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We consider the second-order three-point discrete boundary value problem. By using the
topological degree theory and the fixed point index theory, we provide sufficient conditions for the
existence of sign-changing solutions, positive solutions, and negative solutions. As an application,
an example is given to demonstrate our main results.

1. Introduction

In this paper, we consider the following second-order three-point discrete boundary value
problem (BVP):

Δ2u(t − 1) + f(t, u(t)) = 0, t ∈ [1, n],

u(0) = 0, u(n + 1) = αu(m),
(1.1)

where n ∈ {2, 3, . . .}, [1, n] is the discrete interval {1, 2, . . . , n}, m ∈ [1, n], 0 ≤ α ≤ 1, Δu(t) =
u(t + 1) − u(t), Δ2u(t) = Δ(Δu(t)), and f : [1, n] × R → R is a continuous function.

Boundary value problems for difference equations arise in different areas of applied
mathematics and physics. Existence and multiplicity of positive solutions or nontrivial
solutions for boundary value problems of difference equations have been extensively studied
in the literature; see [1–9] and the references therein.



2 Discrete Dynamics in Nature and Society

On the other hand, in the existing literature, there are some papers studying the
sign-changing solutions for boundary value problems of differential equations; for example,
see [10–12]. But the problems of the existence of sign-changing solutions to discrete
multipoint boundary value problems have received very little attention in the literature to
the best knowledge of the authors. In this paper, motivated by [12, 13], we aim to study
the existence of multiple sign-changing solutions to the second-order three-point discrete
boundary value problem (1.1). Under some suitable conditions, we prove that the three-point
discrete boundary value problem (1.1) has at least two sign-changing solutions, two positive
solutions, and two negative solutions. The main approach is the topological degree theory
and the fixed point index theory.

The organization of this paper is as follows. In Section 2, we present some preliminary
knowledge about the topological degree theory and the fixed point index theory and use the
knowledge to obtain some lemmas which are very crucial in our main results. In Section 3,
by computing the topological degree and the fixed point index, we discuss the existence of
multiple sign-changing solutions to BVP (1.1), and a simple example is given.

2. Preliminaries

As we have mentioned, we will use the theory of the Leray-Schauder degree and the fixed
point index in a cone to prove our main existence results. Let us collect some results that will
be used below. One can refer to [13–16] for more details.

Lemma 2.1 (see [13, 14]). Let E be a Banach space and, X ⊂ E be a cone in E. Assume that Ω is a
bounded open subset of E. Suppose that A : X ∩Ω → X is a completely continuous operator. If there
exists x0 ∈ X \ {θ} such that

x −Ax/=μx0, ∀x ∈ X ∩ ∂Ω, μ ≥ 0, (2.1)

then the fixed point index i(A,X ∩Ω, X) = 0.

Lemma 2.2 (see [13, 14]). Let E be a Banach space and let X ⊂ E be a cone in E. Assume thatΩ is a
bounded open subset of E, θ ∈ Ω. Suppose that A : X ∩Ω → X is a completely continuous operator.
If

Ax/=μx, ∀x ∈ X ∩ ∂Ω, μ ≥ 1. (2.2)

then the fixed point index i(A,X ∩Ω, X) = 1.

Lemma 2.3 (see [15]). Let E be a Banach space, let Ω be a bounded open subset of E, θ ∈ Ω, and
A : Ω → E be completely continuous. Suppose that

‖Ax‖ ≤ ‖x‖, Ax /=x, ∀x ∈ ∂Ω, (2.3)

then deg(I −A,Ω, θ) = 1.



Discrete Dynamics in Nature and Society 3

Lemma 2.4 (see [16]). Let A be a completely continuous operator which is defined on a Banach
space E. Let x0 ∈ E be a fixed point of A and assume that A is defined in a neighborhood of x0 and
Fréchet differentiable at x0. If 1 is not an eigenvalue of the linear operatorA′(x0), then x0 is an isolated
singular point of the completely continuous vector field I −A and for small enough r > 0,

deg(I −A,B(x0, r), θ) = (−1)k, (2.4)

where k is the sum of the algebraic multiplicities of the real eigenvalues of A′(x0) in (1,+∞).

Lemma 2.5 (see [16]). LetA be a completely continuous operator which is defined on a Banach space
E. Assume that 1 is not an eigenvalue of the asymptotic derivative. Then the completely continuous
vector field I −A is nonsingular on spheres Sρ = {x ∈ E : ‖x‖ = ρ} of sufficiently large radius ρ and

deg
(
I −A,B

(
θ, ρ
)
, θ
)
= (−1)k, (2.5)

where k is the sum of the algebraic multiplicities of the real eigenvalues of A′(∞) in (1,+∞).

From [12, Lemma2.4], we have the following lemma.

Lemma 2.6. LetX be a solid cone of a Banach space E (X◦ is nonempty), letΩ be a relatively bounded
open subset of X, and let A : X → X be a completely continuous operator. If any fixed point of A in
Ω is an interior point of X, there exists an open subset O of E (O ⊂ Ω) such that

deg(I −A,O, θ) = i(A,Ω, X). (2.6)

Now we shall consider the space

E = {u : [0, n + 1] −→ R | u(0) = 0, u(n + 1) = αu(m)} (2.7)

equipped with the norm ‖u‖ = maxt∈[0,n+1]|u(t)|. Clearly E is a n−dimensional Banach space.
Choose the cone P ⊂ E defined by

P = {u ∈ E | u(t) ≥ 0, t ∈ [1, n]}. (2.8)

Obviously, the interior of P is P ◦ = {u ∈ E | u(t) > 0, t ∈ [1, n]}. For each u, v ∈ E,
we write u ≥ v if u(t) ≥ v(t) for t ∈ [1, n]. A solution u of BVP (1.1) is said to be a positive
solution (a negative solution, resp.) if u ∈ P \ {θ} (u ∈ (−P) \ {θ}, resp.). A solution u of BVP
(1.1) is said to be a sign-changing solution if u/∈ P ∪ (−P).
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Lemma 2.7. Let v : [1, n] → R be fixed. Then the problem

Δ2u(t − 1) + v(t) = 0, t ∈ [1, n],

u(0) = 0, u(n + 1) = αu(m)
(2.9)

has a unique solution

u(t) =
n∑

k=1

G(t, k)v(k), (2.10)

where G(t, k) is given by

G(t, k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(n + 1 − αm − t + αt)
n + 1 − αm

, k ∈ [1, t − 1] ∩ [1, m − 1];

t(n + 1 − αm − k + αk)
n + 1 − αm

, k ∈ [t,m − 1];

k(n + 1 − αm − t) + αmt

n + 1 − αm
, k ∈ [m, t − 1];

t(n + 1 − k)
n + 1 − αm

, k ∈ [t, n] ∩ [m,n].

(2.11)

Proof. We use a similar approach to that in [17, Lemmas 3.1, 3.3]. From Δ2u(t − 1) + v(t) = 0,
we have

Δu(1)−Δu(0)+v(1)=0, Δu(2)−Δu(1)+v(2)=0, . . . ,Δu(t)−Δu(t−1)+v(t)=0. (2.12)

Suming the above equations, one gets

Δu(t) = Δu(0) −
t∑

i=1

v(i), (2.13)

where, and in what follows, we denote
∑l

k=s x(k) = 0 when l < s. Again summing (2.13) from
0 to t − 1, it follows that

u(t) = u(0) + tΔu(0) −
t−1∑

k=1

(t − k)v(k) (2.14)

where t ∈ [0, n + 1]. Since u(0) = 0 and u(n + 1) = αu(m), one gets

Δu(0) =
1

n + 1 − αm

n∑

k=1

(n + 1 − k)v(k) − α

n + 1 − αm

m−1∑

k=1

(m − k)v(k). (2.15)
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By (2.14) and (2.15), we have

u(t) =
t

n + 1 − αm

n∑

k=1

(n + 1 − k)v(k) − αt

n + 1 − αm

m−1∑

k=1

(m − k)v(k)

−
t−1∑

k=1

(t − k)v(k), t ∈ [0, n + 1].

(2.16)

When t > m, it follows from (2.16) that

u(t) =
t

n + 1 − αm

(
m−1∑

k=1

(n + 1 − k)v(k) +
t−1∑

k=m

(n + 1 − k)v(k) +
n∑

k=t

(n + 1 − k)v(k)

)

− αt

n + 1 − αm

m−1∑

k=1

(m − k)v(k) −
m−1∑

k=1

(t − k)v(k) −
t−1∑

k=m

(t − k)v(k) =
n∑

k=1

G(t, k)v(k).

(2.17)

When t ≤ m, it follows from (2.16) that

u(t) =
t

n + 1 − αm

(
t−1∑

k=1

(n + 1 − k)v(k) +
m−1∑

k=t

(n + 1 − k)v(k) +
n∑

k=m

(n + 1 − k)v(k)

)

− αt

n + 1 − αm

(
t−1∑

k=1

(m − k)v(k) +
m−1∑

k=t

(m − k)v(k)

)

−
t−1∑

k=1

(t − k)v(k)

=
n∑

k=1

G(t, k)v(k).

(2.18)

Then, the unique solution of (2.9) can be written as u(t) =
∑n

k=1 G(t, k)v(k).

Remark 2.8. Green’s function G(t, k) defined by Lemma 2.7 is positive on [1, n] × [1, n].
Define operators K, f, A : E → E, respectively, by

(Ku)(t) =
n∑

k=1

G(t, k)u(k), u ∈ E, t ∈ [1, n];

(fu)(t) = f(t, u(t)), u ∈ E, t ∈ [1, n];

(2.19)

A = Kf. (2.20)

Now from Lemma 2.7, it is easy to see that BVP (1.1) has a solution u = u(t) if and only if
u is a fixed point of the operator A. It follows from the continuity of f that A : E → E is
completely continuous.



6 Discrete Dynamics in Nature and Society

We shall use the following assumptions.

(H1) We have 0 ≤ α < 1, or

α = 1, Λ = φ, (2.21)

where Λ = A ∩ B, and

A =
{
(2k − 1)π
n + 1 +m

: k = 1, 2, . . . ,
[
n + 1 +m

2

]}
,

B =

⎧
⎪⎨

⎪⎩

{
2tπ

n + 1 −m
: t = 1, 2, . . . ,

[
n −m

2

]}
, n −m ≥ 2,

φ, n −m < 2.

(2.22)

[x] denotes the integer part of the real number x.

(H2) For any t ∈ [1, n], f(t, 0) = 0; for any t ∈ [1, n] and x ∈ R, xf(t, x) ≥ 0.

(H3) There exists an even number k0 ∈ [1, n] such that

1
λk0

< β0 <
1

λk0+1
, (2.23)

where limx→ 0(f(t, x)/x) = β0 uniformly for t ∈ [1, n], and λ−1k = 4sin2(ξk/2), k ∈ [1, n],
ξ1, . . . , ξn are given in Lemma 2.9, λ−1n+1 � +∞.

(H4) There exists an even number k1 ∈ [1, n] such that

1
λk1

< β∞ <
1

λk1+1
, (2.24)

where lim|x|→∞(f(t, x)/x) = β∞ uniformly for t ∈ [1, n], and λ−11 , . . . , λ−1n , λ−1n+1 are given in
condition (H3).

(H5) There exists a constant T > 0 such that for any (t, x) ∈ [1, n] × [−T, T],

∣∣f(t, x)
∣∣ < ρ−1T, (2.25)

where ρ = [(n + 1)2 − αm2]
2
/8(n + 1 − αm)2.

Lemma 2.9. Suppose that (H1) holds; then there exist ξ1, ξ2, . . . , ξn with 0 < ξ1 < ξ2 < · · · < ξn < π
such that sin(n + 1)ξi = α sinmξi, i = 1, 2, . . . , n.
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Proof. First, suppose that 0 ≤ α < 1. Let h(x) = sin(n + 1)x − α sinmx, then we have

h

(
π

2(n + 1)

)
> 0, h

(
π

n + 1

)
≤ 0, h

(
3π

2(n + 1)

)
< 0,

h

(
5π

2(n + 1)

)
> 0, h

(
7π

2(n + 1)

)
< 0, . . . , (−1)nh

(
(2n + 1)π
2(n + 1)

)
> 0.

(2.26)

It follows from the intermediate value theorem that there exist ξ1 ∈ (π/2(n+ 1), π/n+ 1] and
ξi ∈ ((2i − 1)π/2(n + 1), (2i + 1)π/2(n + 1)), i = 2, . . . , n, such that sin(n + 1)ξi = α sinmξi,
i = 1, 2, . . . , n.

Now suppose that α = 1 and Λ = φ. Let Λ1 = A ∪ B. It is easy to see that there
exist ζi ∈ Λ1, i = 1, 2, . . . , n with 0 < ζ1 = (π/n + 1 + m) < ζ2 < · · · < ζn < π such that
sin(n + 1)ζi = sinmζi. Then Lemma 2.9 is proved.

Remark 2.10. Condition Λ = φ is reasonable. For example, let n = 5, m = 3, then Λ = φ. Let
n = 18, m = 3, then ξ = π/2 ∈ Λ/=φ.

Lemma 2.11. Suppose that (H1) holds; then the set of eigenvalues of the linear operator K consists
of the strictly decreasing finite sequence of λk, k = 1, 2, . . . , n, with corresponding eigenfunctions
ϕk(t) = sin(tξk), where λk = (4sin2(ξk/2))

−1
, k = 1, 2, . . . , n, and ξ1, . . . , ξn are given in Lemma 2.9.

In addition, the algebraic multiplicity of each eigenvalue λk of the linear operator K is equal to 1.

Proof. It is easy to see that

Ku(t) = λu(t), t ∈ [1, n], u ∈ E (2.27)

is equivalent to the following equation:

λΔ2u(t − 1) + u(t) = 0, t ∈ [1, n],

u(0) = 0, u(n + 1) = αu(m).
(2.28)

By Lemma 2.9, we suppose that ϕk(t) = sin(tξk) is a nontrivial solution of (2.28). Then,

λ(sin(t + 1)ξk − 2 sin tξk + sin(t − 1)ξk) + sin tξk = 0. (2.29)

Hence, for any k ∈ [1, n], λ = λk = (4sin2(ξk/2))
−1is an eigenvalue of the linear operator

K with the corresponding eigenfunction ϕk(t) = sin(tξk). Since the linear operator K is
identified with a linear transformation from Rn to Rn, the set of eigenvalues of the linear
operator K consists of the strictly decreasing finite sequence of λk, k = 1, 2, . . . , n. Obviously,
the algebraic multiplicity of each eigenvalue λk of K is equal to 1. This completes the
proof.
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Remark 2.12. When α = 0, we see that BVP (1.1) is reduced to Dirichlet boundary value
problem and λk = (4sin2(kπ/2(n + 1)))−1, k = 1, 2, . . . , n. When α = 1 and m = n, BVP
(1.1) is reduced to the focal boundary value problem and λk = (4sin2(2k − 1)π/4n + 2)−1,
k = 1, 2, . . . , n.

Lemma 2.13. Suppose that (H2) holds, and u = (u1, u2, . . . , un)
T ∈ P \ {θ} is a solution of BVP

(1.1). Then u ∈ P ◦.

Proof. If u(t) = 0 for some t ∈ [1, n], then

u(t + 1) + u(t − 1) = Δ2u(t − 1) = −f(t, u(t)) = 0. (2.30)

So u(t ± 1) = 0, and it follows that if u is zero somewhere in [1, n], then it vanishes identically
in [1, n].

Remark 2.14. Similarly to Lemma 2.13, we know also that if (H2) holds and u ∈ −P \ {θ} is a
solution of BVP (1.1), then u ∈ −P ◦.

Lemma 2.15. Suppose that (H2)–(H4) hold. Then the operatorA is Fréchet differentiable at θ and∞,
where operator A is defined by (2.20). Moreover, A′(θ) = β0K and A′(∞) = β∞K.

Proof. By (H3), for any ε > 0, there exist δ > 0 such that |f(t, x)−β0x| < ε|x| for any 0 < |x| < δ,
t ∈ [1, n]. Hence, noticing that f(t, 0) = 0 for any t ∈ [1, n], we have

∥∥Au −Aθ − β0Ku
∥∥ =
∥∥K
(
fu − β0u

)∥∥ ≤ ‖K‖ · max
t∈[1,n]

∣∣f(t, u(t)) − β0u(t)
∣∣ < ε‖K‖ · ‖u‖ (2.31)

for any u ∈ E with 0 < ‖u‖ < δ, where ‖K‖ = maxt∈[1,n]
∑n

k=1 |G(t, k)|. Consequently,

lim
‖u‖→ 0

∥∥Au −Aθ − β0Ku
∥∥

‖u‖ = 0. (2.32)

This means that the nonlinear operator A is Fréchet differentiable at θ, and A′(θ) = β0K.
By (H4), for any ε > 0, there existM > 0 such that |f(t, x)−β∞x| < ε|x| for any |x| > M,

t ∈ [1, n]. Let c = max(t,x)∈[1,n]×[−M,M]|f(t, x) − β∞x|. By the continuity of f(t, x) with respect
to x, we have c < +∞. Then, for any (t, x) ∈ [1, n] × R, |f(t, x) − β∞x| < ε|x| + c. Thus

∥∥Au − β∞Ku
∥∥ ≤ ‖K‖ · max

t∈[1,n]

∣∣f(t, u(t)) − β∞u(t)
∣∣ < ‖K‖(ε‖u‖ + c) (2.33)

for any u ∈ E. Consequently,

lim
‖u‖→∞

∥∥Au − β∞Ku
∥∥

‖u‖ = 0, (2.34)

which implies that operator A is Fréchet differentiable at ∞, and A′(∞) = β∞K. The proof is
completed.
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Lemma 2.16. Let T be given in condition (H5). Suppose that (H1)–(H4) hold. Then, A(P) ⊂ P ,
A(−P) ⊂ −P . Moreover, one has the following.

(i) There exists an r0 ∈ (0, T) such that for any 0 < r ≤ r0,

i(A,P ∩ B(θ, r), P) = 0, i(A,−P ∩ B(θ, r),−P) = 0. (2.35)

(ii) There exists an R0 > T such that for any R ≥ R0,

i(A,P ∩ B(θ, R), P) = 0, i(A,−P ∩ B(θ, R),−P) = 0. (2.36)

Proof. By (H2) and the fact thatG(t, k) is positive on [1, n]×[1, n], we get that for any t ∈ [1, n],
f(t, P) ⊂ P , f(t,−P) ⊂ −P , and K(P) ⊂ P , K(−P) ⊂ −P . Then A(P) ⊂ P and A(−P) ⊂ −P .

We only need to prove conclusion (i). The proof of conclusion (ii) is similar and will
be omitted here. Let γ0 = inf‖u‖=1‖u − β0Ku‖. Condition (H3) yields γ0 > 0. It follows from
(2.32) that there exists r0 ∈ (0, T) such that

∥∥Au − β0Ku
∥∥ <

1
2
γ0‖u‖, (2.37)

where 0 < ‖u‖ ≤ r0. SettingH(s, u) = sAu+(1−s)β0Ku, thenH : [0, 1]×E → E is completely
continuous. For any s ∈ [0, 1] and 0 < ‖u‖ ≤ r0, we obtain that

‖u −H(s, u)‖ ≥ ∥∥u − β0Ku
∥∥ − s

∥∥Au − β0Ku
∥∥ ≥ γ0‖u‖ − 1

2
γ0‖u‖ > 0. (2.38)

According to the homotopy invariance of the fixed point index, for any 0 < r ≤ r0, we have

i(A,P ∩ B(θ, r), P) = i
(
β0K,P ∩ B(θ, r), P

)
, (2.39)

i(A,−P ∩ B(θ, r),−P) = i
(
β0K,−P ∩ B(θ, r),−P). (2.40)

Let ϕ1(t) = sin(tξ1). Then Kϕ1 = λ1ϕ1 and ϕ1 ∈ P (see Lemma 2.11 and the proof of
Lemma 2.9). We claim

u − β0Ku/=σϕ1, ∀u ∈ P ∩ ∂B(θ, r), σ ≥ 0. (2.41)

Indeed, we assume that there exist u1 ∈ P ∩ ∂B(θ, r) and σ1 ≥ 0 such that u1 − β0Ku1 = σ1ϕ1.
Obviously, u1 = β0Ku1 + σ1ϕ1 ≥ σ1ϕ1. Since β0 /=λ−1k , k = 1, 2, . . . , n, then σ1 > 0. Set σmax =
sup{σ : u1 ≥ σϕ1}. It is clear that σ1 ≤ σmax < +∞ and u1 ≥ σmaxϕ1. Then

u1 = β0Ku1 + σ1ϕ1 ≥ β0Kσmaxϕ1 + σ1ϕ1 =
(
β0λ1σmax + σ1

)
ϕ1. (2.42)

Since β0λ1 > 1, then β0λ1σmax + σ1 > σmax, which contradicts with the definition of σmax. This
proves (2.41).
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It follows from Lemma 2.1 and (2.41) that

i
(
β0K,P ∩ B(θ, r), P

)
= 0. (2.43)

Similarly to (2.43), we know also that

i
(
β0K,−P ∩ B(θ, r),−P) = 0. (2.44)

By (2.39), (2.43), (2.40), and (2.44), we conclude

i(A,P ∩ B(θ, r), P) = 0, i(A,−P ∩ B(θ, r),−P) = 0. (2.45)

3. Main Results

Now with the aid of the lemmas in Section 2, we are in position to state and prove our main
results.

Theorem 3.1. Assume that the conditions (H1)–(H5) hold. Then BVP (1.1) has at least two sign-
changing solutions. Moreover, BVP (1.1) has at least two positive solutions and two negative
solutions.

Proof. From the proof of Lemma 2.7, we have

n∑

k=1

G(t, k) =
t

n + 1 − αm

n∑

k=1

(n + 1 − k) − αt

n + 1 − αm

m−1∑

k=1

(m − k) −
t−1∑

k=1

(t − k)

=
t

n + 1 − αm
· n(n + 1)

2
− αt

n + 1 − αm
· m(m − 1)

2
− t(t − 1)

2

≤

[
(n + 1)2 − αm2

]2

8(n + 1 − αm)2
= ρ.

(3.1)

Since G(t, k) is positive on [1, n] × [1, n], by (H5), we have for any u ∈ E with ‖u‖ = T ,

|(Au)(t)| =
∣∣∣∣∣

n∑

k=1

G(t, k)f(k, u(k))

∣∣∣∣∣
≤

n∑

k=1

G(t, k)
∣∣f(k, u(k))

∣∣

< ρ−1T
n∑

k=1

G(t, k) ≤ T, ∀t ∈ [1, n].

(3.2)

This gives

‖Au‖ < T = ‖u‖. (3.3)
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By (3.3) and Lemmas 2.3 and 2.2, we have

deg(I −A,B(θ, T), θ) = 1, (3.4)

i(A,P ∩ B(θ, T), P) = 1, (3.5)

i(A,−P ∩ B(θ, T),−P) = 1. (3.6)

From (H3) and Lemma 2.11, one has that the eigenvalues of the operator A′(θ) = β0K which
are larger than 1 are

β0λ1, β0λ2, . . . , β0λk0 , (3.7)

From (H4) and Lemma 2.11, one has that the eigenvalues of the operatorA′(∞) = β∞Kwhich
are larger than 1 are

β∞λ1, β∞λ2, . . . , β∞λk1 . (3.8)

It follows from Lemmas 2.4 and 2.5 that there exist 0 < r1 < r0 and R1 > R0 such that

deg(I −A,B(θ, r1), θ) = (−1)k0 = 1, (3.9)

deg(I −A,B(θ, R1), θ) = (−1)k1 = 1, (3.10)

where r0 and R0 are given in Lemma 2.16. Owing to Lemma 2.16, one has

i(A,P ∩ B(θ, r1), P) = 0, (3.11)

i(A,−P ∩ B(θ, r1),−P) = 0, (3.12)

i(A,P ∩ B(θ, R1), P) = 0, (3.13)

i(A,−P ∩ B(θ, R1),−P) = 0. (3.14)

According to the additivity of the fixed point index, by (3.5), (3.11), and (3.13), we have

i
(
A,P ∩

(
B(θ, T) \ B(θ, r1)

)
, P
)
= i(A,P ∩ B(θ, T), P) − i(A,P ∩ B(θ, r1), P) = 1 − 0 = 1,

(3.15)

i
(
A,P ∩

(
B(θ, R1) \ B(θ, T)

)
, P
)
= i(A,P ∩ B(θ, R1), P) − i(A,P ∩ B(θ, T), P) = 0 − 1 = −1.

(3.16)

Hence, the nonlinear operator A has at least two fixed points u1 ∈ P ∩ (B(θ, T) \ B(θ, r1)) and
u2 ∈ P ∩ (B(θ, R1) \ B(θ, T)), respectively. Then, u1 and u2 are positive solutions of BVP (1.1).
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Using again the additivity of the fixed point index, by (3.6), (3.12), and (3.14), we get

i
(
A,−P ∩

(
B(θ, T) \ B(θ, r1)

)
,−P
)
= 1 − 0 = 1, (3.17)

i
(
A,−P ∩

(
B(θ, R1) \ B(θ, T)

)
,−P
)
= 0 − 1 = −1. (3.18)

Hence, the nonlinear operator A has at least two fixed points u3 ∈ −P ∩ (B(θ, T) \ B(θ, r1))
and u4 ∈ −P ∩ (B(θ, R1) \B(θ, T)), respectively. Then, u3 and u4 are negative solutions of BVP
(1.1). Let

Γ1 =
{
u ∈ P ∩

(
B(θ, T) \ B(θ, r1)

)
: Au = u

}
,

Γ2 =
{
u ∈ P ∩

(
B(θ, R1) \ B(θ, T)

)
: Au = u

}
,

Γ3 =
{
u ∈−P ∩

(
B(θ, T) \ B(θ, r1)

)
: Au=u

}
,

Γ4 =
{
u ∈−P ∩

(
B(θ, R1) \ B(θ, T)

)
: Au=u

}
.

(3.19)

It follows from Lemmas 2.6, 2.13, Remark 2.14, and (3.15)–(3.18) that there exist open subsets
O1, O2, O3, and O4 of E such that

Γ1 ⊂ O1 ⊂ P ∩
(
B(θ, T) \ B(θ, r1)

)
, Γ2 ⊂ O2 ⊂ P ∩

(
B(θ, R1) \ B(θ, T)

)
,

Γ3 ⊂ O3 ∈ −P ∩
(
B(θ, T) \ B(θ, r1)

)
, Γ4 ⊂ O4 ⊂ −P ∩

(
B(θ, R1) \ B(θ, T)

)
,

(3.20)

deg(I −A,O1, θ) = 1, (3.21)

deg(I −A,O2, θ) = −1, (3.22)

deg(I −A,O3, θ) = 1, (3.23)

deg(I −A,O4, θ) = −1. (3.24)

By (3.4), (3.21), (3.23), (3.9), and the additivity of Leray-Schauder degree, we get

deg
(
I −A,B(θ, T) \

(
O1 ∪O3 ∪ B(θ, r1)

)
, θ
)
= 1 − 1 − 1 − 1 = −2, (3.25)

which implies that the nonlinear operator A has at least one fixed point u5 ∈ B(θ, T) \ (O1 ∪
O3 ∪ B(θ, r1)).

Similarly, by (3.10), (3.22), (3.24), and (3.4), we get

deg
(
I −A,B(θ, R1) \

(
O2 ∪O4 ∪ B(θ, T)

)
, θ
)
= 1 + 1 + 1 − 1 = 2, (3.26)
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which implies that the nonlinear operator A has at least one fixed point u6 ∈ B(θ, R1) \ (O2 ∪
O4 ∪B(θ, T)). Then, u5 and u6 are two distinct sign-changing solutions of BVP (1.1). Thus, the
proof of Theorem 3.1 is finished.

Theorem 3.2. Assume that the conditions (H1)–(H5) hold, and that f(t, x) = −f(t,−x) for t ∈ [1, n]
and x ∈ R. Then BVP (1.1) has at least four sign-changing solutions. Moreover, BVP (1.1) has at
least two positive solutions and two negative solutions.

Proof. It follows from the proof of Theorem 3.1 that BVP (1.1) has at least six different
nontrivial solutions ui(i = 1, 2, . . . , 6) satisfying that

u1, u2∈P ◦, u3, u4∈−P ◦, u5, u6 /∈ P ∪ (−P), r1 < ‖u5‖ < ‖T‖ < ‖u6‖ < R1. (3.27)

By the condition that f(t, x) = −f(t,−x) for t ∈ [1, n] and x ∈ R, we know that −u5 and −u6

are also solutions of BVP (1.1). Let u7 = −u5, u8 = −u6, then ui(i = 1, 2, . . . , 8) are different
nontrivial solutions of BVP (1.1). The proof is completed.

By the method used in the proof of Theorems 3.1 and 3.2, we can prove the following
corollaries.

Corollary 3.3. Assume that the conditions (H1)–(H3) and (H5) or (H1), (H2), (H4), and (H5) hold.
Then BVP (1.1) has at least one sign-changing solution. Moreover, BVP (1.1) has at least one positive
solution and one negative solution.

Corollary 3.4. Assume that the conditions (H1)–(H3) and (H5) or (H1), (H2), (H4), and (H5) hold,
and that f(t, x) = −f(t,−x) for x ∈ R and t ∈ [1, n]. Then BVP (1.1) has at least two sign-changing
solutions. Moreover, BVP (1.1) has at least one positive solution and one negative solution.

Next, we present a simple example to which Theorem 3.2 can be applied.

Example 3.5. Consider the second-order three-point discrete boundary value problem

Δ2u(t − 1) + f(t, u(t)) = 0, t ∈ [1, 4],

u(0) = 0, u(5) = u(3),
(3.28)

where n = 4, m = 3, α = 1, and

f(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bx

1 + x2
, |x| ≤ 20,

(
18 − 2b

401

)
x +

60b
401

− 360, 20 ≤ x ≤ 30,

(
18 − 2b

401

)
x + 360 − 60b

401
, −30 ≤ x ≤ −20,

x

(
5 +

1000
100 + x2

)
, |x| ≥ 30,

(3.29)

b ∈ (4sin2(3π/16), 4sin2(5π/16)). Obviously, β0 = b, β∞ = 5, and f(t, x) = −f(t,−x) for all
(t, x) ∈ [1, 4] × R.
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From Lemma 2.11 and the proof of Lemma 2.9, we know that the set of eigenvalues
of the linear operator K (see (2.19)) consists of the strictly decreasing finite sequence of λk,
k = 1, 2, 3, 4, where λk = (4sin2((2k − 1)π/16))−1. Then the conditions (H1)–(H4) hold. Since
|f(t, x)| ≤ (b/2) < (3/2) for all (t, x) ∈ [1, 4]×[−12, 12], then (H5) holds with T = 12 and ρ = 8.
Therefore, by Theorem 3.2, BVP (3.28) has at least four sign-changing solutions. Moreover,
BVP (3.28) has at least two positive solutions and two negative solutions.
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