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The Job-shop scheduling problem (JSSP) is a branch of production scheduling, which is among
the hardest combinatorial optimization problems. Many different approaches have been applied
to optimize JSSP, but for some JSSP even with moderate size cannot be solved to guarantee
optimality. The original particle swarm optimization algorithm (OPSOA), generally, is used to
solve continuous problems, and rarely to optimize discrete problems such as JSSP. In OPSOA,
through research I find that it has a tendency to get stuck in a near optimal solution especially for
middle and large size problems. The local and global search combine particle swarm optimization
algorithm (LGSCPSOA) is used to solve JSSP, where particle-updating mechanism benefits from
the searching experience of one particle itself, the best of all particles in the swarm, and the best of
particles in neighborhood population. The new coding method is used in LGSCPSOA to optimize
JSSP, and it gets all sequences are feasible solutions. Three representative instances are made
computational experiment, and simulation shows that the LGSCPSOA is efficacious for JSSP to
minimize makespan.

1. Introduction

The job-shop scheduling problem (JSSP) is very important in field of production manage-
ment. The JSSP has been proved to be a difficult task for human planners and schedulers,
particularly if optimal solutions are required. With traditional optimization approaches,
finding optimal solution to large size combinatorial problems is not a practicable option,
because of the vast amount of computer time needed to find such solutions. Predecessors
have proposed many different approaches to optimize JSSP and have obtained some harvest,
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but by current algorithms, even moderately sized problems cannot be solved to guarantee
optimality. One of the first attempts to optimize a simple JSSP through application of
genetic algorithm can be seen in the research of Davis in 1985. Since then, a significant
number of successful applications of GAs to JSSP have appeared in [1–4], and so forth.
Gharbi and Haouari have used an approximate decomposition algorithm for scheduling on
parallel machines [5]. Xia and Wu presented an effective hybrid optimization approach for
multiobjective feasible JSSP in [6]. Many researches show that GAs that are used to solve JSSP
are feasible, however, their performance is far from satisfactory. Particle swarm optimization
(PSO) is an evolutionary computation technique developed by Eberhart and Kennedy in
1995 [7, 8], inspired by social behavior of bird flocking or fish schooling. Similar to genetic
algorithms (GA), PSO is a population-based optimization tool. In recent years, there have
been a lot of works focused on the PSO that have been applied widely in the function
optimization, artificial neural network training, pattern recognition, fuzzy control, and some
other fields where GA can be applied, but PSOA used to solve discrete optimization problem
such as JSSP does not have a rich literature. Clerc and Kennedy in [9] have researched
the particle swarm stability and convergence in a multidimensional complex space. Goh
et al. researched on competitive and cooperative coevolutionary approach to multiobjective
particle swarm optimization algorithm design [10]. Eberhart and Shi have researched inertia
weights and constriction factors, developments, applications, and resources of particle swarm
optimization in [11, 12], at the same time they have presented a modified particle swarm
optimizer in [13]. Shi et al. presented an improved GA and a novel PSO-GA-based hybrid
algorithm in [14]. Fan has presented a modification to PSOA in [15] and He et al. have
put forward a particle swarm optimizer with passive congregation in [16]. Kennedy and
Mendes in [17] investigated the impacts of population structures to the search performance
of SPSO. Robinson et al. in [18] have investigated particle swarm, genetic algorithm, and
their hybrids. Chen and Li [19, 20], Shi and Eberhart [21], and Trelea [22] have researched
parameter selection of particle swarm optimization, respectively . Yin and Zhang presented
a new heuristic algorithm for solving the JSSP [23]. Lian et al. in [24] presented a similar
particle swarm optimization algorithm, and through simulation experiment showed that it
was effective to solve optimization problems especially with large size.

In this paper, a local and global search combine particle swarm optimization algorithm
(LGSCPSOA) is used for JSSP to minimize the makespan. In LGSCPSOA the new coding
scheme is used, which gets every particle is feasible scheduling. This work differs from the
existing ones at least in three aspects. It firstly proposes LGSCPSOA for JSSP; the second
is to investigate the effectiveness of various parameters for different size JSSP; the third,
computational experiments are performed to show that the LGSCPSOA is valid for JSSP.
The rest of the paper is organized as follows. Section 2 gives a definition of the JSSP and
formulates its model that is minimum makespan. The LGSCPSOA implementation for JSSP
is presented in Section 3. Section 4 discusses experimental results obtained by LGSCPSOA
with different parameters on public benchmark JSSP. Finally, Section 5 summarizes the
contribution of this paper and conclusions.

2. JSSP Description

In the static JSSP, a finite number of jobs are to be processed by a finite number of machines.
Each job consists of a predetermined sequence of task operations, each of which needs to
be processed without preemption for a given period of time on a given machine. Tasks of
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the same job cannot be processed concurrently and each job must visit each machine exactly
once. Each operation cannot be commenced until the processing is completed, if the precedent
operation is still being processed. A schedule is an assignment of operations to time slots on
a machine. The makespan of JSSP is maximum completion time of all jobs, and the objective
is to find a schedule that minimizes the makespan. A good schedule is one that minimizes
the total amount of time machines are idle.

The JSSP Description

Let n jobs (j = 1, 2, . . . , n) be processed on m machines M1,M2, . . . ,Mm. Job j consists
of operations sequence O1j , O2j , . . . , Oij , . . ., which must be processed with precedence
constraints of the form Oij → Oi+1,j (i = 1, 2, . . . , mj − 1). Each operation Oij being processed
needs Tij (i = 1, 2, . . . , m, j = 1, 2, . . . , n) time units on one machine of M1,M2, . . . ,Mm.
All jobs are available at time zero and the operation of each job on a machine requires an
uninterrupted period of time. This problem is called the job-shop scheduling problem (JSSP).
Its model is set up as follows.

Let: J = {1, 2, . . . , n} for the job set;
pkj = find(Oij == k | i = 1, 2, . . . , m) denote machine number of working procedure

order k of job j process;
C(i, j) for the completion time of job j on machine i as follows:

C(1, 1) = C
(
p(O11−1)1, 1

)
+ T(1, 1),

C
(
1, j

)
= max

{
C
(
1, j ′

)
, C

(
P(O1j−1), j

)}
+ T

(
1, j

)
,

C(i, 1) = C
(
p(Oi1−1)1, 1

)
+ T(i, 1),

C
(
i, j

)
= max

{
C
(
i, j ′

)
, C

(
p(Oij−1)j , j

)}
+ T

(
i, j

)
.

(2.1)

Remark 2.1. For j = 1, . . . , n; i = 1, . . . , m, j ′ is anterior processing job of job j on machine i.
The relation calculation makespan is as follows:

Cmax = max
1≤i≤m

max
1≤j≤n

C
(
i, j

)
. (2.2)

The scheduling problem is to find out the best operation sequences on all machines in
order to minimize makespan. In this case, the makespan implies the criterion to be optimized.

In follow section, propose LGSCPSOA and use it to find a near optimal schedulewhose
makespan is the minimum over the set of all possible feasible schedules.

3. LGSCPSO Algorithm

3.1. Original Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary computation technique mimicking
the behavior of flying birds and their means of information exchange. The system of PSO
is initialized with a population (named swarm in PSO) of random solutions and searches
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for optima by updating generations. Each individual or potential solution, named particle,
flies with a velocity which is adjusted according to the flying experiences of its own and its
colleagues. PSOA has been developing rapidly and has been applied widely since it was
introduced, as it is easily understood and realized. In PSOA, the potential solutions are
“flown” through the problem space by following the current optimum particles, and the
detailed information will be given in following.

Suppose that the searching space is N-dimensional and m particles form the colony.
The ith particle represents an N-dimensional vector Xi (i = 1, 2, . . . , m), and it means that
the ith particle locates at Xi = (xi1, xi2, . . . , xiD) in the searching space. The particle’s fitness
could be calculated through putting its position into a designated objective function. The ith
particle’s “flying” velocity is also an N-dimensional vector as Vi = (vi1, vi2, . . . , viD). Denote
the best position of the ith particle as Pi = (pi1, pi2, . . . , piD), and the best position of all colonies
as Pg = (pg1, pg2, . . . , pgD), respectively. The original particle swarm optimization algorithm
(OPSOA) could be performed by the following equations [7, 8]:

vid(k + 1) = vid(k) + c1r1
(
pid(k) − xid(k)

)
+ c2r2

(
pgd(k) − xid(k)

)
,

xid(k + 1) = xid(k) + vid(k + 1),
(3.1)

where k represents the iterative number, c1, c2 are learning factors, usually c1 = c2 = 2. r1, r2
are random numbers between (0, 1). The termination criterion for the iterations is determined
according to whether the max generation or a designated value of the fitness of Pg is reached.

3.2. LGSCPSOA for JSSP

3.2.1. Coding Scheme in LGSCPSOA for JSSP

OPSOA has been introduced as an optimization technique in real-number space, but many
optimization problems in discrete space such as JSSP. OPSOA has a disadvantage tendency to
get stuck in a near optimal solution and may find it difficult to improve solution accuracy by
fine tuning. This section presents LGSCPSOA to optimize JSSP in discrete space, and develop
an effective “problem mapping” and “solution generation” mechanism.

