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The existence of equilibrium solutions to reaction-diffusion recurrent neural networks with
Dirichlet boundary conditions on time scales is proved by the topological degree theory and
M-matrix method. Under some sufficient conditions, we obtain the uniqueness and global
exponential stability of equilibrium solution to reaction-diffusion recurrent neural networks with
Dirichlet boundary conditions on time scales by constructing suitable Lyapunov functional and
inequality skills. One example is given to illustrate the effectiveness of our results.

1. Introduction

In the past few years, various neural network models have been extensively investigated
and successfully applied to signal processing, image processing, pattern classification,
quadratic optimization, associative memory, moving object speed detection, and so forth.
Such applications heavily depend on the dynamical behaviors of the neural networks.
Therefore, the analysis of the dynamical behaviors is a necessary step for practical design
of neural networks.

As is well known, both in biological andman-made neural networks, strictly speaking,
diffusion effects cannot be avoided in the neural network models when electrons are moving
in asymmetric electromagnetic fields, so we must consider that the activations vary in spaces
as well as in time. References [1–10] have considered the stability of neural networks with
diffusion terms, which are expressed by partial differential equations. It is also common to
consider the diffusion effects in biological systems (such as immigration, see, e.g., [11–13]).
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For more details of the literature related to models of reaction-diffusion neural networks and
their applications, the reader is referred to [14–21] and the references cited therein.

In fact, both continuous and discrete systems are very important in implementing
and applications. But it is troublesome to study the dynamics behavior for continuous and
discrete systems, respectively. Therefore, it is meaningful to study that on time scales which
can unify the continuous and discrete situations [22, 23].

To the best of our knowledge, few authors have considered global exponential stability
of reaction-diffusion recurrent neural networks with Dirichlet boundary conditions on time
scales, which is a very important in theories and applications and also is very challenging
problem. Motivated by the above discussion, in this paper, we will investigate the global
exponential stability of the following reaction-diffusion recurrent neural network with initial
value conditions and Dirichlet boundary conditions on time scales:

uΔ
i (t, x) =

m∑

k=1

∂

∂xk

(
aik

∂ui

∂xk

)
− biui(t, x) +

n∑

j=1

cijfj
(
uj(t, x)

)
+ Ii, (t, x) ∈ T ×Ω, (1.1)

ui(0, x) = φi(x), x ∈ Ω, (1.2)

ui(t, x) = 0, (t, x) ∈ [0,+∞)
T
× ∂Ω, (1.3)

where i = 1, 2, . . . , n,T ⊂ R is a time scale and T ∩ [0,+∞) = [0,+∞)
T
is unbounded, n is

the number of neurons in the networks, x = (x1, x2, . . . , xm)
T ∈ Ω ⊂ R

m, and Ω = {x =
(x1, x2, . . . , xm)

T : |xi| < li, i = 1, 2, . . . , m} is a bounded compact set with smooth boundary
∂Ω in space R

m, u(t, x) = (u1(t, x), u2(t, x), . . . , un(t, x))
T : T × Ω → R

n, and ui(t, x) is the
state of the ith neurons at time t and in space x. Smooth function aik > 0 corresponds to the
transmission diffusion operator along with the ith unit, bi > 0 represents the rate with which
the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs, cij denotes the strength of the jth unit on the ith unit at
time t and in space x, dij is the synaptic connection strength of jth unit on ith unit at time t
and in space x, fj(·) denotes the activation function of the jth unit at time t and in space x,
φ(x) = (φ1(x), φ2(x), . . . , φn(x))

T ∈ C(Ω,Rn), and I = (I1, I2, . . . , In)
T ∈ R

n is a constant input
vector.

2. Preliminaries

In this section, we first recall some basic definitions and lemmas on time scales which are
used in what follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then T

k = T \ {m}; otherwise T
k = T. If T has a right-scattered minimum m,

then Tk = T \ {m}; otherwise T
k = T.
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Definition 2.1 (see [24]). A function f : T → R is called regulated provided its right-side
limits exist (finite) at all right-side points in T and its left-side limits exist (finite) at all left-
side points in T.

Definition 2.2 (see [24]). A function f : T → R is called rd continuous provided it is
continuous at right-dense point in T and its left-side limits exist (finite) at left-dense points in
T. The set of rd continuous functions f : T → R will be denoted by Crd = Crd(T) = Crd(T,R).

Definition 2.3 (see [24]). Assume f : T → R and t ∈ T
k. Then we define fΔ(t) to be the

number (if it exists) with the property that given any ε > 0 there exists a neighborhood U of
t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) such that

∣∣∣
[
f(σ(t)) − f(s)

] − fΔ(t)[σ(t) − s]
∣∣∣ < ε|σ(t) − s| (2.2)

for all s ∈ U. We call fΔ(t) the delta (or Hilger) derivative of f at t. The set of functions
f : T → R that are differentiable and whose derivative is rd continuous is denoted by
C1

rd = C1
rd(T) = C1

rd(T,R).

If f is continuous, then f is rd continuous. If f is rd continuous, the f is regulated. If
f is delta differentiable at t, then f is continuous at t.

Lemma 2.4 (see [24]). Let f be regulated, then there exists a function F which is delta differentiable
with region of differentiation D such that

FΔ(t) = f(t), ∀t ∈ D. (2.3)

Definition 2.5 (see [24]). Assume f : T → R is a regulated function. Any function F as in
Lemma 2.4 is called a Δ-antiderivative of f. We define the indefinite integral of a regulated
function f by

∫
f(t)Δt = F(t) + C, (2.4)

where C is an arbitrary constant and F is a Δ-antiderivative of f. We define the Cauchy
integral by

∫b

a

f(s)Δs = F(b) − F(a), ∀a, b ∈ T. (2.5)

A function F : T → R is called an antiderivative of f : T → R provided that

FΔ(t) = f(t), ∀t ∈ T
k. (2.6)

Lemma 2.6 (see [24]). If a, b ∈ T, α, β ∈ R, and f, g ∈ C(T,R), then

(i)
∫b
a[αf(t) + βg(t)]Δt = α

∫b
a f(t)Δt + β

∫b
a g(t)Δt;
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(ii) if f(t) ≥ 0 for all a ≤ t < b, then
∫b
a f(t)Δt ≥ 0;

(iii) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then | ∫ba f(t)Δt| ≤ ∫ba g(t)Δt.

A function p : T → R is called regressive if 1 + μ(t)p(t)/= 0 for all t ∈ T
k. The set

of all regressive and rd-continuous functions f : T → R will be denoted by R = R(T) =
R(T,R). We define the set R+ of all positively regressive elements of R by R+ = R+(T,R) =
{p ∈ R : 1 + μ(t)p(t) > 0 for all t ∈ T}. If p is a regressive function, then the generalized
exponential function ep is defined by ep(t, s) = exp{∫ ts ξμ(τ)(p(τ))Δτ} for s, t ∈ T, with the
cylinder transformation

ξh(z) =

⎧
⎪⎨

⎪⎩

Log(1 + hz)
h

, if h/= 0,

z, if h = 0.
(2.7)

Let p, q : T → R be two regressive functions, then we define

p ⊕ q = p + q + μpq, �p = − p

1 + μp
, p � q = p ⊕ p

(�q). (2.8)

The generalized exponential function has the following properties.

Lemma 2.7 (see [24]). Assume that p, q : T → R are two regressive functions, then,

(i) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);

(ii) 1/ep(t, s) = e�p(t, s);

(iii) ep(t, s) = 1/ep(s, t) = e�p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);

(v) [ep(t, s)]
Δ = p(t)ep(t, s);

(vi) [ep(c, ·)]Δ = −p[ep(c, ·)]σ for c ∈ T;

(vii) d/dz[ez(t, s)] = (
∫ t
s(1/(1 + μ(τ)z))Δτ)ez(t, s).

Lemma 2.8 (see [24]). Assume that f, g : T → R are delta differentiable at t ∈ T
k. Then,

(
fg
)Δ(t) = fΔ(t)g(t) + f(σ(t))gΔ(t) = gΔ(t)f(t) + g(σ(t))fΔ(t). (2.9)

Next, let us introduce the Banach space which is suitable for (1.1)–(1.3) and some
assumed conditions which are needed in this paper.

Let Ω = {x = (x1, x2, . . . , xm)
T : |xi| < li, i = 1, 2, . . . , m} be an open bounded domain

in R
m with smooth boundary ∂Ω. Let Crd(T × Ω,Rn) be the set consisting of all the vector

functions u(t, x)which are rd-continuous with respect to t ∈ T and continuous with respect to
x ∈ R

m, respectively. For every t ∈ T and x ∈ Ω,we define the set Ct = {u(t, ·) : u ∈ C(Ω,Rn)}.
Then for every t ∈ T, Ct is a Banach space with the norm ‖u(t, ·)‖ = (

∑n
i ‖ui(t, ·)‖22)1/2,

where u(t, x) = (u1(t, x), u2(t, x), . . . , un(t, x))
T , ‖ui(t, ·)‖2 = (

∫
Ω |ui(t, x)|2dx)1/2, i = 1, 2, . . . , n.

Obviously, C(Ω,Rn) is a Banach space equipped with the norm ‖ϕ‖0 = (
∑n

i ‖ϕi‖2τ)1/2, where
ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x))

T ∈ C(Ω,Rn), ‖ϕi‖τ = (
∫
Ω |ϕi(x)|2dx)1/2, i = 1, 2, . . . , n.
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Definition 2.9. A function u : T × Ω → R
n is called a solution of (1.1)–(1.3) if and only if u

satisfies (1.1), initial value conditions (1.2) and Dirichlet boundary conditions (1.3).

Definition 2.10. A constant vector u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)

T is said to be an equilibrium solution to
(1.1)–(1.3), if it satisfies −biu∗

i +
∑n

j=1 cijfj(u
∗
j ) + Ii = 0, i = 1, 2, . . . , n.

Definition 2.11. The equilibrium solution u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)

T of recurrent neural network
(1.1)–(1.3) is said to be globally exponentially stable if there exists a positive constant α ∈ R+

and M ≥ 1 such that every solution u(t, x) = (u1(t, x), u2(t, x), . . . , un(t, x))
T of (1.1)–(1.3)

satisfies

‖u(t, ·) − u∗‖ ≤ Me�α(t, 0), t ∈ T
+. (2.10)

Definition 2.12 (Lakshmikantham and Vatsala [25]). For each t ∈ T, let N be a neighborhood
of t. Then, for V ∈ Crd[T×R

n,R+], defineD+VΔ(t, x(t)) to mean that, given ε > 0, there exists
a right neighborhood Nε ∩N of t such that

1
μ(t, s)

[
V (σ(t), x(σ(t))) − V (s, x(σ(t))) − μ(s, t)f(t, x(t))

]
< D+VΔ(t, x(t)) + ε (2.11)

for each s ∈ Nε, s > t, where μ(t, s) ≡ σ(t) − s. If t is rs and V (t, x(t)) is continuous at t, this
reduces to

D+VΔ(t, x(t)) =
V (σ(t), x(σ(t))) − V (t, x(σ(t)))

σ(t) − t
. (2.12)

3. Main Results

In this section, we will consider the existence, uniqueness, and global exponential stability of
equilibrium of (1.1)–(1.3). To proceed, we need the following lemma.

Lemma 3.1 (see [14]). Let Ω be a cube |xi| < li (i = 1, 2, . . . , m) and let h(x) be a real-valued
function belonging to C1(Ω) which vanish on the boundary ∂Ω of Ω, that is, h(x)|∂Ω = 0. Then,

∫

Ω
h2(x)dx ≤ l2i

∫

Ω

∣∣∣∣
∂h

∂xi

∣∣∣∣
2

dx. (3.1)

Throughout this paper, we always assume that

(H1) fj(·) is Lipschitz continuous, that is, there exists constant Fj > 0 such that |fj(ξ) −
fj(η)| ≤ Fj |ξ − η|, for any ξ, η ∈ R, j = 1, 2, . . . , n;

(H2) W = B − C+F is an M-matrix, where B = diag(b1, b2, . . . , bn), C+ = (|cij |)n×n, F =
diag(F1, F2, . . . , Fn),

(H3) −2bi −
∑m

k=1(2aik/l
2
k
) +
∑n

j=1(|cij |Fj + |cji|Fi) < 0, i = 1, 2, . . . , n.

Theorem 3.2. Assume that (H1) and (H2) hold, then (1.1)–(1.3) has at least one equilibrium
solution u∗ = (u∗

1, u
∗
2, . . . , u

∗
n)

T .
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Proof. By (H1), it follows that

∣∣fj(s)
∣∣ ≤ Fj |s| +

∣∣fj(0)
∣∣, j = 1, 2, . . . , n, ∀s ∈ R. (3.2)

Let

h(u, I) = Bu − Cf(u) − I = 0, (3.3)

where f(u) = (f1(u1), f2(u2), . . . , fn(un))
T . It is obvious that solutions to (3.3) are equilibria of

(1.1)–(1.3). Let us define homotopic mapping

H(u, λ) = λh(u, I) + (1 − λ)u, λ ∈ J = [0, 1]. (3.4)

We have

|Hi(u, λ)| =
∣∣∣∣∣∣
λ

⎡

⎣biui −
⎛

⎝
n∑

j=1

cijfj
(
uj

)
+ Ii

⎞

⎠

⎤

⎦ + (1 − λ)ui

∣∣∣∣∣∣

≥ [1 + λ(bi − 1)]|ui| − λ
n∑

j=1

∣∣cij
∣∣Fj

∣∣uj

∣∣

− λ

⎡

⎣|Ii| +
n∑

j=1

∣∣cij
∣∣∣∣fj(0)

∣∣
⎤

⎦, i = 1, 2, . . . , n.

(3.5)

That is,

H+ ≥ [E + λ(B − E), u]+ − λC+F[u]+ − λ
(
I+ + C+f+(0)

)

= (1 − λ)[u]+ + λ(B − C+F)[u]+ − λ
(
I+ + C+f+(0)

)
,

(3.6)

whereH+ = (|H1|, |H2|, . . . , |Hn|)T , [u]+ = (|u1|, |u2|, . . . , |un|)T , I+ = (|I1|, |I2|, . . . , |In|)T , f+(0) =
(|f1(0)|, |f2(0)|, . . . , |fn(0)|)T , and E is an identity matrix.

Since W = B − C+F is an M-matrix, we have W−1 = (B − C+F)−1 ≥ 0 (nonnegative
matrix) and there exists a Q = (Q1, Q2, . . . , Qn)

T > 0 (Qi > 0, i = 1, 2, . . . , n) such that (B −
C+F)Q > 0. Let

U(R0) =
{
u : [u]+ ≤ R0 = Q + (B − C+F)−1

(
I+ + C+f+(0)

)}
. (3.7)

Then, U(R0) is not empty and it follows from (3.7) that for any u ∈ ∂U(R0) (boundary of
U(R0)),

H+ ≥ (1 − λ)[u]+ + λ(B − C+F)
[
[u]+ − (B − C+F)−1

(
I+ + C+f+(0)

)]

= (1 − λ)[u]+λ(B − C+F)Q > 0, λ ∈ [0, 1],
(3.8)
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which implies that H(u, λ)/= 0, for u ∈ ∂U(R0), λ ∈ [0, 1]. So, from homotopy invariance
theorem, we have

deg(h,U(R0), 0) = deg(H(u, 1), U(R0), 0) = deg(H(u, 0), U(R0), 0) = 1, (3.9)

where deg(h,U(R0), 0) denotes topological degree. By topological degree theory, we can
conclude that (3.3) has at least one solution in U(R0). That is, (1.1)–(1.3) has at least an
equilibrium solution u∗ = (u∗

1, u
∗
2, . . . , u

∗
n)

T . This completes the proof.

Theorem 3.3. Assume that (H1)–(H3) hold, then the reaction-diffusion recurrent neural network
(1.1)–(1.3) has a unique equilibrium solution u∗ = (u∗

1, u
∗
2, . . . , u

∗
n)

T which is globally exponentially
stable.

Proof. The existence of equilibrium solutions for (1.1)–(1.3) follows from Theorem 3.2. Now
we only need to prove the uniqueness and global exponential stability of equilibrium
solutions for (1.1)–(1.3).

Suppose that u(t, x) and v(t, x) are two arbitrary solutions of (1.1)–(1.3) with
conditions φu(x), φv(x) ