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We investigate a predator-prey model with impulsive diffusion on predator and stage structure on
prey. The globally attractive condition of prey-extinction periodic solution of the system is obtained
by the stroboscopic map of the discrete dynamical system. The permanent condition of the system
is also obtained by the theory of impulsive delay differential equation. The results indicate that
the discrete time delay has influence on the dynamical behaviors of the system. Finally, some
numerical simulations are carried out to support the analytic results.

1. Introduction

The dispersal is a ubiquitous phenomenon in the natural world. It is well recognized that
the spatial distribution of populations and population dynamics are much affected by spatial
heterogeneity and population mobility [1]. The fragmented landscapes are common because
the populations of most species occupy mosaic habitats and because of rapid destruction
of natural habitats. Briggs and Hoopes [2] identify three mechanisms whereby limited
dispersal of hosts and parasitoids combined with other features, such as spatial and temporal
heterogeneity, can promote persistence and stability of populations. It is important for us to
understand the ecological and evolutionary dynamics of populations mirrored by the large
number of mathematical models devoting to it in the scientific literatures [3–6]. In recent
years, the analysis of these models focuses on the coexistence of population and local (or
global) stability of equilibria [7–13]. Spatial factors play a fundamental role on the persistence
and stability of the population, although the complete results have not yet been obtained even
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in the simplest one-species case. Most previous papers focused on the population dynamical
system modeled by the ordinary differential equations; if the population dynamics with the
effects of spatial heterogeneity are modeled by a diffusion process, it will be very interesting.
While in practice, it is often the case that diffusion occurs in regular pulse. For example,
when winter comes, birds will migrate between patches in search for a better environment,
whereas they do not diffuse in other seasons, and the excursion of foliage seeds occurs at fixed
period of time every year. Thus, impulsive diffusion provides a more natural description.
Lately theories of impulsive differential equations [14] have been introduced into population
dynamics. Impulsive differential equations are found in almost a domain of applied science
[15–24]. Newly, persistence and stability of population dynamical system involving time
delay have been discussed by some authors; see, for example, [8, 25, 26] and references cited
therein. They obtained some sufficient conditions that guarantee permanence of population
or stability of positive equilibria or positive periodic solutions.

The organization of this paper is as follows. In the next section, we introduce themodel
and background concepts. In Section 3, some important lemmas are presented. In Section 4,
we give the conditions of global attractivity and permanence for system (2.3). In Section 5, A
brief discussion is given in the last section to conclude this work.

2. The Model

Stage-structured models were analyzed in many literatures [7, 27–33]. The following stage-
structured Holling mass defence predator-prey model with impulsive perturbations on
predators was introduced by Jiao et al. [31]:

x′
1(t) = rx2(t) − re−wτ1x2(t − τ1) −wx1(t),

x′
2(t) = re−wτ1x2(t − τ1) −

βx2(t)

1 + ax2 + bx2
2

x3(t) − d3x2(t) − d4x
2
2(t),

x′
3(t) =

kβx2(t)

1 + ax2 + bx2
2

x3(t) − dx3(t),

t /=nτ,

Δx1(t) = 0,

Δx2(t) = 0,

Δx3(t) = μ,

t = nτ, n = 1, 2, . . . ,

(
ϕ1(ζ), ϕ2(ζ), ϕ3(ζ)

) ∈ C+ = C
(
[−τ1, 0], R3

+

)
, ϕi(0) > 0, i = 1, 2, 3,

(2.1)

where x1(t), x2(t) represent the immature and mature pest densities, respectively, x3(t)
denotes the density of nature enemy, τ1 represents a constant time to maturity, and
r,w, d3, d4, d, k, a, b and β are positive constants. This model is derived as follows. We
assume that at any time t > 0, birth into the immature population is proportional to
the existing mature population with proportionality constant r. We then assume that the
death rate of immature population is proportional to the existing immature population with
proportionality constant w. w (w > d), d3, and d (d > d3) are called the death coefficient of
x1(t), x2(t), and x3(t), respectively. We assume that the death rate of mature populations are
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of a logistic nature, that is, proportional to the square of the population with proportionality
constant d4. k > 0 is the rate of conversing prey into predator. Δx3(t) = x3(t+) − x3(t), μ ≥ 0
is the releasing amount of natural enemies at t = nτ , n ∈ Z+ and Z+ = {1, 2, . . .}, τ and is the
period of the impulsive immigration of the predator.

Diffusive predator-prey models were analyzed in literatures [16, 34, 35]. In [16], Hui
and Chen considered the single species model with impulsive diffusion as follows:

dx1(t)
dt

= x1(t)(a1 − b1x1(t)),

dx2(t)
dt

= x2(t)(a2 − b2x2(t)),

t /=nτ,

Δx1(t) = d1(x2(t) − x1(t)),

Δx2(t) = d2(x1(t) − x2(t)),
t = nτ, n = 1, 2, . . . ,

(2.2)

where we suppose that the system is composed of two patches connected by diffusion and
xi (i = 1, 2) is the density of species in the ith patch. Intrinsic rate of natural increase and
density dependence rate of prey population in the first habitat are denoted by ai (i = 1, 2),
and di (i = 1, 2) is the dispersal rate in the ith patch. It is assumed here that the net exchange
from the jth patch to ith patch is proportional to the difference xj −xi of population densities.
The pulse diffusion occurs every τ period (τ > 0). The system evolves from its initial state
without being further affected by diffusion until the next pulse appears; Δxi = xi(nτ+) −
xi(nτ), and xi(nτ+) represents the density of population in the ith patch immediately after
the nth diffusion pulse at time t = nτ , while xi(nτ) represents the density of population in
the ith patch before the nth diffusion pulse at time t = nτ , n = 0, 1, 2, . . . ; ri, ki, and di (i = 1, 2)
are positive constants.

Motivated by these ideals from all of the above, we assume that the predator
population diffuses between the two patches, and the prey population exists only in one
patch. Then, we consider a delayed predator-prey model with impulsive diffusion on
predator and stage structure on prey as follows:

dx1(t)
dt

= rx2(t) − re−wτ1x2(t − τ1) −wx1(t),

dx2(t)
dt

= re−wτ1x2(t − τ1) − dx2(t) − βx2(t)y1(t),

dy1(t)
dt

= −a1y1(t) + kβx2(t)y1(t),

dy2(t)
dt

= y2(t)
(
a2 − b2y2(t)

)
,

t /=nτ,

Δx1(t) = 0,

Δx2(t) = 0,

Δy1(t) = D
(
y2(t) − y1(t)

)
,

Δy2(t) = D
(
y1(t) − y2(t)

)
,

t = nτ, n = 1, 2, . . . ,

(2.3)
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with initial condition

(
ϕ1(ζ), ϕ2(ζ), ϕ3(ζ), ϕ4(ζ)

) ∈ C+ = C
(
[−τ1, 0], R4

+

)
, ϕi(0) > 0, i = 1, 2, 3, 4, (2.4)

where x1(t), x2(t) represent the immature andmature prey population densities, respectively.
τ1 represents a constant time to maturity, that is, immature individuals and mature
individuals are divided by age τ1. It is assumed that the system is composed of two patches
connected by diffusion and occupied by a single species and yi(t) (i = 1, 2) is the density of
predator species in the ith patch. Death rate of the predator population in the first patch is
denoted by a1 > 0. Intrinsic rate of natural increase and density dependence rate of predator
population in the second patch are denoted by a2 > 0 and b2 > 0; a2/b2 denotes the carrying
capacity in the second patch. 0 < D < 1 is dispersal rate of the predator population between
two patches. It is assumed here that the net exchange from the jth patch to ith patch is
proportional to the difference yj − yi of predator population densities. β is the prey capture
rate by mature predator. k is the rate of conversion of nutrients into the reproduction rate of
the mature predator. w is the death rate of immature prey population in the first patch. d is
the death rate of mature prey population in first patch. The pulse diffusion occurs every τ > 0
period. The system evolves from its initial state without being further affected by diffusion
until the next pulse appears.Δyi(nτ) = yi(nτ+)−yi(nτ), where yi(nτ+) represents the density
of population in the ith patch immediately after the nth diffusion pulse at time t = nτ, while
yi(nτ) represents the density of population in the ith patch before the nth diffusion pulse at
time t = nτ (n = 0, 1, 2, . . .).

Obviously, (2.3) can be simplified as follows:

dx2(t)
dt

= re−wτ1x2(t − τ1) − dx2(t) − βx2(t)y1(t),

dy1(t)
dt

= −a1y1(t) + kβx2(t)y1(t),

dy2(t)
dt

= y2(t)
(
a2 − b2y2(t)

)
,

t /=nτ,

Δx2(t) = 0,

Δy1(t) = D
(
y2(t) − y1(t)

)
,

Δy2(t) = D
(
y1(t) − y2(t)

)
,

t = nτ, n = 1, 2, . . . ,

(2.5)

with initial condition

(
ϕ2(ζ), ϕ3(ζ), ϕ4(ζ)

) ∈ C′
+ = C

(
[−τ1, 0], R3

+

)
, ϕi(0) > 0, i = 2, 3, 4. (2.6)

3. The Lemmas

The solution of (2.3), denoted by x(t) = (x1(t), x2(t), y1(t), y2(t))
T , is a piecewise continuous

function x : R+ → R4
+. x(t) is continuous on (nτ, (n+ 1)τ], n ∈ Z+, and x(nτ+) = limt→nτ+x(t)

exists. Obviously, the global existence and uniqueness of solutions of (2.3) is guaranteed by
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the smoothness of properties of f , which denotes themapping defined by right-side of system
(2.3) (see Lakshmikantham et al. [36]). Before having the main results, we need some lemmas
which will be used next.

According to the biological meanings, it is assumed that x1(t) ≥ 0, x2(t) ≥ 0, y1(t) ≥ 0,
and y2(t) ≥ 0. Now, wewill show that all solutions of (2.3) are uniformly ultimately bounded.

Lemma 3.1. There exists a constant M > 0 such that x1(t) ≤ M/k, x2(t) ≤ M/k, y1(t) ≤ M, and
y2(t) ≤ M, for each solution (x1(t), x2(t), y1(t), y2(t)) of (2.3) with all large enough t.

Proof. Define V (t) = kx1(t) + kx2(t) + y1(t) + y2(t). Denote d = min{a1, r − d,w}. When t /=nτ ,
we have

D+V (t) + dV (t) = −k
(
w − d

)
x1(t) − k

[
(r − d) − d

]
x2(t)

−
(
a1 − d

)
y1(t) + y2(t)

[(
a2 + d

)
− b2y2(t)

]

≤ y2(t)
((

a2 + d
)
− b2y2(t)

)
≤ M0,

(3.1)

whereM0 = (a2+d)
2/4b2. When t = nτ,we also have V (nτ+) = V (nτ). By Lemma 2.3 in [14],

for t ∈ (nτ, (n + 1)τ], we obtain

V (t) ≤ V (0) exp
(
−dt

)
+
∫ t

0
M0 exp

(
−d(t − s)

)
ds

= V (0) exp
(
−dt

)
+
M0

d

(
1 − exp

(
−dt

))

< V (0) exp
(
−dt

)
+
M0

d

(
1 − exp

(
−dt

))

−→ M0

d
, as t −→ ∞.

(3.2)

So, V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), there exists
a constant M > 0 such that x1(t) ≤ M/k, x2(t) ≤ M/k, y1(t) ≤ M, y2(t) ≤ M for all t large
enough. The proof is complete.

If x2(t) = 0, the subsystem of (2.3) is obtained as follows:

dy1(t)
dt

= −a1y1(t),

dy2(t)
dt

= y2(t)
(
a2 − b2y2(t)

)
,

t /=nτ,

Δy1(t) = D
(
y2(t) − y1(t)

)
,

Δy2(t) = D
(
y1(t) − y2(t)

)
,

t = nτ, n = 1, 2, . . . .

(3.3)
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It is easy to solve the first two equations of system (3.3) between pulses

y1(t) = y1(nτ+)e−a1(t−nτ), nτ < t ≤ (n + 1)τ,

y2(t) =
a2e

a2(t−nτ)y1(nτ+)
a2 + b2

(
ea2(t−nτ) − 1

)
y1(nτ+)

, nτ < t ≤ (n + 1)τ.
(3.4)

By considering the last two equations of System (3.3), we obtain the following
stroboscopic map of system (3.3):

y1((n + 1)τ+) = (1 −D)e−a1τy1(nτ+) +D
a2e

a2τy2(nτ+)
a2 + b2(ea2τ − 1)y2(nτ+)

,

y2((n + 1)τ+) = (1 −D)
a2e

a2τy2(nτ+)
a2 + b2(ea2τ − 1)y2(nτ+)

+De−a1τy1(nτ+).

(3.5)

Then, two lemmas are obtained as follows.

Lemma 3.2 (see [37, Theorem 3.1]). If a2τ < ln((1−(1−D)e−a1τ)/(1−(1−2D)e−a1τ)), the trivial
equilibrium (0, 0) of (3.5) is globally asymptotically stable. If a2τ > ln((1 − (1 −D)e−a1τ)/(1 − (1 −
2D)e−a1τ)), there exists a unique positive equilibrium (y∗

1, y
∗
2), which is globally asymptotically stable,

where y∗
1 = Dea2τy∗

2/((1 − D)ea2τ − (1 − 2D)e(a2−a1)τ) and y∗
2 = a2 [(1 − D)(ea2τ + e−a1τ) − (1 −

2D)e(a2−a1)τ − 1]/b2(ea2τ − 1)(1 − (1 −D)e(a2−a1)τ).

Lemma 3.3 (see [37, Theorem 3.2]). If a2τ > ln((1 − (1 − D)e−a1τ)/(1 − (1 − 2D)e−a1τ)), then
(3.3) has a τ-periodic positive solution (˜y1(t), ˜y2(t)), which is globally asymptotically stable. Here
(˜y1(t), ˜y2(t)) can be expressed as

˜y1(t) = y∗
1e

−a1(t−nτ), nτ < t ≤ (n + 1)τ,

˜y2(t) =
a2e

a2(t−nτ)y∗
2

a1 + b2
(
ea2(t−nτ) − 1

)
y∗
2

, nτ < t ≤ (n + 1)τ,
(3.6)

where y∗
1 and y∗

2 are defined as in Lemma 3.2.

Lemma 3.4 (see [38]). Consider the following delay equation:

dx(t)
dt

= c1x(t − τ) − c2x(t). (3.7)

one assumes that c1, c2, τ > 0, x(t) > 0 for −τ ≤ t ≤ 0. Assuming that c1 < c2, then

lim
t→∞

x(t) = 0. (3.8)
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4. The Dynamics

From the above discussion, we can easily know that there exists a prey-extinction boundary
periodic solution (0, 0, ˜y1(t), ˜y2(t)) of system (2.3). In this section, we will prove that the prey-
extinction boundary periodic solution (0, 0, ˜y1(t), ˜y2(t)) of system (2.3) is globally attractive.

Theorem 4.1. If

a2τ > ln
1 − (1 −D)e−a1τ

1 − (1 − 2D)e−a1τ
,

re−wτ1 < d +
Dβea2τy∗

2

(1 −D)ea2τ − (1 − 2D)e(a2−a1)τ
,

(4.1)

hold, the prey-extinction boundary periodic solution (0, 0, ˜y1(t), ˜y2(t)) of (2.3) is globally attractive.
Here, y∗

2 = a2 [(1 −D)(ea2τ + e−a1τ) − (1 − 2D)e(a2−a1)τ − 1]/b2(ea2τ − 1)[1 − (1 −D)e(a2−a1)τ].

Proof. It is clear that the global attractivity of the predator-extinction boundary periodic
solution (0, 0, ˜y1(t), ˜y2(t)) of system (2.3) is equivalent to the global attractivity of predator-
extinction boundary periodic solution (0, ˜y1(t), ˜y2(t)) of system (2.5). So, we devote ourselves
to investigate system (2.5). Since Dkβy∗

2e
a2τ−wτ1 < d[(1 − D)ea2τ − (1 − 2D)e(a2−a1)τ], we can

choose ε0 sufficiently small such that

kβe−wτ1

[
Dea2τy∗

2

(1 −D)ea2τ − (1 − 2D)e(a2−a1)τ
+ ε0

]
< d. (4.2)

Since we know from the second equation of system (2.5) that dy1(t)/dt ≤ −a1y1(t), we
consider the following comparison an impulsive differential system:

dy′
1(t)
dt

= −a1y
′
1(t),

dy′
2(t)
dt

= y′
2(t)

(
a2 − b2y

′
2(t)

)
,

t /=nτ,

Δy′
1(t) = D

(
y′
2(t) − y′

1(t)
)
,

Δy′
2(t) = D

(
y′
1(t) − y′

2(t)
)
,

t = nτ, n = 1, 2, . . . .

(4.3)

In view of Lemma 3.3 and (3.6), we obtain the τ-periodic solution of system (4.3)

˜y′
1(t) = y′∗

1 e
−a1(t−nτ), nτ < t ≤ (n + 1)τ,

˜y′
2(t) =

a2e
a2(t−nτ)y′∗

2

a2 + b2
(
ea2(t−nτ) − 1

)
y′∗
2

, nτ < t ≤ (n + 1)τ,
(4.4)

which is globally asymptotically stable, where y′∗
1 = Dea2τy′∗

2 /((1 −D)ea2τ − (1 − 2D)e(a2−a1)τ)
and y′∗

2 = a2((1 −D)(ea2τ + e−a1τ) − (1 − 2D)e(a2−a1)τ − 1)/b2(ea2τ − 1)(1 − (1 −D)e(a2−a1)τ).
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From Lemma 3.3 and comparison theorem of impulsive equation [36], we have y1(t) ≤
y′
1(t) and y′

1(t) → ˜y1(t) as t → ∞. Then there exists an integer k2 > k1, t > k2 such that

y1(t) ≤ y′
1(t) ≤ ˜y1(t) + ε0, nτ < t ≤ (n + 1)τ, n > k2, (4.5)

that is,

y1(t) < ˜y1(t) + ε0 ≤ y∗
1 + ε0

Δ= �, nτ < t ≤ (n + 1)τ, n > k2. (4.6)

From (2.5), we get

dx2(t)
dt

≤ re−wτ1x2(t − τ1) −
(
d + β�

)
x2(t), t > nτ + τ1, n > k2. (4.7)

Consider the following comparison differential system:

dx′
2(t)
dt

= re−wτ1x′
2(t − τ1) −

(
d + β�

)
x′
2(t), t > nτ + τ1, n > k2. (4.8)

So we have re−wτ1 < d + β�. According to Lemma 3.4, we have limt→∞ x′
2(t) = 0.

Let (x2(t), y1(t), y2(t)) be the solution of system (2.5) with its initial conditions and
x2(ζ) = ϕ2(ζ) (ζ ∈ [−τ1, 0]), y′

2(t) is the solution of system (4.8) with initial condition x′
2(ζ) =

ϕ2(ζ) (ζ ∈ [−τ1, 0]). By the comparison theorem, we have

lim
t→∞

x2(t) < lim
t→∞

x′
2(t) = 0. (4.9)

Incorporating into the positivity of x2(t), we know that limt→∞ x2(t) = 0. Therefore, for any
ε1 > 0 (sufficiently small), there exists an integer k3 (k3τ > k2τ + τ1) such that x2(t) < ε1 for
all t > k3τ .

For system (2.5), we have

−a2y1(t) ≤
dy1(t)
dt

≤ −(a2 − kβε1
)
y1(t). (4.10)
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Then, z2(t) ≤ y1(t) ≤ z′2(t) and z2(t) → ˜y1(t), z′2(t) → ˜y1(t) as t → ∞, where (z1(t), z2(t))
and (z′1(t), z

′
2(t)) are the solutions of

dz1(t)
dt

= −a1z1(t),

dz2(t)
dt

= z2(t)[a2 − b2z2(t)],

t /=nτ,

Δz1(t) = D(z2(t) − z1(t)),

Δz2(t) = D(z1(t) − z2(t)),
t = nτ, n = 1, 2, . . . ,

(4.11)

dz′1(t)
dt

= −(a1 − βε1
)
z′1(t),

dz′2(t)
dt

= z′2(t)
(
a2 − b2z

′
2(t)

)
,

t /=nτ,

Δz′1(t) = D
(
z′2(t) − z′1(t)

)
,

Δz′2(t) = D
(
z′1(t) − z′2(t)

)
,

t = nτ, n = 1, 2, . . . ,

(4.12)

respectively. Here

˜z′1(t) = z′∗1 e
−(a1−kβε1)(t−nτ), nτ < t ≤ (n + 1)τ,

˜z′2(t) =
a2e

a2(t−nτ)z′∗2
a2 + b2

(
ea2(t−nτ) − 1

)
z′∗2

, nτ < t ≤ (n + 1)τ,
(4.13)

where

z′∗1 =
Dea2τz′∗2

(1 −D)ea2τ − (1 − 2D)e(a2−(a1−kβε1))τ
,

z′∗2 =
a2
(
(1 −D)

(
ea2τ + e−(a1−kβε1)τ

) − (1 − 2D)e(a2−(a1−kβε1))τ − 1
)

b2(ea2τ − 1)
(
1 − (1 −D)e(a2−(a1−kβε1))τ

) .

(4.14)

Therefore, for any ε2 > 0, there exists an integer k4, n > k4 such that ˜z2(t) − ε2 <

y1(t) < ˜z′2(t) + ε2, ˜z1(t) − ε2 < y2(t) < ˜z′1(t) + ε2. Let ε1 → 0. So we have ˜y1(t) − ε2 < y1(t) <
˜y1(t) + ε2, ˜y2(t) − ε2 < y2(t) < ˜y2(t) + ε2, for t large enough, which implies y1(t) → ˜y1(t) and
y2(t) → ˜y2(t) as t → ∞. This completes the proof.

The next work is to investigate the permanence of the system (2.3). Before starting the
following theorem, we give the following definition.
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Definition 4.2. System (2.3) is said to be permanent if there are constants m,M > 0 (indepen-
dent of initial value) and a finite time T0, such that for all solutions (x1(t), x2(t), y1(t), y2(t))
with all initial values x1(0+) > 0, x2(0+) > 0, y1(0+) > 0, y2(0+) > 0, m ≤ x1(t) ≤ M/k,
m ≤ x2(t) ≤ M/k, m ≤ y1(t) ≤ M, m ≤ y2(t) ≤ M, holds for all t ≥ T0. Here T0 may depend
on the initial values (x1(0+), x2(0+), y1(0+), y2(0+)).

Theorem 4.3. If

a2τ > ln
1 − (1 −D)e−(a1−βx

∗
2)τ

1 − (1 − 2D)e−(a1−βx
∗
2)τ

,

re−wτ1 > d +
Dβv∗

1e
(a1τ−wτ1)

(1 −D)ea1τ − (1 − 2D)e(a1−(a2+βx
∗
2))τ

,

(4.15)

hold, there is a positive constant g such that each positive solution (x2(t), y1(t), y2(t)) of (2.5) satisfies
x2(t) ≥ g for large enough t. x∗

2 can be confirmed by the equation

(
re−wτ1 − d

)[
(1 −D)ea2τ − (1 − 2D)e(a2−(a1+βx

∗
2))τ

]
= Dβv∗

1e
a2τ−wτ1 . (4.16)

Here

v∗
1 =

a2
(
(1 −D)

(
ea2τ + e−(a1+βx

∗
2)τ

) − (1 − 2D)e(a2−(a1+βx
∗
2))τ − 1

)

b2(ea2τ − 1)
(
1 − (1 −D)e(a2−(a1+βx

∗
2))τ

) . (4.17)

Proof. The fourth equation of (2.5) can be rewritten as

dx2(t)
dt

=
[
re−wτ1 − (

d + βy1(t)
)]
x2(t) − re−wτ1

d

dt

∫ t

t−τ1
x2(u)du. (4.18)

Let us consider any positive solution (x2(t), y1(t), y2(t)) of system (2.5). According to
(4.18), Q(t) is defined as

Q(t) = x2(t) + re−wτ1

∫ t

t−τ1
x2(u)du. (4.19)

We calculate the derivative of Q(t) along the solution of (2.5)

dQ(t)
dt

=
[
re−wτ1 − (

d + βy1(t)
)]
x2(t). (4.20)

SinceDkβv∗
1e

(a1τ−wτ1)/((1−D)ea1τ − (1− 2D)e(a1−(a2+βy
∗
2))τ) > d,we can easily know that there

exists sufficiently small ε > 0 such that

kβe−wτ1

(
Dv∗

1e
a1τ

(1 −D)ea1τ − (1 − 2D)e(a1−(a2+βy
∗
2))τ

− ε

)

> d. (4.21)
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We claim that for any t0 > 0, it is impossible that x2(t) < x∗
2 for all t > t0. Suppose that the

claim is not valid. Then there is a t0 > 0 such that x2(t) < x∗
2 for all t > t0. It follows from the

first equation of (2.5) that for all t > t0,

dy1(t)
dt

< −(a2 − kβx∗
2
)
y1(t). (4.22)

Consider the following comparison an impulsive system for all t > t0

dv1(t)
dt

= −(a1 − kβx∗
2

)
v1(t),

dv2(t)
dt

= v2(t)(a2 − b2v2(t)),

t /=nτ,

Δv1(t) = D(v2(t) − v1(t)),

Δv2(t) = D(v1(t) − v2(t)),
t = nτ, n = 1, 2, . . . .

(4.23)

By Lemma 3.2 and the condition a2τ > ln((1− (1−D)e−(a1+βx
∗
2)τ)/(1− (1− 2D)e−(a1+βx

∗
2)τ)),we

obtain

˜v1(t) = v∗
1e

−(a1+βx∗
2)(t−nτ), nτ < t ≤ (n + 1)τ,

˜v2(t) =
a2e

a2(t−nτ)v∗
2

a2 + b2
(
ea2(t−nτ) − 1

)
v∗
2

, nτ < t ≤ (n + 1)τ,
(4.24)

where

v∗
1 =

Dea2τv∗
2

(1 −D)ea2τ − (1 − 2D)e(a2−(a1−βx
∗
2))τ

,

v∗
2 =

a2
(
(1 −D)

(
ea2τ + e−(a1−βx

∗
2)τ

) − (1 − 2D)e(a2−(a1−βx
∗
2))τ − 1

)

b2(ea2τ − 1)
(
1 − (1 −D)e(a2−(a1−βx

∗
2))τ

) ,

(4.25)

is the unique positive periodic solution of (4.23), which is globally asymptotically stable. By
the comparison theorem for impulsive differential equation [36], we know that there exists
t1(> t0 + τ1) such that the inequalities y1(t) ≤ ˜v1(t) + ε and y2(t) ≤ ˜v2(t) + ε hold for t ≥ t1.

Thus y1(t) ≤ v∗
1 + ε for all t ≥ t1. We make notation as σ Δ= v∗

1 + ε for convenience. Also

re−wτ1 > d + βσ. (4.26)

Then

dQ(t)
dt

> x2(t)
[
re−wτ1 − (

d + βσ
)]

(4.27)
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for all t > t1. Setting xm
2 = mint∈[t1,t1+τ1] x2(t), we will show that x2(t) ≥ xm

2 for all t ≥ t1.
Supposing the contrary, then there is a T0 > 0 such that x2(t) ≥ xm

2 for t1 ≤ t ≤ t1 + τ1 + T0,
x2(t1 + τ1 + T0) = xm

2 and x′
2(t1 + τ1 + T0) < 0. Hence, the first equation of system (2.5) implies

that

x′
2(t1 + τ1 + T0) = re−wτ1x2(t1 + T0) − dx2(t1 + τ1 + T0) − βx2(t1 + τ1 + T0)y1(t1 + τ1 + T0)

≥ [
re−wτ1 − (

d + βσ
)]
xm
2 > 0.

(4.28)

This is a contradiction. Thus, x2(t) ≥ xm
2 for all t > t1. As a consequence, Q′(t) > xm

2 [re−wτ1 −
(d + βσ)] > 0 for all t > t1. This implies that as t → ∞, Q(t) → ∞. It is a contradiction to
Q(t) ≤ M(1 + τ1re

−wτ1). Hence, the claim is complete.
By the claim, we are left to consider two case. First, x2(t) ≥ x∗

2 for all t large enough.
Second, x2(t) oscillates about x∗

2 for large enough t.
Define

g = min
{
x∗
2

2
, g1

}
, (4.29)

where g1 = x∗
2e

−(d+dM)τ1 . We hope to show that x2(t) ≥ g for all t large enough. The conclusion
is evident in the first case. For the second case, let t∗ > 0 and ξ > 0 satisfy x2(t∗) = x2(t∗+ξ) = x∗

2
and x2(t) < x∗

2 for all t∗ < t < t∗ + ξ, where t∗ is sufficiently large such that x2(t) > σ for
t∗ < t < t∗ + ξ, x2(t) is uniformly continuous. The positive solutions of (2.5) are ultimately
bounded, and x2(t) is not affected by impulses. Hence, there is a T (0 < t < τ1 and T is
dependent on the choice of t∗) such that x2(t∗) > x∗

2/3 for t∗ < t < t∗ + T . If ξ < T , there
is nothing to prove. Let us consider the case T < ξ < τ1. Since x′

2(t) > −(d + βM)x2(t) and
x2(t∗) = x∗

2, it is clear that x2(t) ≥ g1 for t ∈ [t∗, t∗ + τ1]. Then, proceeding exactly as the proof
for the above claim, we see that x2(t) ≥ g1 for t ∈ [t∗ + τ1, t

∗ + ξ]. Because the kind of interval,
t ∈ [t∗, t∗ + ξ] is chosen in an arbitrary way (we only need t∗ to be large). We concluded that
x2(t) ≥ g for all large t. In the second case, in view of our above discussion, the choice of
g is independent of the positive solution, and we proved that any positive solution of (2.5)
satisfies x2(t) ≥ g for all sufficiently large t. This completes the proof of this theorem.

Theorem 4.4. If

a2τ > ln
1 − (1 −D)e−(a1−βx

∗
2)τ

1 − (1 − 2D)e−(a1−βx
∗
2)τ

,

re−wτ1 > d +
Dβv∗

1e
(a1τ−wτ1)

(1 −D)ea1τ − (1 − 2D)e(a1−(a2+βx
∗
2))τ

,

(4.30)

hold, system (2.3) is permanent. Here

v∗
1 =

a2
(
(1 −D)

(
ea2τ + e−(a1+βx

∗
2)τ

) − (1 − 2D)e(a2−(a1+βx
∗
2))τ − 1

)

b2(ea2τ − 1)
(
1 − (1 −D)e(a2−(a1+βx

∗
2))τ

) . (4.31)
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Figure 1:Dynamical behavior of system (2.5) on prey-extinction periodic solution with x2(0) = 5.2, y1(0) =
5.0, y2(0) = 5.6, r = 1, τ1 = 3, d = 3, a1 = 1, a2 = 1, b2 = 1, β = 4, k = 0.9, D = 0.5, w = 1, and τ = 1.
(a) Time-series of x2(t), (b) time-series of y1(t), (c) time-series of y2(t).

Proof. Let (x1(t), x2(t), y1(t), y2(t)) be any solution of system (2.3). From system (2.3) and
Theorem 4.3, we have

dx1(t)
dt

= x1(t)(a1 − b1x1(t)),

dx2(t)
dt

≥ −a2x2(t),

t /=nτ,

Δx1(t) = D(x2(t) − x1(t)),

Δx2(t) = D(x1(t) − x2(t)),
t = nτ, n = 1, 2, . . . .

(4.32)
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Figure 2: Dynamical behavior of the permanence of system (2.5) with x2(0) = 5.2, y1(0) = 5.0, y2(0) = 5.6,
τ1 = 1, d = 3, a1 = 1, a2 = 1, b2 = 1 β = 4, k = 0.9, D = 0.5, w = 1, and τ = 1. (a) Time-series of x2(t).
(b)Time-series of y1(t). (c) Time-series of y2(t).

By the same argument as those in the proof of Theorem 4.1, we have that x1(t) ≥ x′′∗
1 −

ε = p1, and x2(t) ≥ x′′∗
1 e−a2τ − ε = p2, and ε > 0 is small enough. Here

x′′∗
1 =

a2
(
(1 −D)(ea2τ + e−a1τ) − (1 − 2D)e(a2−a1)τ − 1

)

b2(ea2τ − 1)
(
1 − (1 −D)e(a2−a1)τ

) , (4.33)

x′′∗
2 =

Dea2τx′′∗
1

(1 −D)ea2τ − (1 − 2D)e(a2−a1)τ
. (4.34)

In view of Theorem 4.1, the third equation of system (2.3) becomes

dy1(t)
dt

≥ r
(
p2g −Me−wτ1

) −wy1(t). (4.35)
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It is easy to obtain y1(t) ≥ δ−ε, and ε > 0 is small enough, where δ = r(p2g−Me−wτ1)/w−ε. By
Theorem 4.3 and the above discussion, system (2.3) is permanent. The proof of Theorem 4.4
is complete.

5. Discussion

In this paper, we investigate a delayed predator-prey model with impulsive diffusion on
predator and stage structure on prey. We analyze that the prey-extinction periodic solution of
system (2.3) is globally attractive, andwe also obtain the permanent condition of system (2.3).
It is assumed that x2(0) = 5.2, y1(0) = 5.0, y2(0) = 5.6, r = 1, τ1 = 3, d = 3, a1 = 1, a2 = 1, b2 = 1,
β = 4, k = 0.9,D = 0.5,w = 1, and τ = 1. Then the prey-extinction periodic solution is a global
attractivity (see Figure 1). We also assume that x2(0) = 5.2, y1(0) = 5.0, y2(0) = 5.6, r = 1,
τ1 = 1, d = 3, a1 = 1, b1 = 1, a2 = 1, b2 = 1, β = 4, k = 0.9, D = 0.5, w = 1, τ = 1, then, system
(2.5) is permanent (see Figure 2). From Theorems 4.1 and 4.4, we can easily guess that there
must exist a threshold τ∗1 . If τ1 > τ∗1 , the prey-extinction periodic solution (˜x1(t), ˜x2(t), 0, 0)
of (2.3) is globally attractive. If τ1 < τ∗1 , system (2.3) is permanent. The results show that the
diffusion and the mature time of the prey play important roles for the permanence of system
(2.3) and provide tactical basis for the biological resource protection.
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