In many algorithms for JSSP using the machine coding, and it gets some sequences
are not feasible solutions. In LGSCPSOA the working procedure coding is used, and it gives
birth to all children (sequences) are feasible solutions.

Suppose X = [x1, x2, . . . , xn] (xi ∈ R, i = 1, 2, . . . n) be one random particle, following
steps make particles able to denote JSSP scheduling and will be used in LGSCPSOA to solve
JSSP.

(1) Sorting the weight X = [x1, x2, . . . , xn] from small to large gets X′ =
[x′

1, x
′
2, . . . , x

′
n], and using yi denotes the position of x′

i in X = [x1, x2, . . . , xn].
Obtain the new sequence Y = [y1, y2, . . . , yn]. For example, 3 × 2
JSSP, X = [0.8637, 0.1872, 0.8725, 0.6442, 0.2132, 0.6429], sorting X gets
X′ = [0.1872, 0.2132, 0.6429, 0.6442, 0.8637, 0.8725], then get the new sequence
Y = [2, 5, 6, 4, 1, 3];

(2) Every weight of sequence Y is divided by machine number M, and then rounded
towards plus infinity to get a final one feasible solution sequence. For the above
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Figure 1: Continued.
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Figure 1: Convergence figure and GANTT of OPSO, GA, and LGSCPSOA for JSSP.

above example Y/2 = [2/2, 5/2, 6/2, 4/2, 1/2, 3/2] then rounded towards plus
infinity to obtain a final solution sequence se = [1, 3, 3, 2, 1, 2];

(3) Working procedure coding: Suppose n × m JSSP, randomly give birth to following
sequence:

se
(
sequence

)
= [1, 3, . . . , n, 5, 3, . . . , n, . . . , 1, 2, . . . , n], (3.2)

where the number indicates job and the same number denotes different working
procedure of the job according to their order of appearance in se. For example,
the 3 × 2 JSSP, solution sequence se = [1, 3, 3, 2, 1, 2], which denote in turn process
working procedure 1 of job 1, working procedure 1 of job 3, working procedure 2 of
job 3, working procedure 1 of job 2, working procedure 2 of job 1, and lastly process
working procedure 2 of job 2. Using this working procedure coding scheme makes
every sequences is feasible solutions.

3.2.2. Iterative Model of the LGSCPSOA

In OPSOA, the information of individual best and global best are shared only by next
generation particles. Based on OPSOA, in this paper, I firstly present LGSCPSOA, in which
it also adequately utilizes information of the best particle of every generation population, at
the same time; in every generation, introducing into some best particles displaces random
selecting particles in population. The detailed information will be given in the following.

Suppose that the searching space is n-dimensional andm particles form the colony. The
ith particle represents an n-dimensional vector Xi (i = 1, 2, . . . , m), and it means that the ith
particle locates at Xi = (xi1, xi2, . . . , xin) in the searching space. The position of each particle
is a potential result. We could calculate the particle’s fitness by putting its position into a
designated objective function. When the fitness is lower, the corresponding Xi is “better.”
The ith particle’s “flying” velocity is also an n-dimensional vector as Vi = (vi1, vi2, . . . , vin).
Denote the best position of the ith particles as Pi = (pi1, pi2, . . . , pin), the best position of the
kth generation population (local best particle) as Pl = (pl1, pl2, . . . , pln), and the best position of
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all colonies (global best particle) as Pg = (p1, p2, . . . , pn), respectively. Using the best particle
of every generation population merges into the local best particle population and displaces
random selecting particles in local best generation. After finding three best values, the particle
updates its velocity and positions with the following formulas:

vid(k + 1) = wvid(k) + c1r1
(
α
(
pid(k) − xid(k)

)
+ (1 − α)

(
pld(k) − xid(k)

))

+ c2r2
(
pgd(k) − xid(k)

)
,

(3.3)

xid(k + 1) = xid(k) + vid(k + 1) (i = 1, 2, . . . , m; d = 1, 2, . . . , n) (3.4)

Pl(k + 1) = Pl(k − 1, k − 2, . . . , 1) ∪ Pl(k), (3.5)

where w is an inertia weight, which is initialized typically in the range of [0, 1]. The local
best particle of k generation is u% of the k generation neighborhood particles whole number.
α ∈ [0, 1] is weight index that is chosen according to different optimization problems, which
reflects relatively important degree of best position of the ith particle and the kth generation
population particle. The variables c1 and c2 are acceleration constants, which control how far
a particle will move in a single iteration, and other parameters are the same as in (2.1) and
(2.2). The termination criterion for the iterations is determined according to whether the end
generation or a designated value of the fitness of Pg is reached. In LGSCPSOA, each particle
of the swarm shares mutual information and benefits from previous experiences of all other
colleagues during the search process.

