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We observe the behavior of roots of the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x). By means

of numerical experiments, we demonstrate a remarkably regular structure of the complex roots
of the q-extension of Bernoulli polynomials B(h)

n,q(x). The main purpose of this paper is also to

investigate the zeros of the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x). Furthermore, we give

a table for the zeros of the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x).

1. Introduction

Throughout this paper Z,Zp,Qp, and Cp will be denoted by the ring of rational integers, the
ring of p-adic integers, the field of p-adic rational numbers, and the completion of algebraic
closure of Qp, respectively, compare with [1–6]. Let νp be the normalized exponential
valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of q-extension, q is variously
considered as an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ Cp,
then we normally assume that |q − 1|p < p−1/(p−1), so that qx = exp(x log q) for |x|p ≤ 1.
If q ∈ C, then we normally assume that |q| < 1. For f ∈ UD(Zp,Cp) = {f | f : Zp →
Cp is uniformly differentiable function}, the p-adic q-integral (or q-Volkenborn integration)
was defined as

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx, (1.1)
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where [x]q = (1 − qx)/(1 − q), compare with [1–8]. Thus, we note that

I1
(
f
)
= lim

q→ 1
Iq
(
f
)
=
∫

Zp

f(x)dμ1(x) = lim
N→∞

1
pN

∑

0≤x<pN
f(x), compare with [1, 2, 3, 4, 5, 6].

(1.2)

By (1.2), we easily see that

I1
(
f1
)
= I1

(
f
)
+ f ′(0), compare with [1, 2, 3, 4, 5, 6], (1.3)

where f1(x) = f(x + 1), f ′(0) = (d/dx)f(x)|x=0.
In (1.3), if we take f(x) = qhxext, then we have

∫

Zp

qhxextdμ1(x) =
h log q + t
qhet − 1

, compare with [6], (1.4)

for |t| ≤ p−1/(p−1), h ∈ Z.
Recently, many mathematicians have studied Bernoulli numbers and Bernoulli

polynomials. Bernoulli polynomials possess many interesting properties and arising in many
areas of mathematics and physics. For more studies in this subject we may see references
[1–8]. The motivation for this study comes from the following papers. Some interesting
analogues of the Bernoulli numbers and polynomials were investigated by Ryoo and Kim
[6]. We begin by recalling here definitions of (h, q)-extension of Bernoulli numbers and
polynomials as follows.

Definition 1.1 (see [6]). The (h, q)-extension of Bernoulli numbers B
(h)
n,q and polynomials

B
(h)
n,q(x) is defined by means of the generating functions as follows:

F
(h)
q (t) =

h log q + t
qhet − 1

=
∞∑

n=0

B
(h)
n,q
tn

n!
,

F
(h)
q (t, x) =

h log q + t
qhet − 1

ext =
∞∑

n=0

B
(h)
n,q(x)

tn

n!
.

(1.5)

Note that B(h)
n,q(0) = B

(h)
n,q , limq→ 1B

(h)
n,q(x) = Bn(x), and B

(0)
n,q(x) = Bn(x), where Bn are the

nth Bernoulli numbers.

By (1.4) and (1.5), we have the following Witt formula. For h ∈ Z, q ∈ Cp with
|1 − q|p ≤ p−1/(p−1), we have

∫

Zp

qhxxndμ1(x) = B
(h)
n,q ,

∫

Zp

qhy
(
x + y

)n
dμ1

(
y
)
= B(h)

n,q(x).

(1.6)
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In this paper, we investigate the (h, q)-extension of Bernoulli numbers and Bernoulli
polynomials in order to obtain some interesting results and explicit relationships. The aim
of this paper to observe an interesting phenomenon of “scattering” of the zeros of the
(h, q)-extension of Bernoulli polynomials B(h)

n,q(x). The outline of this paper is as follows. In

Section 2, we study the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x). In Section 3, we

describe the beautiful zeros of the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x) using

a numerical investigation. Also we display distribution and structure of the zeros of the
(h, q)-extension of Bernoulli polynomials B(h)

n,q(x) by using computer. By using the results
of our paper, the readers can observe the regular behaviour of the roots of the (h, q)-
extension of Bernoulli polynomials B(h)

n,q(x). Finally, we carried out computer experiments
for demonstrating a remarkably regular structure of the complex roots of the (h, q)-extension
of Bernoulli polynomials B(h)

n,q(x).

2. Basic Properties for the (h, q)-Extension of Bernoulli
Numbers and Bernoulli Polynomials

Let q be a complex number with |q| < 1 and h ∈ Z. By the meaning of (1.5), the (h, q)-
extension of Bernoulli numbers B(h)

n,q and Bernoulli polynomials B(h)
n,q(x) is defined by means

of the following generating function:

F
(h)
q (t) =

h log q + t
qhet − 1

=
∞∑

n=0

B
(h)
n,q
tn

n!
, (2.1)

F
(h)
q (x, t) =

h log q + t
qhet − 1

ext =
∞∑

n=0

B
(h)
n,q(x)

tn

n!
, (2.2)

respectively.
Here is the list of the first (h, q)-extension of Bernoulli numbers B(h)

n,q .

B
(h)
0,q =

h log q
−1 + qh

, B1,q =
1

−1 + qh
−

hqh log q
(
−1 + qh

)2
,

B
(h)
2,qh = −

2qh
(
−1 + qh

)2
−

hqh log q
(
−1 + qh

)2
+

2hq2h log q
(
−1 + qh

)3
,

B
(h)
3,qh = −

3qh
(
−1 + qh

)2
+

6q2h

(
−1 + qh

)3
−

hqh log q
(
−1 + qh

)2
+

6hq2h log q
(
−1 + qh

)3
−

6hq3h log q
(
−1 + qh

)4
, . . . ,

(2.3)

because

∂

∂x
F
(h)
q (x, t) = tF(h)

q (x, t) =
∞∑

n=0

d

dx
B
(h)
n,q(x)

tn

n!
, (2.4)
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it follows the important relation

d

dx
B
(h)
n,q(x) = nB

(h)
n−1,q(x). (2.5)

We have the integral formula as follows:

∫b

a

B
(h)
n−1,q(x)dx =

1
n

(
B
(h)
n,q(b) − B(h)

n,q(a)
)
. (2.6)

Here is the list of the first (h, q)-extension of Bernoulli Polynomials B(h)
n,q(x).

B
(h)
0,q =

h log q
−1 + qh

,

B
(h)
1,q =

1
(
−1 + qh

) −
hqh log q
(
−1 + qh

)2
+

hx log q
(
−1 + qh

) ,

B
(h)
2,q =

2qh
(
−1 + qh

)2
+

2x
(
−1 + qh

) +
2hq2h log q
(
−1 + qh

)3
−

hqh log q
(
−1 + qh

)2
−

2hqhx log q
(
−1 + qh

)2
+
hx2 log q
(
−1 + qh

) , . . . .

(2.7)

Since

∞∑

l=0

B
(h)
l,q

(
x + y

) tl

l!
=
h log q + t
qhet − 1

e(x+y)t =
∞∑

n=0

B
(h)
n,q(x)

tn

n!

∞∑

m=0

ym
tm

m!

=
∞∑

l=0

(
l∑

n=0

B
(h)
n,q(x)

tn

n!
yl−n

tl−n

(l − n)!

)

=
∞∑

l=0

(
l∑

n=0

(
l
n

)
B
(h)
n,q(x)yl−n

)
tl

l!
,

(2.8)

we have the following theorem.

Theorem 2.1. (h, q)-extension of Bernoulli polynomials B(h)
n,q(x) satisfies the following relation:

B
(h)
l,q

(
x + y

)
=

l∑

n=0

(
l
n

)
B
(h)
n,q(x)yl−n. (2.9)

From (2.2), we can derive the following equality:
∞∑

n=0

(
qhB

(h)
n,q(x + 1) − B(h)

n,q(x)
) tn

n!
=
∞∑

n=0

(
xnh log q + nxn−1

) tn

n!
. (2.10)

Hence, we obtain the following difference equation.
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Figure 1: Curve of B(3)
n,1/2(x).

Theorem 2.2. For any positive integer n, we obtain

qhB
(h)
n,q(x + 1) − B(h)

n,q(x) = xnh log q + nxn−1. (2.11)

3. Distribution and Structure of the Zeros

In this section, we assume that q ∈ C, with |q| < 1. We observed the behavior of real roots
of the (h, q)-extension of Bernoulli polynomials B(h)

n,q(x). We display the shapes of the (h, q)-
extension of Bernoulli polynomials Bn,q(x) and we investigate the zeros of the (h, q)-extension
of Bernoulli polynomials B(h)

n,q(x). For n = 1, . . . , 10, we can draw a plot of the (h, q)-extension

of Bernoulli polynomials B(h)
n,q(x), respectively. This shows the ten plots combined into one.

We display the shape of B(h)
n,q(x), −1 ≤ x ≤ 1, q = 1/2 (Figure 1). We investigate the beautiful

zeros of the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x) by using a computer. We plot

the zeros of the (h, q)-extension of Bernoulli polynomials B(3)
n,q(x) for n = 15, 20, 25, 30 and

x ∈ C (Figure 2).
Our numerical results for approximate solutions of real zeros of B(h)

n,1/2(x) are displayed
(Tables 1 and 2).

We plot the zeros of (h, q)-extension of Bernoulli polynomials B(h)
n,q(x) for n = 30, q =

1/2, h = 5, 7, 9, 11, and x ∈ C (Figure 3). We plot the zeros of (h, q)-extension of Bernoulli
polynomials B(h)

n,q(x) for n = 30, q = 9/10, 99/100, and x ∈ C (Figure 4).
We observe a remarkably regular structure of the complex roots of the (h, q)-

extension of Bernoulli polynomials B(h)
n,q(x). We hope to verify a remarkably regular structure

of the complex roots of the (h, q)-extension of Bernoulli polynomials B
(h)
n,q(x) (Table 1).

This numerical investigation is especially exciting because we can obtain an interesting
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Figure 2: Zeros of B(3)
n,1/2(x) for n = 15, 20, 25, 30.

phenomenon of scattering of the zeros of the (h, q)-extension of Bernoulli polynomials
B
(h)
n,q(x). These results are used not only in pure mathematics and applied mathematics, but

also used in mathematical physics and other areas. Next, we calculated an approximate
solution satisfying the (h, q)-extension of Bernoulli polynomials B(h)

n,q(x). The results are given
in Table 2.

Stacks of zeros of B(h)
n,q(x) for q = 1/3, 1 ≤ n ≤ 30 from a 3D structure are presented (in

Figure 5).
Figure 6 presents the distribution of real zeros of the (h, q)-extension of Bernoulli

polynomials B(3)
n,q(x) for q = 1/2, 1 ≤ n ≤ 30.

Figure 7 presents the distribution of real zeros of the (h, q)-extension of Bernoulli
polynomials B(3)

n,q(x) for q = 9/10, 1 ≤ n ≤ 30.
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Figure 3: Zeros of B30,1/2(x) for h = 5, 7, 9, 11.

Figure 8 presents the distribution of real zeros of the Bernoulli polynomials Bn(x) for
1 ≤ n ≤ 30.

4. Direction for Further Research

In [7], we observed the behavior of complex roots of the Bernoulli polynomials Bn(x), using
numerical investigation. Prove that Bn(x), x ∈ C, has Re(x) = 1/2 reflection symmetry in
addition to the usual Im(x) = 0 reflection symmetry analytic complex functions. The obvious
corollary is that the zeros of Bn(x) will also inherit these symmetries.

If Bn(x0) = 0, then Bn(1 − x0) = 0 = Bn
(
x∗0
)
= Bn

(
1 − x∗0

)
, (4.1)
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Figure 4: Zeros of B(3)
n,30(x) for q = 9/10, 99/100.
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Figure 5: Stacks of zeros of B(h)
n,q(x), 1 ≤ n ≤ 30.

Table 1: Numbers of real and complex zeros of B(h)
n,q(x).

degree n h = 3 h = 5
real zeros complex zeros real zeros complex zeros

1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 2 2
5 3 2 3 2
6 4 2 4 2
7 5 2 5 2
8 6 2 4 4
9 3 6 5 4
10 4 6 6 4
11 5 6 5 6
12 6 6 4 8
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Figure 6: Real of zeros of B(3)
n,q(x), q = 1/2, 1 ≤ n ≤ 30.
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Figure 7: Real of zeros of B(3)
n,q(x), q = 9/10, 1 ≤ n ≤ 30.

Table 2: Approximate solutions of B(3)
n,q(x) = 0, q = 1/2, x ∈ R.

degree n x

1 0.338041204

2 0.077277108, 0.598805301

3 −0.079078401, 0.27548817, 0.81771384

4 −0.14859649, 0.00639164, 0.48798387, 1.00638579

5 0.1922804, 0.6960320, 1.16991832

6 −0.1019335, 0.3908601, 0.8972294, 1.3100253

7 −0.300737, 0.094132, 0.592060, 1.094167, 1.4250444
...

...
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Figure 8: Real of zeros of Bn(x), 1 ≤ n ≤ 30.

where ∗ denotes complex conjugation (see [7]). Finally, we shall consider the more general
problems. Prove that Bn(x) = 0 has n distinct solutions. If B2n+1(x) has Re(x) = 1/2 and
Im(x) = 0 reflection symmetries, and 2n+1 nondegenerate zeros, then 2n of the distinct zeros
will satisfy (4.1). If the remaining one zero is to satisfy (4.1) too, it must reflect into itself, and
therefore it must lie at 1/2, the center of the structure of the zeros, that is,

Bn

(
1
2

)
= 0 ∀odd n. (4.2)

Prove that B(h)
n,q(x) = 0 has n distinct solutions, that is, all the zeros are nondegenerate.

Find the numbers of complex zeros C
B
(h)
n,q (x)

of B(h)
n,q(x), Im(x)/= 0. Since n is the degree of

the polynomial B(h)
n,q(x), the number of real zeros R

B
(h)
n,q (x)

lying on the real plane Im(x) = 0
is then R

B
(h)
n,q (x)

= n − C
B
(h)
n,q (x)

, where C
B
(h)
n,q (x)

denotes complex zeros. See Table 1 for tabulated
values of R

B
(h)
n,q (x)

and C
B
(h)
n,q (x)

. Find the equation of envelope curves bounding the real zeros

lying on the plane. We prove that B(h)
n,q(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic

complex functions. If B(h)
n,q(x) = 0, then B

(h)
n,q(x∗) = 0, where ∗ denotes complex conjugate (see

Figures 2, 3, and 4). Observe that the structure of the zeros of the Bernoulli polynomials Bn(x)
resembles the structure of the zeros of the q-Bernoulli polynomials B(h)

n,q(x) as q → 1 (see

Figures 3, 4, and 5). In order to study the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x),

we must understand the structure of the (h, q)-extension of Bernoulli polynomials B(h)
n,q(x).

Therefore, using computer, a realistic study for the (h, q)-extension of Bernoulli polynomials
B
(h)
n,q(x) plays an important part. The author has no doubt that investigation along this line

will lead to a new approach employing numerical method in the field of research of the (h, q)-
extension of Bernoulli polynomials B(h)

n,q(x) to appear in mathematics and physics. For related
topics, the interested reader is referred to [3–8].
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