtained existence results of
(1.2) under the following assumption.

(A) There are constants a, b, c ≥ 0 with a/π4 + b/π2 < 1 such that

∣
∣f

(
x, y, u

)∣∣ ≤ a∣∣y∣∣ + b|u| + c. (1.3)

Del Pino and Manásevich [4] extended Yang’s result and proved the following.

Theorem A. Assume that the pair (α, β) satisfies

α

(kπ)4
+

β

(kπ)2
/= 1 (1.4)

for all k ∈ N and that there are positive constants a, b, and c such that

amax
k∈N

{
1

∣∣k4π4 − α − βk2π2
∣∣

}

+ bmax
k∈N

{
λk∣∣k4π4 − α − βk2π2

∣∣

}

< 1,

∣∣f(t, u, v) − (
αu − βv)∣∣ ≤ a|u| + b|v| + c

(1.5)

for all x ∈ (0, 1), u, v ∈ R, then (1.2) possesses at least one solution.

Of course, the natural question is whether or not the similar existence can be
established for the corresponding discrete analog of (1.2) of the form

Δ4u(t − 2) = f
(
t, u(t),Δ2u(t − 1)

)
, t ∈ T2, (1.6)

u(a + 1) = r1, u(b − 1) = r2, Δ2u(a) = r3, Δ2u(b − 2) = r4, (1.7)

where T2 = {a + 2, a + 3, . . . , b − 2}, ri ∈ R for i ∈ {1, 2, 3, 4}.
The purpose of this paper is to show that the answer is yes. To this end, we state and

prove a spectrum result of two-parameter linear eigenvalue problem

Δ4u(t − 2) + βΔ2u(t − 1) − αu(t) = 0, t ∈ T2, (1.8)

u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0. (1.9)

This result is a slightly generalized version of Shi and Wang [13, Theorem 2.1]. In Section 3,
we use Leray-Schauder principle to study the existence of solutions of (1.6), (1.7) under some
nonresonant conditions involving the spectrum of (1.8), (1.9). Section 4 is considered with
some perturbations of resonant linear problems. We established some a priori bounds and
used these together with bifurcation arguments to prove the existence and multiplicity of
solutions.

Finally, we note that the existence of solutions of second-order discrete boundary
value problems has also received much attention; see studies by Agarwal and Wong in [14],
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Henderson in [15], and the references therein. However, relatively little is known about the
existence of solutions of fourth-order discrete boundary value problems. The likely reason
may be that the structure of spectrum of the corresponding linear eigenvalue problem is not
very clear. To our best knowledge, only He and Yu [16] as well as Zhang et al. [17] dealt with
the discrete problem of the form

Δ4u(t − 2) = f(t, u(t)), t ∈ T2, (1.10)

u(a) = u(b) = Δ2u(a) = Δ2u(b − 2) = 0. (1.11)

As we will see in Section 2, (1.9) has more advantage than (1.11) in the study of the spectrum
of two-parameter linear eigenvalue problems.

2. Spectrum of Two-Parameter Linear Eigenvalue Problem

Let a, b be two integers with b − a ≥ 5. Recall

T2 = {a + 2, a + 3, . . . , b − 2}. (2.1)

Let

T0 = {a, a + 1, . . . , b}, T1 = {a + 1, a + 2, . . . , b − 1},
Λ = {1, 2, . . . , b − a − 3}.

(2.2)

Let X be the Banach space

X =
{
u | u : T0 −→ R, u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0

}
(2.3)

under the norm

‖u‖X := max
{∣∣u

(
j
)∣∣ | j ∈ T2

}
. (2.4)

Let Y be the Banach space

Y =
{
y | y : T1 −→ R, y(a + 1) = y(b − 1) = 0

}
(2.5)

equipped with the norm

∥∥y
∥∥
Y := max

{∣∣y
(
j
)∣∣ | j ∈ T2

}
. (2.6)

Let Z be the Banach space

Z = {z | z : T2 −→ R} (2.7)
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equipped with the norm

‖z‖Z := max
{∣∣z

(
j
)∣∣ | j ∈ T2

}
. (2.8)

Remark 2.1. For any z ∈ Z with

z = {z(a + 2), z(a + 3), . . . , z(b − 2)}, (2.9)

it determines a unique element y ∈ Y by

y = {0, z(a + 2), z(a + 3), . . . , z(b − 2), 0} (2.10)

and a unique element x ∈ X by

x = {−z(a + 2), 0, z(a + 2), z(a + 3), . . . , z(b − 2), 0,−z(b − 2)}. (2.11)

Hence, the Banach spaces X, Y , and Z are homomorphic with each other. Denote the natural
homomorphism from Z to X by j.

Now, we define a linear operator L : X → Z by

Lu(t) := Δ4u(t − 2) + βΔ2u(t − 1) − αu(t), t ∈ T2. (2.12)

For k ∈ Λ, let λk be the kth-eigenvalue of the second-order linear eigenvalue problem

Δ2u(t − 1) + λu(t) = 0, t ∈ T2,

u(a + 1) = u(b − 1) = 0.
(2.13)

It is well known that λk is simple, and the corresponding eigenfunction

ψk(t) := sin
kπ(t − a − 1)
b − a − 2

, t ∈ T1, k ∈ Λ. (2.14)

See the study by Kelly and Peterson in [18].
The following result is considered with the spectrum of two-parameter eigenvalue

problem:

Δ4u(t − 2) + βΔ2u(t − 1) − αu(t) = 0, t ∈ T2, (2.15)

u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0. (2.16)

It is a slightly generalized version of Shi and Wang [13, Theorem 2.1].
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Proposition 2.2. (α, β) is an eigenvalue pair of (2.15), (2.16) if and only if

α

λ2k
+
β

λk
= 1 (2.17)

for some k ∈ Λ.

Proof. Let r1, r2 ∈ C such that

r1 + r2 = β, r1r2 = −α. (2.18)

Define two second-order difference operators L1, L2 : Y → Y by

(
L1y

)
(t) := Δ2y(t − 1) + r1y(t), t ∈ T2,

(
L1y

)
(a + 1) = 0,

(
L1y

)
(b − 1) = 0,

(
L2y

)
(t) := Δ2y(t − 1) + r2y(t), t ∈ T2,

(
L2y

)
(a + 1) = 0,

(
L2y

)
(b − 1) = 0.

(2.19)

Then, for y ∈ Y and t ∈ T1,

L2 ◦ L1y(t) = L2

(
Δ2y(t − 1) + r1y(t)

)

= Δ2
(
Δ2y(t − 2) + r1y(t − 1)

)
+ r2

(
Δ2y(t − 1) + r1y(t)

)

= Δ4y(t − 2) + (r1 + r2)Δ2y(t − 1) + r1r2y(t)

= Δ4y(t − 2) + βΔ2y(t − 1) − αy(t)
= (L|Y )y(t).

(2.20)

We claim that if (2.15), (2.16) possess a nontrivial solution y, then either r1 = λk or r2 = λk for
some k ∈ Λ. In either case, sin(kπ(t − a − 1)/(b − a − 2)), (t ∈ T1), is a nontrivial solution of
(2.15), (2.16).

In fact, if r2 /=λk for all k ∈ Λ, then (2.20) implies that

(
L1y

)
(t) = 0, t ∈ T1. (2.21)

This is

Δ2y(t − 1) + r1y(t) = 0, t ∈ T2,

y(a + 1) = y(b − 1) = 0.
(2.22)
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Thus, r1 = λk for some k ∈ Λ, and

y(t) = sin
kπ(t − a − 1)
b − a − 2

, t ∈ T1. (2.23)

If r2 = λk for some k ∈ Λ, then (2.20) implies that

L1y(t) = γψk(t), t ∈ T1, (2.24)

for some γ ∈ R \ {0}. This is

Δ2y(t − 1) + r1y(t) = γψk(t), t ∈ T2, (2.25)

y(a + 1) = y(b − 1) = 0. (2.26)

Since γ /= 0, it follows that

r1 /=λk, k ∈ Λ. (2.27)

This implies that (2.25), (2.26) have a unique solution

y(t) := (L1)−1γψk(t), t ∈ T1. (2.28)

We show that

r1 = λk + γ, y(t) = ψk(t). (2.29)

In fact, from (2.25) we have

b−2∑

t=a+2

γψ2
k(t) =

b−2∑

t=a+2

(
Δ2y(t − 1) + r1y(t)

)
ψk(t)

=
b−2∑

t=a+2

(
Δ2ψk(t − 1) + r1ψk(t)

)
y(t)

=
b−2∑

t=a+2
(r1 − λk)ψk(t)y(t)

=
b−2∑

t=a+2
(r1 − λk)ψ2

k(t),

(2.30)

which implies that γ = r1 − λk, and, subsequently, y(t) = ψk(t).
Therefore, the claim is true.
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Now, (2.17) follows by substituting this solution into (2.15), (2.16). Reciprocally, if
(2.17) holds, then, clearly, sin(kπ(t − a − 1)/(b − a − 2)), (t ∈ T1) is a nontrivial solution of
(2.15), (2.16).

Remark 2.3. From the proof of Proposition 2.2, we see that if (2.15) subjects to (1.9), then we
can factor L|Y as follows:

L|Y = L2 ◦ L1. (2.31)

However, this cannot be done if (2.15) subjects to (1.11). So, (1.9) has more advantage than
(1.11) in the study of the spectrum of two-parameter linear eigenvalue problems.

Next, for j ∈ N, let us set

Lj =

{
(
α, β

) | α
λ2j

+
β

λj
= 1

}

. (2.32)

In view of the Proposition 2.2, we call Lj an eigenline of (2.15), (2.16). We note that an
eigenvalue pair (α, β) can belong to at most two eigenlines. If (α, β) belongs to just one Lj ,
then the corresponding eigenspace is spanned by sin(kπ(t−a−1)/(b−a−2)). If (α, β) belongs
to Lj∩Lk (j /= k), then the corresponding eigenspace is spanned by sin(jπ(t−a−1)/(b−a−2))
and sin(kπ(t − a − 1)/(b − a − 2)).

Suppose that the pair (α, β) is not an eigenvalue pair of (2.15), (2.16), that is,

α

λ2
k

+
β

λk
/= 1 (2.33)

for all k ∈ Λ, and that h ∈ Z:

h(t) =
b−a−3∑

k=1

hk sin
kπ(t − a − 1)
b − a − 2

, t ∈ T2. (2.34)

From the Fredholm Alternative, it follows that the boundary value problem

Δ4u(t − 2) + βΔ2u(t − 1) − αu(t) = h(t), t ∈ T2,

u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0
(2.35)

has a unique solution for each h ∈ Z. Moreover, this solution admits a Fourier series
expansion of the form

u(t) =
b−a−3∑

k=1

hk sin(kπ(t − a − 1)/(b − a − 2))
(
λ2
k
− α − βλk

) , t ∈ T2,

u(a + 1) := 0, u(b − 1) := 0, u(a) := −u(a + 2), u(b) := −u(b − 2).

(2.36)
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Also, we have

Δ2u(t − 1) = −
b−a−3∑

k=1

λkhk sin(kπ(t − a − 1)/(b − a − 2))
(
λ2k − α − βλk

) , t ∈ T2,

Δ2u(a) := 0, Δ2u(b − 2) := 0.

(2.37)

From (2.36) and (2.37), we can easily see that the operators A : Z → Z, B : Z → Z
defined by

A(h)(t) = u(t), B(h)(t) = Δ2u(t − 1), t ∈ T2, (2.38)

are compact linear operators. In (2.38), u is the solution of (2.35), (2.16) corresponding to
h ∈ Z. The norms of A and B are, respectively, given by

‖A‖Z→Z = max
k∈Λ

{
1

∣∣λ2k − α − βλk
∣∣

}

, ‖B‖Z→Z = max
k∈Λ

{
λk∣∣λ2k − α − βλk

∣∣

}

. (2.39)

Finally, as an immediate consequence of Proposition 2.2, we have the following.

Proposition 2.4. Let γ and δ be two constants with (γ, δ) ∈ [0,∞)× [0,∞) and γ + δ > 0. Then the
generalized eigenvalues of problem

Δ4u(t − 2) + μ
(
δΔ2u(t − 1) − γu(t)

)
= 0, t ∈ T2,

u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0
(2.40)

are given by

μ1
(
γ, δ

)
< μ2

(
γ, δ

)
< · · · < μb−a−3

(
γ, δ

)
, (2.41)

where

μk
(
γ, δ

)
=

λ2
k

γ + δλk
, k ∈ Λ. (2.42)

The generalized eigenfunction corresponding to μk(γ, δ) is

ψk(t) = sin
kπ(t − a − 1)
b − a − 2

, t ∈ T1. (2.43)
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3. Existence Results for Nonresonant Problems

Theorem 3.1. Assume that the pair (α, β) satisfies

α

λ2
k

+
β

λk
/= 1 (3.1)

for all k ∈ Λ and that there are positive constants a∗, b∗, and c∗ such that

a∗ max
k∈Λ

{
1

∣
∣λ2

k
− α − βλk

∣
∣

}

+ b∗ max
k∈Λ

{
λk∣

∣λ2
k
− α − βλk

∣
∣

}

< 1, (3.2)

∣
∣f(t, u, v) − (

αu − βv)∣∣ ≤ a∗|u| + b∗|v| + c∗ (3.3)

for all t ∈ T2, u, v ∈ R, then (1.6), (1.7) possess at least one solution.

Remark 3.2. It is not difficult to see that (3.1), (3.2) imply that

a∗
∣∣λ2

k
− α − βλk

∣∣ +
b∗λk∣∣λ2

k
− α − βλk

∣∣ < 1 (3.4)

for k ∈ Λ. It turns out that (3.4) is equivalent to the fact that the square [α − a∗, α + a∗] ×
[β − b∗, β + b∗] does not intersect any of the eigenlines Lj of (2.15), (2.16). From this point of
view, (3.1), (3.2) can be thought of as a two-parameter nonresonance condition relative to the
eigenlines Lj .

Proof of Theorem 3.1. It is easy to check that the problem

Δ4u(t − 2) = 0, t ∈ T2,

u(a + 1) = r1, u(b − 1) = r2, Δ2u(a) = r3, Δ2u(b − 2) = r4
(3.5)

has a unique solution l(t). Set

y(t) := u(t) − l(t), t ∈ T0. (3.6)

Then (1.6),(1.7) can be rewritten as

Δ4y(t − 2) = f
(
t, y(t) + l(t),Δ2(y(t − 1) + l(t − 1)

))
, t ∈ T2,

y(a + 1) = y(b − 1) = Δ2y(a) = Δ2y(b − 2) = 0.
(3.7)
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Since

∣
∣
∣f

(
t, y(t) + l(t),Δ2(y(t − 1) + l(t − 1)

)) −
[
α
(
y(t) + l(t)

) − β
(
Δ2(y(t − 1) + l(t − 1)

))]∣∣
∣

≤ a∗∣∣y∣∣ + b∗
∣
∣
∣Δ2y(t − 1)

∣
∣
∣ + c∗∗

(3.8)

with

c∗∗ = a∗ max
t∈T0

|l(t)| + b∗ max
t∈T1

∣
∣
∣Δ2l(t − 1)

∣
∣
∣ + c∗, (3.9)

it follows that (3.2) and (3.3) still hold except that c∗ is replaced by c∗∗. So, we may suppose
that r1 = r2 = r3 = r4 = 0 in (1.7).

Let us define T : Z × Z → Z × Z by

T(u, v) =
(
A
(
f(·, u, v) − (

αu − βv)), B(f(·, u, v) − (
αu − βv))), (3.10)

where A and B are the operators defined in (2.38). The growth condition (3.3) together with
the compactness A and B implies that T is a completely continuous operator. By Remark 2.1,
the problem

Δ4u(t − 2) = f
(
t, u(t),Δ2u(t − 1)

)
, t ∈ T2,

u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0
(3.11)

is equivalent to the fixed point problem in Z × Z:

(u, v) = T(u, v). (3.12)

Wewill study this fixed point problem bymeans of the well-known Leray-Schauder principle
[18]. To do this, we show that there is a uniform bound independent of λ ∈ [0, 1] for the
solutions of the equation

(u, v) = λT(u, v). (3.13)

Thus, let (u, v) be a solution of (3.13). From the definition of T and (3.3), we obtain the result
that

‖u‖Z ≤ ‖A‖Z→Z{a‖u‖Z + b‖v‖Z + c}, (3.14)

‖v‖Z ≤ ‖B‖Z→Z{a‖u‖Z + b‖v‖Z + c}. (3.15)
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Combining (3.14) and (3.15) and using (3.2) and (2.38), we obtain the existence of a constant
M =M(a∗, b∗, c∗, ‖A‖Z→Z, ‖B‖Z→Z) such that

‖u‖Z + ‖v‖Z ≤M. (3.16)

By the Leray-Schauder principle [19], we conclude the existence of at least one solution of
(3.12), and the theorem follows.

4. Existence and Multiplicity Results for Perturbations of
Resonant Linear Problems

In this section, we consider the perturbations of resonant linear problems of the form

Δ4u(t − 2) +
(
μk + μ

)(
δΔ2u(t − 1) − γu(t)

)
= g(t, u(t)) + h(t), t ∈ T2, (4.1)μ

u(a + 1) = u(b − 1) = Δ2u(a) = Δ2u(b − 2) = 0, (4.1)

where (γ, δ) ∈ [0,∞) × [0,∞)with γ + δ > 0, μk = μk(γ, δ), and g and h satisfy the following.

(H1) (Sublinear growth condition) g : T2 × R → R is continuous, and there exist α ∈ [0, 1),
C1, C2 ∈ (0,∞) such that

∣∣g(t, s)
∣∣ ≤ C1|s|α + C2, s ∈ R, t ∈ T2 (4.2)

(H2) There exists β > 0 such that

sg(t, s) > 0, for t ∈ T2, |s| > β (4.3)

(H3) h : T2 → R satisfies

b−2∑

t=a+2

h(t)ψk(t) = 0. (4.4)

We will establish some a priori bounds and use these together with Leray-Schauder
continuation and bifurcation arguments to reduce results which say that there are multiple
solutions of (4.1)μ, (4.1) for μ on one side of zero and guarantee the existence of at least one
solution for μ = 0 and μ on the other side of zero. To wit, we have the following.

Theorem 4.1. Let (H1), (H2), and (H3) hold. Then there exist μ− < 0 < μ+ such that (4.1)μ, (4.1)
have

(1) at least one solution if μ ∈ [0, μ+],

(2) at least three solutions if μ ∈ [μ−, 0).
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We have the following “dual” theorem if (H2) is replaced by the assumption

(H2′) that there exists β > 0 such that

sg(t, s) < 0, for t ∈ T2, |s| > β. (4.5)

Theorem 4.2. Let (H1), (H2’), and (H3) hold. Then there exist μ− < 0 < μ+ such that (4.1)μ, (4.1)
have

(1) at least one solution if μ ∈ [μ−, 0],

(2) at least three solutions if μ ∈ (0, μ+].

Define L : X → Z by

(Ly)(t) = Δ4u(t − 2) + μk
(
δΔ2u(t − 1) − γu(t)

)
, t ∈ T2. (4.6)

Define F : Z → Z by

(Fu)(t) = g(t, u(t)), t ∈ T2. (4.7)

It is easy to check that F : Z → Z is continuous. Obviously (4.1)μ, (4.1) are equivalent to

Lu + μ
(
δΔ2u(t − 1) − γu(t)

)
= F(u) + h. (4.7)μ

Define an operator P : X → X by

(Px)(t) = ψk(t)
b−2∑

s=a+2

x(s)ψk(s), t ∈ T0, (4.8)

where

ψk(a) := −ψk(a + 2), ψk(b) := −ψk(b − 2). (4.9)

It is easy to show the following.

Lemma 4.3. P is a projection and Im(P) = Ker(L).

Define an operator E : Z → Z by

(
Ey

)
(t) = y(t) − ψk(t)

b−2∑

s=a+2

y(s)ψk(s), t ∈ T2. (4.10)

Obviously, we have the following.



Discrete Dynamics in Nature and Society 13

Lemma 4.4. E is a projection and Im(E) = Im(L).

It is clear that

X = XP ⊕XI−P , Z = ZI−E ⊕ ZE, (4.11)

where I represents the identity operator and XP ,XI−P , ZI−E, and ZE are the images of P, I −P,
I − E, and E, respectively.

It is obvious that the restriction ofL toXI−P is a bijection fromXI−P ontoZE, the image
of L. We defineM : ZE → XI−P by

M := (L|XI−P )
−1. (4.12)

Since ker(L) = span{ψk}, we see that each x ∈ X can be uniquely decomposed into

x = ρψk + v (4.13)

for some ρ ∈ R, and v ∈ XI−P . For z ∈ Z, we also have the decomposition

z = τψk + h, (4.14)

with τ ∈ R and h ∈ ZE.

Lemma 4.5. Equations (4.1)μ, (4.1) are equivalent to the system

Lv + μ
(
δΔ2v(t − 1) − γv(t)

)
= EF

(
ρψk + v

)
+ h, (4.9)μ

μ
b−2∑

s=a+2

(
δΔ2ψk(s − 1) − γψk(s)

)
ψk(s) =

b−2∑

s=a+2

ψk(s)f
(
s, ρψk(s) + v(s)

)
. (4.15)

Lemma 4.6. Let (H1) and (H2) hold. Then there exists R0 such that any solution y of (4.1)μ, (4.1)
satisfies

∥∥y
∥∥
X < R0 (4.16)

as long as

0 ≤ μ ≤ δ̂ :=
1

2‖MJ‖XI−P →XI−P

, (4.17)

where J : X → Z is defined by

(Jx)(t) := δΔ2x(s − 1) − γx(s), t ∈ T2. (4.18)
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Proof. Obviously (L + μJ)|XI−P : XI−P → ZE is invertible for |μ| ≤ δ̂. Moreover, by (4.17),

∥
∥
∥
(L + μJ

)|−1XI−P

∥
∥
∥
ZE →XI−P

=
∥
∥
∥
[
(L|XI−P )

(
I + μMJ

)]−1∥∥
∥
ZE →XI−P

=
∥
∥
∥
[(
I + μMJ

)]−1
∥
∥
∥
XI−P →XI−P

‖M‖ZE →XI−P ≤ 2‖M‖ZE →XI−P .