3.2.3. Pseudo Code of LGSCPSOA

(See Algorithm 1).

4. Experimental Results and Discussion

To analyze the effectiveness and performance of LGSCPSOA for JSSP to minimize makespan,
three representative instances taken from the internet based on practical data have been
selected to experiment, and through simulation, the best effective parameters of LGSCPSOA
for JSSP to minimize makespan are found out.

To get the average performance of the LGSCPSOA ten runs on each instance are
performed and the solution quality is averaged, and let the best of them be the solution of this
algorithm. We use the arithmetic mean, lower, and upper bound of makespan, and obtaining
the best solution time four indexes to estimate LGSCPSOA. The computation comparing
results of GA, OPSOA, and LGSCPSOA with different operators or parameters are as in
Table 1.

Remark 4.1. In Table 1, P (problem) denotes the problem size, and BS (best solution) is this
problem’s optimum value, and PS (population size) and GN (generation number) indicate
the population size and algorithm terminate generation. In this computing experiment, we
let the displaced particles number rN = PS/3;

From the Table 1 we can obtain that the LGSCPSOA is clearly better than the OPSOA
and GA for JSSP. LGSCPSOA obtains smaller upper bound, arithmetic mean, and lower
bound of makespan than OPSOA and GA in run ten times. The best solution found in each
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Step 1: Initialize parameters; including swarm size PS, end of generation G, and other
parameters will be used in LGSCPSOA;

Step 2: Segment and scheduling;
(i) Generate stochastically initialization population and velocity using Section 3.2.1 coding

scheme
(ii) Evaluate each particle’s fitness
(iii)Initialize gbest position with the lowest fitness particle in the swarm
(iv) Initialize ibest and lbest position with a copy of particle itself
(v) k := 0
While (the end G of generation is not met)
{
(i) k := k + 1
(ii) Generate next generation particle population by recurrence equations (3.3), (3.4)

and (3.5)
(iii)Evaluate swarm

{(1)Compute each particle’s fitness in the swarm
(2)Find new Pg of the swarm, Pl of generation population and Pi of each

particle by comparison, and update Pi and Pg

(3)Update Pl with (3.5)
Using the best particle of k generation replace the k − 1 generation u%
particles which are random selected}

}
Step 3: Output optimization result Pg ;
End

Algorithm 1: Pseudo Code of LGSCPSOA.

category of LGSCPSOAwith different parameter is illustrated with bold letters. From Table 1
one can observe that LGSCPSOA with w ≈ 0.2 and α ≈ 0.2 has the highest performance
since using these parameter has smaller upper bound, arithmetic mean and lower bound
of makespan in relation to the solutions obtained by the other parameters schemes. The
convergence figure and GANTT of the best solution of different size problems are shown
in Figure 1.

From simulation figure, we can see clearly that the convergence rate of LGSCPSOA is
faster than the OPSOA and GA. And from above experimenting data, we can testify that the
new LGSCPSOA is more efficacious than OPSOA and GA for JSSP to minimize makespan.

5. Conclusion and Perspectives

Although there is a huge amount of literature on OPSOA, there are not too many papers
focused on solving scheduling of JSSP. In this paper, we have discussed a new approach
LGSCPSOA for JSSP to minimize makespan, in which pi, pl, pg , and Vi give out the
information to others, and it is a one-way information sharing mechanism. There are not
many parameters needed to be tuned in LGSCPSOA. LGSCPSOA requires only primitive and
simple mathematical operators, and is computationally inexpensive in terms of both memory
requirements and time. Although it does not guarantee the optimality for 20 × 5 JSSP, such
an approach provides solution with good quality in a reasonable time limit and compared
with OPSOA and GA. The performance of the new approach is evaluated in comparison
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with GA and OPSOA for three representative instances and obtained results show that the
effectiveness of the proposed approach is the best. The proposed LGSCPSOA approach in
this paper can be considered as effective mechanisms for optimization technique from this
point of view.

There are a number of research directions that can be considered as useful extensions
of this research. Although the LGSCPSOA is tested with three representative instances, a
more comprehensive computational study should be made to test the efficiency of proposed
solution technique. The LGSCPSOA proposed in this paper for small size JSSP is very
efficacious, but for large size problem is not approving. We just simulate the effectiveness
when rN = psize/3 for JSSP, and in the future can research the efficiency of different rN .
Applying LGSCPSOA to other discrete combinatorial optimization problems is also possible
in further research. The development of OPSOA is still ongoing, and furthermore, there are
still many unknown areas in LGSCPSOA research such as the mathematical validation of
particle swarm theory.
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