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The online gradient method has been widely used in training neural networks. We consider in
this paper an online split-complex gradient algorithm for complex-valued neural networks. We
choose an adaptive learning rate during the training procedure. Under certain conditions, by firstly
showing the monotonicity of the error function, it is proved that the gradient of the error function
tends to zero and the weight sequence tends to a fixed point. A numerical example is given to
support the theoretical findings.

1. Introduction

In recent years, neural networks have been widely used because of their outstanding capa-
bility of approximating nonlinear models. As an important search method in optimization
theory, gradient algorithm has been applied in various engineering fields, such as adaptive
control and recursive parametrical estimation [1-3]. Gradient algorithm is also a popular
training method for neural networks (when used to train neural networks with hidden layers,
gradient algorithm is also called BP algorithm) and can be done either in the online or in
the batch mode [4]. In online training, weights are updated after the presentation of each
training example, while in batch training, weights are not updated until all of the examples
are inputted into the networks. As a result, batch gradient training algorithm is always used
when the number of training samples is relatively small. However, in the case that a very large
number of training samples are available, online gradient training algorithm is preferred.
Conventional neural networks’ parameters are usually real numbers for dealing with
real-valued signals [5, 6]. In many applications, however, the inputs and outputs of a system
are best described as complex-valued signals and processing is done in complex space. In
order to solve the problem in complex domain, complex-valued neural networks (CVNNSs)
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have been proposed in recent years [7-9], which are the extensions of the usual real-
valued neural networks to complex numbers. Accordingly, there are two types of generalized
gradient training algorithm for complex-valued neural networks: fully complex gradient
algorithm [10-12] and split-complex gradient algorithm [13, 14]; both of which can be
processed in online mode and batch mode. It has been pointed out that the split-complex
gradient algorithm can avoid the problems resulting from the singular points [14].

Convergence is of primary importance for a training algorithm to be successfully
used. There have been extensive research results concerning the convergence of gradient
algorithm for real-valued neural networks (see, e.g., [15, 16] and the references cited therein),
covering both of online mode and batch mode. In comparison, the convergence properties for
complex gradient algorithm are seldom investigated. We refer the reader to [11, 12] for some
convergence results of fully complex gradient algorithms and [17] for those of batch split-
gradient algorithm. However, to the best of our knowledge, convergence analysis of online
split-complex gradient (OSCG) algorithm for complex-valued neural networks has not yet
been established in the literature, and this becomes our primary concern in this paper. Under
certain conditions, by firstly showing the monotonicity of the error function, we prove that
the gradient of the error function tends to zero and the weight sequence tends to a fixed point.
A numerical example is also given to support the theoretical findings.

The remainder of this paper is organized as follows. The CVNN model and the OSCG
algorithm are described in the next section. Section 3 presents the main results. The proofs of
these results are postponed to Section 4. In Section 5 we give a numerical example to support
our theoretical findings. The paper ends with some conclusions given in Section 6.

2. Network Structure and Learning Method

It has been shown that two-layered CVNN can solve many problems that cannot be solved
by real-valued neural networks with less than three layers [13]. Thus, without loss of
generalization, this paper considers a two-layered CVNN consisting of L input neurons and
1 output neuron. For any positive integer d, the set of all d-dimensional complex vectors is
denoted by C“ and the set of all d-dimensional real vectors is denoted by R<. Let us write
w = wl +iw! = (wy,w,,...,wr)" € CL as the weight vector between the input neurons
and output neuron, where w; = w + iw], w) and w; € R, i = v/-1,and [ = 1,...,L.
For input signals z = (21,22,...,ZL)T =x+1y € CL, where x = (xl,xz,...,xL)T € RE, and
y=Wi,Y2---, yL)T € RE the input of the output neuron is

L L

u=ul+iu'= Z(wlel - w{yl> + iz (w{xl + wlRyl>
=1 I=1
I

(%) ()C)-6)

Here “-” denotes the inner product of two vectors.
For the convenience of using OSCG algorithm to train the network, we consider the
following popular real-imaginary-type activation function [13]:

(2.1)

fe) = fr(U) +ifr(u’) (2.2)
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for any U = UR + il € C!, where fg is a real function (e.g., sigmoid function). If simply
denoting fr as f, the network output O is given by

O=0F+i0! = f(uR) +i f(LII). (2.3)

Let the network be supplied with a given set of training examples {z9, d7 }qu1 c ChtxCl
For each input z7 = x7 + iy? (1 < g < Q) from the training set, we write U7 = U7R +il%! as
the input for the output neuron and O7 = O7R +i0%! as the actual output. The square error
function can be represented as follows:

1 Q 1 Q 2 2

E(w) ==Y (074707 -d"*" == [ OIR — gaR) 4 (091 — ga! ]
1350100 =15 (00 -9+ (0w -

(2.4)
Q
- Sl ()
gq=1
where “+” signifies complex conjugate, and

1 R\? 1 1\’ 1

Har(t) = E(f(t) —d" ) , Har(t) = E(f(t) —de ) , teR!, 1<g<Q. (2.5)

The neural network training problem is to look for the optimal choice w* of the
weights so as to minimize approximation error. The gradient method is often used to solve
the minimization problem. Differentiating E(w) with respect to the real parts and imaginary
parts of the weight vectors, respectively, gives

a;:v(vv;) - qzi [”;R <uq'R>"q + Har (uq’1>yq]r (2.6)
65&27) - i[_”ﬁ (uq'R>yq + Hr <U"’I>X”]- (2.7)

Now we describe the OSCG algorithm. Given initial weights w® = woR+iw®! at time 0, OSCG
algorithm updates the weight vector w by dealing with the real part wX and w! separately:

wmQ+q,R — wmQ+q—1,R _ ﬂm [ﬂ;R (WmQ+q—1,R X9 — wmQ+q—1,I . yq>xq
. (WmQ+q—1J x4 wQ+-LR .yq>yq],
wQ+al — ymQ+g-11 _ m [_#;R <WmQ+q71,R ox9 — wmQHg-LI yq>yq (28)

. (wmQ+q—1J x4 wMQ+Ha-LR | xq>yq],
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Fork,g=1,2,...,Q,and m =0,1,..., denote that

UMQHkaR = ymQ+kR yq _ yymQ+kl . yq

UMQ+kal = wmQkl . x| WmQ+kR .y

+k,R _ +k,R +k-1,R
AWMRHRR — yymQHkR _ yymQ ,

AwmQ+k,I — wmQ+k,I _ wmQ+k—1,I’ (29)
pg,q,k _ .u;R <qu+k—1,q,R>xq + .uiﬂ (qu+k—1,q,I>yq,
p;ﬂrq,k — #; . (qu+k—1,q,R>yq " .“;1 (qu+k—1,q,I>Xq'
Then (2.8) can be rewritten as
AwmQ+q,R — _rlmp;’;/‘?rq,
(2.10)
Aw™MQ+al _ —ﬂmp}"'q'q.
Given 0 < 79 < 1 and a positive constant N, we choose learning rate 77, as
1 1
=—+N, m=0,1,.... (2.11)
Hm+1 N
Equation (2.11) can be rewritten as
"o 1
= —= O —_— .
Mm 1+ N om <m>l (212)
n
and this implies that
1
Mm < N (2.13)

This type of learning rate is often used in the neural network training [16].
For the convergence analysis of OSCG algorithm, similar to the batch version of split-
complex gradient algorithm [17], we shall need the following assumptions.

(A1) There exists a constant ¢; > 0 such that

f'®

, Af B} < e (2.14)

max{|f()

(A2) The set @y = {w | OE(w)/0wR =0, dE(w) /0w’ = 0} contains only finite points.
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3. Main Results

In this section, we will give several lemmas and the main convergence theorems. The proofs
of those results are postponed to the next section.

In order to derive the convergence theorem, we need to estimate the values of the error
function (2.4) at two successive cycles of the training iteration. Denote that

—pgkk—pg”k, —p;”kk p}"'k, m=0,1,..., k=1,...,Q, (3.1)

where p’ k2 PR’ K1 and P k2 pr mk1 The first lemma breaks the changes of error function

(2.4) at two successive cycles of the training iteration into several terms.

Lemma 3.1. Suppose Assumption (A1) is valid. Then one has
Q 2
E(wmDQ) _ E m,k
(wm2) - (w2) = £

Q
+ Z (Pm,q,R + Pmg1 )/

q=1

2
+

where pugs = (1/2plg(t U0V — UMOARY, 00 = (1/2)p (59) U041 —

um4a1y? each £7"1 € R lies on the segment between U™ VAR gnd 1JmQ- ‘7R, and each t;"7 € R!
lies on the segment between U ™VQ41 gnd LImQal,

The second lemma gives the estimations on some terms of (3.2).

Lemma 3.2. Suppose Assumptions (Al) and (A2) hold, for 0 < 19 < 1, then one has

k-1
m,k mq mq
e < o ([l + [l
g=1

k-1

m,k mq mq
[ < camn ([l | + o™

=1

k=2,...,0, (3.3)

Y

(3.4)
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Q > /a ?
cor( (Shl) - (21) ) oo
q=1 gq=1

where ¢; (i =2,3,4) are constants and m =0, 1,....

Q
Z (PmaR + Pmagt)
gq=1

From Lemmas 3.1 and 3.2, we can derive the following lemma.

Lemma 3.3. Suppose Assumptions (Al) and (A2) hold, for 0 < 1y < 1, then one has

Q 2 e 2 Q ) )
o)) <o ([Ro  [Bor ) o )

(3.6)

where cs is a constant.

With the above Lemmas 3.1-3.3, we can prove the following monotonicity result of
OSCG algorithm.

Theorem 3.4. Let {1],,} be given by (2.11) and let the weight sequence {w™?} be generated by (2.8).
Then under Assumption (A1), there are positive numbers N and #] such that for any N > N and
0 < 1o <min{1, 7} one has

E<w<m+1>Q) < E<w”‘Q>, Vm > 0. (3.7)

To give the convergence theorem, we also need the following estimation.

Lemma 3.5. Let {7,,} be given by (2.11). Then under Assumption (A1), there are the same positive
numbers N and 1] chosen as Theorem 3.4 such that for any N > N and 0 < 1o < min{1,#} one has

2

- 1 & m,k & m,k ’
;E épR’ + kz_;pl’ < 0. (3.8)

The following lemma gives an estimate of a series, which is essential for the proof of
the convergence theorem.

Lemma 3.6 (see [16]). Suppose that a series

(3.9)

2[R

(o)
n=1

is convergent and a, > 0. If there exists a constant c¢ > 0 such that

C
|an — ans1| < ;6/ (3.10)
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then

lim a, = 0. (3.11)

n—oo

The following lemma will be used to prove the convergence of the weight sequence.

Lemma 3.7. Suppose that the function & : R?L — R is continuous and differentiable on a compact
set @ C R%L and that @, = {0 | 0£(0)/0(0) = 0} contains only finite points. If a sequence {0"}2, C
@ satisfies

0 —9"|| =0, lim

n—oo

lim

n—oo

20" ||
5 H_o, (3.12)

then there exists a point 0* € @y such that lim,, _, ,,0" = 6",
Now we are ready to give the main convergence theorem.

Theorem 3.8. Let {1,,} be given by (2.11) and let the weight sequence {w"} be generated by (2.8).
Then under Assumption (A1), there are positive numbers N and 1] such that for any N > N and
0 < 1o < min{1, 7} one has

lim

n— oo

OE(wW") || _
awl | = 0. (3.13)

=0, lim |

n— oo

| OE(w")
owR

Furthermore, if Assumption (A2) also holds, then there exists a point w* € ®g such that

lim w" = w*. (3.14)

n—oo

4, Proofs

Proof of Lemma 3.1. Using Taylor’s formula, we have

g (U DRARY — o (LK)
= o (U@ (DA - Q) o %y;R (57) (utmn@ar _ ymear)?

- (umQar wmDOR — QR ) x (4.1)
= H4r _wmDQI | mQ I ¥

1 w(mHDQR _ (ymQR X\ \ 2
+ _”// (thICI> . ,
2/ aR\"1 —wmHDQI | ymQI y
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where t,"? lies on the segment between U V4R and U4 R, Similarly we also have a point
t,"? between U (™24 and U™24! such that

g (UOr0091) g (Um0

=ty (umar) (utmveat _ proar) . % iy (£7) (uomear - qu,q,I>2

(m+1)Q,I _ Q.1
y <LI'” Q,q’1> wlmt w' ' x4 (4.2)
al wmtDQR _ yomQ R yi
v L () wirel - W@\ N
2Har\t2 w(mtDQR _ (umQR y :
From (2.8) and (2.10) we have

Q Q
W(m+1)Q,R _ WmQ,R — ZAWmQ+q,R — _Tlmzplfglqlq,
q=1 gq=1
(4.3)
Q Q .
w(m+1)Q,I _ wmQ,I — ZAW'"Q“M — _ﬂmzpl ,q,q.
g=1 q=1

Combining (2.4), (2.9), (3.1), and (4.1)—(4.3), then we have

E<W(m+1)Q> _ E<wmQ>

Mo

<[#qR (u(m+1)Q/q,R> — Jar <qu,q,R>] + [,qu (u(m+1)Q,q,I> — g1 <qu,q,1)]>

Y
Il
—_

Mo

' <qu,q,R> _ % m'k'k'Xq+ i mkk _q
nuqR ﬂmk:lpR nmk:lpI y

-
I
—_

Q Q Q
+ iy (UmT) [—anp}"”"" X~ 1 PR Y"D + 2 (Pma R+ Pmar)
k=1 k=1 ]
Q Q
= Z < [ﬂ;R <qu,q,R>xq n #'Lﬂ (qu,q,I)yq] kz:: (‘ﬂml‘ﬁ’k _ wp?")

q=1 !

Q
U

k=1

Q
+ Z (PmgR + Pmag1)
gq=1
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() @)@ )

2
+

Q
+ Zl (Pm,q,R + Pm,q,I)/
P
(4.4)
where
Pk = gHl(£07) (UOQaX _um@ax)’ = 2y (80 (utmvRat et
(4.5)
O

Proof of Lemma 3.2. From (2.5) and Assumption (A1) we know that functions pgr(t), pqr(t),
y;R(t), y;I(t), yZR(t), and ‘uZI(t) (1 £ g £ Q) are all bounded. Thus there is a constant ¢y such
that

max{ |ugr )|, | gt B, ||ﬂ;R(t)||f Hﬂiﬂ(t)”, ||#Z§R(t)||r ||#i;1(t)||} <¢7, teR', 1<q<Q.
(4.6)

By (2.9), (2.10), (3.1), and the Mean-Value Theorem, for2<k<Qand m=0,1,..., we have
] = [l -

_ H P‘kR <qu+k—1,k,R>xk + #/ <qu+k—1,k,I>yk _ ﬂ' R<qu,k,R> <UmQ , 1) “

“#kR< )(qu+k 1kR qukR) Ul < )(qu+k kI qukI) ”

(5

_ ” o ,k> [(wmQJrk—l,R _ wmQ,R) XK~ <wmQ+k—1,I _ wmQ,I) _yk]xk

+ﬂk1< > [(wmQ+k—1,I _ w'”QJ) Xk 4 (WmQ+k—1,R _ WmQ'R> -yk]yk”
[ zi( G 2("1"14"'(1 - 1np)") ]
q= <

k-1
<@ 3 (1R + 1) « (el = [ D)

q=1

(4.7)
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where ¢; = (:7max1§q§Q(||x‘7||2 + |ly?|?). Similarly we have

oS+ (411 D) 25x50 m0s s
pm
In particular, as ||r’1?’1 | = ||rlm’1 | =0, for k =2, we can get
ma {527 2} < 5 7+ 7). (49)
o=
where ¢, = ¢1. For3 < s < Q,2 <k < s-1, suppose that
k-1 k-1
[ < (o + o) [l < @ X Cllox? e l). - @0
q= q=

where ¢, are nonnegative constants. Recalling 7,,, < 1, then we have
I @S] o) = (] )
oo [ Sl D) - Sl S|
| 9=1 q=2 q=2
= 1
<o Sl st D) =S (S e o) | o
| 7=

s5-1

oS50 )+ 20n 35 )|

IN

| 4=1
-1
oI+ o)

q=

where ¢; = 1 +2Q¢; and ¢; = max{ci,Cy, ..., Cs-1}. Similarly, we also have

Il < con Sl + i) 1)
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Thus, by setting ¢, = max{ci, ¢, ..., co}, we have (3.3). Now we begin to prove (3.4). Using
(3.3) and Cauchy-Schwartz inequality, we have

() &) () @)

<n S S (e o] o) )

=1

k-1

o]« S (e lor |+ D)

I=1

o (4.13)

Q
< can%nZ;IIPE’”II < 2w+ o) + e Xl
q= = 9=

SR

=1

0 > /o 2
ngni<<Z||p;’:'qH> . <z||p;wn> )
gq=1 q=1

where ¢g = 2¢,Q. This validates (3.4). Finally, we show (3.5). Using (2.10), (3.1), (3.3), and
(4.3), we have

Q
e s S )

k=1

g Q k-1
S WA L .
Q 0 _
<3l o) + o (o] < i)

T
n

. cmmg(up?kll e,

where ¢g = c,Q + 1. Similarly we also have

e ] ona o - ) @i
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This together with (2.9) and (4.6) leads to

I =

q=1

1le wmDQR _ (ymQR x4 2
_ = n tm,q )
2 ; //th< 1 > —W(m+1)Q’I n WmQrI yq
wmDQI _ yomQ,I q 2
s (5°) G
Har WmDQR _ (ymQR yi

< C10<||w(m+1)Q/R _ ‘,VmQ,R”2 + ||W(m+l)Q,I _ WmQ’I”2>

:ui@A)wmemwvw<>@wm1mwﬁ|

2
) 2M,ﬁn<§<up?:"‘|| + llpr"‘ll>>

0 P/ ?
§c4nfn<<2||p$”’“> + <Z||p}"’q||> >
=1 =1

where c19 = Qczmaxi<y<o | [Ix7]12 + |ly?||*} and c4 = 4cocip. This completes the proof. O

(4.16)

Proof of Lemma 3.3. Recalling Lemmas 3.1 and 3.2, we conclude that

E<W(m+1)Q> _ E<WmQ>

Q e ? Q 2 ’
S [ >+(C3+c4)ni<<§||p 1) (qz;,up;wn))

Q 2 e 2 Q 2 & 2
con([So | S| ) oo (- Sl
4= 9=

(4.17)

Then (3.6) is obtained by letting c5 = Q(c3 + c4). O
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Proof of Theorem 3.4. In virtue of (3.6), the core to prove this lemma is to verify that

¥

In the following we will prove (4.18) by induction. First we take 7y such that

X

For m > 0 suppose that

Q 2

Sppk

k=1

Q

Sprk

k=1

+

2
> > csnfné <||p$”‘||2 - ||p}“"‘||2>. (4.18)

& ok e 0,k
ZPR’ + ZPI’
k=1 k=1

2
> > cﬂ%é <||P?€k||2 + ||p?’k||2>. (4.19)

S e k ’ 2 < k|| k||
wn{ ||+ | et zcmmg;(”pg I Jer"): (420)
Next we will prove that
& ik ’ & ik ’ 2 1k|? 1k ||?
M1 ;p;”' + ;p;’”’ 2057’13,H1;<|p?+’ + oy > (4.21)

Notice that

m+1,k

P PR = (i (U D) — g (U QR ) ) (i (UM — i (UmORT) )y
_ ( ﬂZR <tg"’k> <u(m+1)Q,k,R _ qu,k,R>>xk + ( l‘ZI <tg”’k> <u(m+1)Q,k,I _ qu,k,I>>yk
_ #ZR < tgn,k) ( w(mDQR _ wmQ,R) xk (w(m+1)Q,I _ WmQ,I> . yk>xk

" .“ZI <tgl,k> <<W(m+1)Q,I _ wmQ,I) XK+ <w(m+1)Q,R _ wmQ,R> _yk>yk,
(4.22)
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where £ lies on the segment between U ™*DQkR and U™Q*R, and £7* lies on the segment
between U™ DQKI and UMk, Similar to (4.14), we also have the following estimation:

“w(m+1)Q,R _ wmQ,R” = é( rrlg,k + prg,k)
< & m,k 2 m,k
wSla]ond S
<3 S« o) e S
i -

0 0 o (4.23)
< 3 ([or ] o) »an (| o] | o] )
q= = =

Q Q Q
= (| PR + [ 2o ) +enmn (PR + ([P0 ])-
g=1 gq=1 q=1

),

Q Q &
)OI 1 maq maq 2 "4 A
w0t —wr || < (N SR  + | p7 )+ enm D (k7 + [|pi|
q=1 q=1

where c11 = ¢;Q. By (4.6) and (4.22)-(4.23) we know that there are positive constants cj, and
c13 such that

1
”pgﬁ k” < “pgk” n Clz||w(m+1)Q,R _wmQ,R” +Cl3”w(m+1)Q,I _WmQ,I”

(4.24)

).

Q Q Q
K m,q mq 2 m,q m,q
<ot comn (| Sopr) [ S0 ) o S+ o
q=1 q=1 g=1

where c14 = cip+ci3, ¢15 = ci1(ci2+ci3). Taking squares of the two sides of the above inequality
gives

2 2
+1k||? K|, 2 2 & m,q 2 m,q 2 4 & mgq m,q
m+l, m, -/ -/ 7 ./
o[ < o+ o () o7+ )| 2007 )+t ( (o] + (o)
q=1 q=1 gq=1

Q Q
K mq 7
+2 C1411m||Pg || ZPR + ZPI
q=1 g=1
5 mk Q m,q m.q
+ 01571m“pR ||Z<||PR ” + ”PI ||>
q=1

3 & ma & mall \ @ ([ maq
+ cucisty | |1 20P7 | + || 20Pr Z(”PR “ + ”le ”)
g=1 g=1

q=1
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2 2
el e (| S [ S+ (S )
q= a=

+ C14lm <||Pr£k”2 + <‘ ZPI >
5 Q
+015723n<npr£'k” * <Z;4 |pR ” ||PI H > >
5
Q ’ Q ’
oo ([$r] [ ]) - (S1-10p) )
5

=1
2
_ m,k 2 2 2
= [Pk + ( Clallm + C1a + C14C15Myy, ) m

2
mk 2 3 2
+ (014 + C15Tlm)71m||PR ” + <C1571m + C15Mm + C14C1571m>

2
Q
(S0 1) )

Now we sum up the above inequality over k =1,..., Q and obtain

Q _
+ ZPI,

ZPR

Q .
+ ZPI
=1

Q m
ZPR'q

g=1

Q m
+ ZPI K
g=1

(4.25)

m+1,k

kﬁ::| ZPR

>2

5 0 RICHREE R (>

Q q

Q 2
+ (C14 + C151m) 1hm Y, ||P§e"'k||
k=1

2
+ Q(Cﬁ’ﬂq + C15Mm + C14C15713n>’1m <§1 (”qun " “p;nq”>>

q=
2

Q m,
ZPR'q

gq=1

zu||Q<><
k=1

2
m’ >
Q K12
+ (c1a + ClS”lm)TlmZ”p;{n/ ”
k=1

+ 2Q<c1511m + C15Mm + Cl4C1571m> <<Z“P ||> <Z||P ”> >
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2 2
+

< EQ: “p’;’k ”2 +20Q <c%471m +C14 + C14C15713n>71m <
k=1

Q m,
ZPRIq
gq=1

Q m
ZPI "
q=1

+ (C14 + C157’[m)71mé<npg’k”2 + ”P?Lk“2>
Q » Q 2
120 <c%571§n + C150m + C14C157]$n>71m <Zl ||p'1§’fq” + Z ||P;n"7 ” > .
9= =1
(4.26)

Let

2 2 2/ 2.3 2
Ci6 = max{ZQ <Cl471m +c14 + C14C15Tlm>, C1a + C15Mm + 2Q <C1571m + C15Mm + C14C1571m> },

(4.27)
then
& m+1,k 2 & m,k 2 & m,k ’ & m,k ’
Z' Pr | = ;”PR' ” + C167m kZPR' + ;PI,
- - - (4.28)

Q
+ C1671m; <”pgk”2 + “p;nk”2>
On the other hand, from (4.22) we have
g pk - gp?/k + kZi Hig (tg‘,k> <<w<m+1>Q,R _ wmQ,R> XKk _ <W<m+1>Q,1 _ wmQ,I) . yk>xk

+ EQ:/‘ZI <tgn,k> <<W(m+1)Q,I _ wmQ,I) k4 (w(m+1)Q,R _ wmQ,R) . yk>yk.
k=1

(4.29)

Similar to the deduction of (4.24), from (4.29) we have

Q Q
Zpgu,k > Zpg,k _ ch2nw(m+1)Q,R _ wmQ,R” _ QC13||w(m+1)Q,I _ wmQ,I”
k=1 k=1
m, y Y , Y
> et - Qenamn (| e+ | P ) - Qerst ([l + [ ])-
k=1 gq=1 gq=1

gq=1
(4.30)
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It can be easily verified that, for any positive numbers a, b, c,ifa > b —c,

a® > b* - 2bc. (4.31)
Applying (4.31) to (4.30) implies that
& m+1,k ’ & m,k ’ & m,k
QPR 2 |I2PR 2| ek
k=1 k=1 k=1
<\ Qewstta (|| PR + | pr|| ) + Qessmn X ([[e% 7] + o]])
gq=1 g=1 q=1
& m,k ’ & m,k ’ & m,k & m,q
2 (125P%" || —2Qcuanm|| Dpr" || —2Qcumm|| D Pk | | 22T
k=1 k=1 k=1 g=1
2 & m,k ’ 2 2 m,k & mq
-2gnurs(E|oi* ) -2000i (Shoi ) ( Sl
k=1 k=1 g=1
Q 2 Q 2 Q 2 e 2
> | PR | —2Qciamn|| X PR | - chmrn( Sertl + | e >
k=1 k=1 k=1 k=1

- 2Qc151> S mk 2_ 2 S mk ’ N mk :
s ( Do[lpR*] ) — Qe ( (X pr“] ) + (X[ei ) )
k=1 k=1 k=1

(4.32)
Similarly, we can obtain the counterpart of (4.28) as
& m+1k2 S mk2 kaz ka2
2 e v (| 20|+ | S
k=1 k=1 k=1 k=1
(4.33)
Q 2 2
eunn 35+ )
k=1
and the counterpart of (4.32) as
0 2 0 2 0 2 0 2 0 2
S = e - 2Qeuna|| >op —QC1471m< S|+ |2 >
k=1 k=1 k=1 k=1 k=1

- 2QC15112 i ||pm’k || 2 Qe Q mk 2 Q - 2
p i 15, Z”pR ” + Z”PI ” )
k=1 k=1 k=1

(4.34)
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From (4.28) and (4.33) we have
Sor [+ o
Q
<ol Sl 435)
k=1 k=1

& m,k ’ ’ zQ: m,k 2 m,k 2
k=1 k=1

From (4.32) and (4.34) we have

2

m+1k m+1k
Q 2 Q 2 e . 2
> Zp’,? —4Qc141m A+ 11D (4.36)
k=1

k=1

2 2
o (S 1)+ (3171 )
k=1 k=1

Using (2.11) and (4.36), we can get
2>

Hm+1 <
Q 2 Q 2
>—< Zp}”’k >+N< mk
k=1 k=1
2 o) ) 2
- 4NQ0141”lm Zpg’ +

Q
—4Qcu ( Zpg'k

({311 @ 1)
ssaw(($11) - (1))

k=1

m+1 k m+1 k

2.PY

k=1

k=1

(4.37)
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Multiplying (4.37) with 72, | gives

0 2 9 2
7’lm+1< Zp;{rﬁl,k + Zp‘;ﬂ+l,k >

k=1 k=1

ﬂz 1 & k ’ S k ’ & k ’ S k ’
> L (IR |+ 1 20pr ) + N ||| 20PR"| + [ 2Pt
Mm k=1 k=1 k=1 k=1
Q 2 e 2
—4Q014712m+1< Serkl + [ e >
k=1 k=1
(4.38)
i 9 ) 2 0 ) 2
—ANQerunmt | || PR + || 2P
k=1 k=1
2 & m,k ’ & m,k ’
st (S11) + (1)
k=1 k=1
2 2 2 m,k ’ & m,k ’
~sngesiai ((Slet) +(Zlerl) )
k=1 k=1
Using (4.20) and (4.35), we obtain
Q » 0 2
i (S + Sl

k=1 k=1

Uz 1 2 k ’ 2 k ’ & k ’ & k ’
<=L PRE + 1 Der +20sCi6Mmiman | || 2P| + || 20PT

Mm k=1 k=1 k=1 k=1

Q 2 2
k k
+2€sclenmni+1Z<HP§ H +||P}" || )
k=1

(4.39)

Combining (4.38) and (4.39) we have

()

2 & +1,k 2 & +1,k B
m+1, m+1,
> st ( 5[5+ X
k=1 k=1

2
+

& +1,k
m+l,
ZPR
k=1

& +1,k
m+l,

ZPI

k=1

2

Q Q 2
Lk k
+ann+1< P-4l (I D -4 >
k=1 k=1
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2

2 & m,k 2 m,k ’
—4Qcut. | |1 2opR" | + | 2P
k=1 k=1

— 4N QC1uMmt,

& k
PR
k=1

2 A 2
_4ch511m7131+1<< “pg”“”> ' <Z“p¥z,k“> >
k=1 k=1
2 A 2
_4Nch5n3n'Zi+1<<Z||Prfg'k”> ' <§”pr,k“> >

— 205C160m 1 <

k=1

“2cscinnrtn 3|02 + o).

k=

e

(4.40)

Thus to validate (4.21) we only need to prove the following inequality:

2 2

2 & m,k & m,k ’ 2 & m,k & m,k ’
Nt ZPR + ZPI > 4Qc14;,,4 ZPR + ZPI
k=1 k=1 k=1 k=1
2 & m,k ’ & m,k ’
+ANQewnm M | || PR || + || 2P
k=1 k=1

0 e :
+4QC15Mm Moy <<Z”p}gk”> " <Z”P;ﬂk”> >
k=1 k=1
0 e 2
+ AN Q15 o1 <<g”pr£k“> " <é”P;ﬂk”> >
2 2>

+ 2C5c16nm'1i+1ZQ] <||p§§"‘||2 + ||p;"’k“2>. (4.41)
k=

& m,k
ZPI,

k=1

2
+2¢5C16m My < +

& m,k
ZPR'
k=1

—
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Recalling (4.20) and 7,, < 79 (m > 0), it is easy to see that (N/6)72,., ([l Zgzl pgﬂ’kll2 +

I 21((2:1 P |I%) > each term of (4.41) can be assured for N > N and 0 < 79 < min{1,7}
by setting

N= max{24Qc14, 24Q%, 12¢16 }
5

7] = min 2Qc 4 2c16 csc16N “Zg:l p%k“2 * “Zgﬂ p?’k”2 .

= a 14, 5~ 7 .
Ry R R

This, thus, validates (4.41). As a result, (4.18) and (3.7) are proved. O

Proof of Lemma 3.5. From Lemma 3.3 we have

Q 2 e 2 Q ) )
E(w"?) - E(wmDQ) > rzm< gpﬁ’k + g{p}”’k > —cmi%(”p?k” +[|or| >
(4.43)
Sum the above inequalitiesup overm =1, ..., M, then
E<WQ> - E(w(M”)Q)
M Q 2 Q 2 0 e o (4.44)
> <nm< p S IR DY i >—cmiZ<|pR’ ([ >>
m=1 k=1 k=1 k=1

Note that E(wM*)Q) > 0 for M > 0. Setting M — oo, we have

o Q e 2 Q 2 )
D (nm< p 1 IEd DY Hie > —cmiZ(HP?’kH + o] >> <E(w?) < oo.
m=1 k=1 k=1 k=1
(4.45)
Using (2.9) and (4.6), we can find a constant c17 such that
S (I + o) e (50
k=1

This together with (2.13) leads to

m=1

S (cnS (Tl T)) s 552k e wm
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Thus from (4.45) and (4.47) it holds that

2
= k
m,
. m R
m=1 k=1

Recalling 1,, = O(1/m) from (2.12) gives

2
> < . (4.48)

- 1 2 Q 2
Z — Z + Zp}"'k < co. (4.49)
m=1 M\ |[i=1 k=1
O
Proof of Lemma 3.6. This lemma is the same as Lemma 2.1 of [16]. O

Proof of Lemma 3.7. This result is almost the same as Theorem 14.1.5 in [18], and the details of
the proof are omitted. O

Proof of Theorem 3.8. Using (2.9), (4.6), (4.14), and (4.15), we can find a constant c;g such that

||w(m+1)Q,R B wmQ,R” < Cistm, ||w(m+1)Q,I _ wmQ,I” < C18m- (4.50)

From (2.6) and (4.22) we have

OE(w(mQ)  oE(w™Q)
owR OowR

- S ) - (e i () (7))
<.”ZR ( t;n,k) <<w(m+1)Q,R _ wmQ,R) xk <W(m+1)Q,I _ wmQ,I) . yk>xk

+ P‘ZI (tm k) <<w(m+1)Q W 1> Xk + (w(m+1)QR mQ,R) _yk>yk>,

Me EM@

T
I\

(4.51)
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where t;"’k and tg"’k are defined in (4.22). Thus, from (4.6), (4.50), and Cauchy-Schwartz
inequality, there exists a constant c;9 such that for any vector e € R-

OE (w(m+DQ)

owR ©owR

OE(W™?) ‘ '

S'M.e M‘

owR ~ OwR
(4.52)
< crolle]| <”w(m+1)Q,R _ wmQ,R” + ||w(m+1)Q,I _ wmQ,I”)
< 2cisc19llellm
< 2cic19]lef 1
- N m’
Using (2.6), (2.9), and Lemma 3.5, we have
2
& OE(w™Q) © /1 Q mk Q
Zl< '—awR o ) =2 | (2PR") e ) <llel Z kZ
(4.53)
From (4.52), (4.53), and Lemma 3.6 it holds that
lim M -e| =0. (4.54)
m—ow| QwR
Since e is arbitrary in RL, we have
OE (w™Q
im 2EV) (4.55)

m—ow  OWR

Therefore, when g = 0, we complete the proof of lim,, ., (OE (wmQ+7) /owR) = 0, and we can
similarly show that lim,,_, ,, (OE(w™2*4) /owR) = 0 for g = 1,...,Q. Thus, we have shown
that

lim 2EW) _ g, (4.56)

n—ow OwR

In a similar way, we can also prove that

lim 2EV) _ (4.57)
n—ow Owl

Thus, (3.13) is obtained from (4.56) and (4.57).
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Next we begin to prove (3.14). Using (2.10), we have

A R L | 459)

Similar to (4.46), we know that ||p?'q’q|| is bounded. Recalling (2.13) makes us conclude that

i [Jwers® =m0 = him [lawr st < Jim [0 <0 =10
(4.59)
which implies that
i [ - | o, (4.60)
Similarly, we have
o] <o o)

Write

o= () () (+.62)

then the square error function E(w) can be looked as a real-valued function £(0). Thus from
(4.56), (4.57), (4.60), and (4.61) we have

0&(0"
lim ( ) =0, lim

n—o O n—oo

en _ en—l

| = 0. (4.63)

Furthermore, from Assumption (A2) we know that the set {8 | 0£(0)/0(0) = 0}
contains only finite points. Thus, the sequence {0"};-, here satisfies all the conditions needed
in Lemma 3.7. As a result, there is a 8* which satisfies that lim,,_, ..0" = 0*. Since 8" consists
of the real and imaginary parts of w”, we know that there is a w* such that lim, _, , W" = w*.
We, thus, complete the proof of (3.14). O
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Figure 1: Convergence behavior of OSCG algorithm for solving XOR problem (sum of gradient norms
= [IE(w™) /0w || + [|OE(w") /ow![]).

5. Numerical Example

In this section we illustrate the convergence behavior of the OSCG algorithm by using a
simple numerical example. The well-known XOR problem is a benchmark in literature of
neural networks. As in [13], the training samples of the encoded XOR problem for CVNN are
presented as follows:

{zlz—l—i,d1=1}, {z2=—1+i,d2=0},
(5.1)
{z3=1—i,d3=1+i}, {z4=1+i,d4=i}.

This example uses a network with two input nodes (including a bias node) and one
output node. The transfer function is tansig(-) in MATLAB, which is a commonly used
sigmoid function. The parameter 7 is set to be 0.1 and N is set to be 1. We carry out the
test with the initial components of the weights stochastically chosen in [-0.5,0.5]. Figure 1
shows that the gradients tend to zero and the square error decreases monotonically as the
number of iteration increases and at last tends to a constant. This supports our theoretical
analysis.

6. Conclusion

In this paper we investigate some convergence properties of an OSCG training algorithm
for two-layered CVNN. We choose an adaptive learning rate in the algorithm. Under the
condition that the activation function and its up to the second-order derivative are bounded,
it is proved that the error function is monotonely decreasing during the training process.
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With this result, we further prove that the gradient of the error function tends to zero and
the weight sequence tends to a fixed point. A numerical example is given to support our
theoretical analysis. We mention that those results are interestingly similar to the convergence
results of batch split-complex gradient training algorithm for CVNN given in [17]. Thus
our results can also be a theoretical explanation for the relationship between the OSCG
algorithm and the batch split-complex algorithm. The convergence results in this paper can
be generalized to a more general case, that is, multilayer CVNN.
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