(4.19)

Let y = ρψk + v be any solution of (4.1)μ, (4.1). Then we have that, if ρ /= 0,

‖v‖X =
∥
∥
∥
(L + μJ

)∣∣−1
XI−P

E
(
h − F(ρψk + v

))∥∥
∥
X

≤
∥
∥
∥
(L + μJ

)∣∣−1
XI−P

∥
∥
∥
ZE →XI−P

‖E‖Z→ZE

[‖h‖Z + C1
(∣∣ρ

∣
∣
∥
∥ψk

∥
∥
Z + ‖v‖Z

)α + C2
]

≤ 2‖M‖ZE →XI−P ‖E‖Z→ZE

[‖h‖Z + C1
(∣∣ρ

∣∣∥∥ψk
∥∥
Z + ‖v‖Z

)α + C2
]

≤ 2‖M‖ZE →XI−P ‖E‖Z→ZE

[‖h‖Z + C1
(∣∣ρ

∣∣∥∥ψk
∥∥
X + ‖v‖X

)α + C2
]

= 2‖M‖ZE →XI−P ‖E‖Z→ZE

[

‖h‖Z + C1
(∣∣ρ

∣∣∥∥ψk
∥∥
X

)α
(

1 +
‖v‖X∣∣ρ
∣∣∥∥ψk

∥∥
X

)α

+ C2

]

≤ 2‖M‖ZE →XI−P ‖E‖Z→ZE

[

‖h‖Z + C1
(∣∣ρ

∣∣∥∥ψk
∥∥
X

)α
(

1 +
α‖v‖X∣∣ρ
∣∣∥∥ψk

∥∥
X

)

+ C2

]

=2‖M‖ZE →XI−P ‖E‖Z→ZE

×
⎡

⎣‖h‖Z + C1
(∣∣ρ

∣∣∥∥ψk
∥∥
X

)α
⎛

⎝1 +
α

(∣∣ρ
∣∣∥∥ψk

∥∥
X

)1−α
‖v‖X(∣∣ρ
∣∣∥∥ψk

∥∥
X

)α

⎞

⎠ + C2

⎤

⎦,

(4.20)

and hence

‖v‖X(∣∣ρ
∣∣∥∥ψk

∥∥
X

)α ≤ C3
(∣∣ρ

∣∣∥∥ψk
∥∥
X

)α + C4 +
αC4

(∣∣ρ
∣∣∥∥ψk

∥∥
X

)1−α
‖v‖X(∣∣ρ
∣∣∥∥ψk

∥∥
X

)α , (4.21)

where

C3 = ‖M‖ZE →XI−P ‖E‖Z→ZE
(‖h‖Z + C2), C4 = 2C1‖M‖ZE →XI−P ‖E‖Z→ZE

. (4.22)

If

∣∣ρ
∣∣ ≥ (2αC4)1/(1−α)∥∥ψk

∥∥
X

=: C̃, (4.23)
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then we have

‖v‖X(∣∣ρ
∣
∣
∥
∥ψk

∥
∥
X

)α ≤ 2C3
(
C̃
∥
∥ψk

∥
∥
X

)α + 2C4 =: C∗. (4.24)

If we assume that the conclusion of the lemma is false, we obtain a sequence {ηn}
with 0 ≤ ηn ≤ δ̂ and ηn → 0, and a sequence of corresponding solutions {yn = ρnψk + vn}
of (4.1)ηn , (4.1) such that ‖yn‖X → +∞. From (4.24), we conclude that it is necessary that
|ρn| → +∞. We may assume that

ρn −→ +∞, ρn ≥ C̃ ∀n ∈ N (4.25)

since the other case can be treated by the same way. Thus (4.24) yields that

‖vn‖X :≤ Ĉ∣∣ρn
∣∣α (4.26)

with Ĉ := C∗‖ψk‖αX .
Now from (4.15), we get that

ρnηn
b−2∑

s=a+2

(
δΔ2ψk(s − 1) − γψk(s)

)
ψk(s) =

b−2∑

s=a+2

ψk(s)f
(
s, ρnψk(s) + vn(s)

)
. (4.27)

By (4.17) and (4.27), it follows that

b−2∑

s=a+2

ψk(s)f
(
s, ρnψk(s) + vn(s)

) ≤ 0. (4.28)

Let

A+ =
{
t | t ∈ {a + 2, . . . , b − 2}, ψk(t) > 0

}
,

A− =
{
t | t ∈ {a + 2, . . . , b − 2}, ψk(t) < 0

}
.

(4.29)

It is easy to see that

A+ ∪A−
/= ∅, min

{∣∣ψk(t)
∣∣ | t ∈ A+ ∪A−} > 0. (4.30)

Combining (4.30) and (4.26), we conclude that there exists a positive constant Γ such that, for
n ∈ N,

‖vn‖X ≤ Γ
(∣∣ρn

∣∣min
{∣∣ψk(t)

∣∣ | t ∈ A+ ∪A−})α, (4.31)
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which implies that

lim
ρn →+∞

min
{
ρnψk(t) + vn(t) | t ∈ A+} = +∞,

lim
ρn →+∞

min
{
ρnψk(t) + vn(t) | t ∈ A−} = −∞.

(4.32)

Applying (4.32), (4.30), and (H2), we conclude that

b−2∑

s=a+2

ψk(s)f
(
s, ρnψk(s) + vn(s)

)

=
∑

s∈A+

ψk(s)f
(
s, ρnψk(s) + vn(s)

)
+

∑

s∈A−
ψk(s)f

(
s, ρnψk(s) + vn(s)

)
> 0,

(4.33)

which contracts (4.28).

Using the similar arguments, we may establish the following lemma.

Lemma 4.7. Let (H1) and (H2’) hold. Then there exists R0 such that any solution y of (4.1)μ, (4.1)
satisfies

∥∥y
∥∥
X < R0 (4.34)

as long as

−δ̂ ≤ μ ≤ 0, (4.35)

where δ̂ is given in (4.17).

Lemma 4.8. Let (H1) and (H2) hold. Then there exists R1 : R1 ≥ R0 such that, for 0 ≤ μ ≤ δ̂ and
R ≥ R1, one has

deg
(
j ◦ (L + μJ − F − h), B(R), 0) = deg

(
j ◦

(
L + δ̂J

)
, B(R), 0

)
= ±1, (4.36)

where j : Z → X is the natural homomorphism, B(R) = {u ∈ X‖u‖X < R}, and “deg” denotes
Leray-Schauder degree when μ/= 0 and coincidence degree when μ = 0 (see the study by Gaines and
Mawhin in [20]). Therefore (4.7)μ has a solution in B(R) for μ ∈ [0, δ̂].

Proof. By Lemma 4.6 and the definition of L, the degree

deg
(
j ◦ (L + μJ − F − h), B(R), 0) (4.37)

is well defined for μ ∈ [0, δ̂] and is a constant with respect to μ.
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Now if (μ, y) ∈ [0, 1] ×X is a solution of

Ly + δ̂
(
δΔ2y(s − 1) − γy(s)

)
− μ(F(y) + h) = 0, (4.38)

then we have

∥
∥y

∥
∥
X = μ

∥
∥
∥∥
(
L + δ̂J

)−1(
h + F

(
y
))

∥
∥
∥∥
X

≤
∥
∥
∥(L + δ̂J)−1

∥
∥
∥
ZE →XI−P

(‖h‖Z + C1
∥
∥y

∥
∥α
X + C2

)
. (4.39)

Hence there exists R′
0 > 0 such that ‖y‖X < R′

0. Thus if R1 = max{R′
0, R0}, then we have,

whenever R > R1, that

deg
(
j ◦

(
L + δ̂J − F − h

)
, B(R), 0

)
= deg

(
j ◦

(
L + δ̂J

)
, B(R), 0

)
= ±1, (4.40)

which completes the proof.

By a similar manner we may establish the following.

Lemma 4.9. Let (H1) and (H2′) hold. Then there exists R1 : R1 ≥ R0 such that, for 0 ≥ μ ≥ −δ̂ and
R ≥ R1, one has

deg
(
j ◦ (L + μJ − F − h), B(R), 0) = deg

(
j ◦

(
L − δ̂J

)
, B(R), 0

)
= ±1. (4.41)

Therefore (4.7)μ has a solution in B(R) for μ ∈ [−δ̂, 0].

Lemma 4.10. Let (H1) and (H2) hold. Then there exists δ1 > 0 such that, for −δ1 < μ < 0, one has

deg
(
j ◦ (L + μJ − F − h), B(R1), 0

)
= deg

(
j ◦ (L + δ1J), B(R1), 0

)
= ±1. (4.42)

Proof. Let

τ0 = inf
x∈∂B(R1)∩X

∥∥j ◦ (Lx − F(x) − h)∥∥X. (4.43)

Then it is not difficult to check that τ0 > 0. Hence if we take δ1 so small that δ1R1 < τ0, then
for μ ∈ [−δ1, δ1],

deg
(
j ◦ (L + μJ − F − h), B(R1), 0

)
= deg

(
j ◦ (L − F − h), B(R1), 0

)
= ±1. (4.44)

Lemma 4.11. Let (H1) and (H2′) hold. Then there exists δ1 > 0 such that, for 0 ≤ μ ≤ δ1, one has

deg
(
j ◦ (L + μJ − F − h), B(R), 0) = deg

(
j ◦ (L − δ1J), B(R), 0

)
= ±1. (4.45)
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Proof of Theorem 4.1. By the study of Massabò and Pejsachowicz in [21, Theorem 1.1], (4.7)μ
has a continuum C∗ = {(μ, yμ)} of solutions with ‖yμ‖X < R1 and μ ∈ [−δ1, δ̂]. On the other
hand, since F is L-completely continuous and satisfies (H1) and since μ = 0 is a simple
eigenvalue, it follows from the study by Rabinowitz in [22, Theorem 1.6] that μ = 0 is a
bifurcation point from infinity for (4.7)μ. Moreover, there exist two continua

C±
∞ =

{(
μ, yμ

)} ⊂ R ×X (4.46)

of solutions of (4.7)μ, bifurcating from infinity at μ = 0, that is, there exists ε0 ∈ (0, 1/R1), such
that for all ε : 0 < ε ≤ ε0 there exist two continua C+

ε and C−
ε with

C+
ε ⊂ C+

∞, C−
ε ⊂ C−

∞,

C±
ε ⊂

{
(
μ, yμ

)
:
∥∥yμ

∥∥
X
≥ 1
ε
,
∣∣μ

∣∣ < ε
}

=: Uε(0,∞),
(4.47)

and C±
ε connects (0,∞) to ∂Uε(0,∞). Notice that (μ, y) ∈ C+

ε implies that y(a + 2) > 0, and
(μ, y) ∈ C−

ε implies that y(a + 2) < 0. So,

C+
ε ∩ C−

ε = ∅. (4.48)

Now, Lemma 4.6 implies that

C±
ε ⊆

{
(
μ, yμ

) | ∥∥yμ
∥∥
X
≥ 1
ε
, −ε < μ < 0

}
. (4.49)

This completes the proof.

Proof of Theorem 4.2. Using similar arguments, we may get the desired results.
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[4] M. A. Del Pino and R. F. Manásevich, “Existence for a fourth-order boundary value problem under
a two-parameter nonresonance condition,” Proceedings of the American Mathematical Society, vol. 112,
no. 1, pp. 81–86, 1991.

[5] D. Franco, D. O’Regan, and J. Perán, “Fourth-order problems with nonlinear boundary conditions,”
Journal of Computational and Applied Mathematics, vol. 174, no. 2, pp. 315–327, 2005.

[6] R. Ma and H. Wang, “On the existence of positive solutions of fourth-order ordinary differential
equations,” Applicable Analysis, vol. 59, no. 1–4, pp. 225–231, 1995.

[7] R. Ma, J. Zhang, and S. Fu, “The method of lower and upper solutions for fourth-order two-point
boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 215, no. 2, pp. 415–
422, 1997.

[8] B. P. Rynne, “Infinitely many solutions of superlinear fourth order boundary value problems,”
Topological Methods in Nonlinear Analysis, vol. 19, no. 2, pp. 303–312, 2002.

[9] Z. Bai and H. Wang, “On positive solutions of some nonlinear fourth-order beam equations,” Journal
of Mathematical Analysis and Applications, vol. 270, no. 2, pp. 357–368, 2002.

[10] Q. Yao, “Existence, multiplicity and infinite solvability of positive solutions to a nonlinear fourth-
order periodic boundary value problem,” Nonlinear Analysis: Theory, Methods & Applications, vol. 63,
no. 2, pp. 237–246, 2005.

[11] Y. Li, “Positive solutions of fourth-order periodic boundary value problems,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 54, no. 6, pp. 1069–1078, 2003.

[12] R. Ma, “Existence of positive solutions of a fourth-order boundary value problem,” Applied
Mathematics and Computation, vol. 168, no. 2, pp. 1219–1231, 2005.

[13] G. Shi and Y. Wang, “The eigenvalues and existence of solutions of BVPs for fourth order difference
equations,” Dynamics of Continuous, Discrete & Impulsive Systems. Series A, vol. 14, no. 5, pp. 631–639,
2007.

[14] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, vol. 404 of Mathematics and Its
Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

[15] J. Henderson, “Positive solutions for nonlinear difference equations,” Nonlinear Studies, vol. 4, no. 1,
pp. 29–36, 1997.

[16] Z. He and J. Yu, “On the existence of positive solutions of fourth-order difference equations,” Applied
Mathematics and Computation, vol. 161, no. 1, pp. 139–148, 2005.

[17] B. Zhang, L. Kong, Y. Sun, and X. Deng, “Existence of positive solutions for BVPs of fourth-order
difference equations,” Applied Mathematics and Computation, vol. 131, no. 2-3, pp. 583–591, 2002.

[18] W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Application, Har-
court/Academic Press, San Diego, Calif, USA, 2nd edition, 2001.

[19] E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer, New
York, NY, USA, 1986.

[20] R. E. Gaines and J. L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, vol. 568 of
Lecture Notes in Mathematics, Springer, Berlin, Germany, 1977.
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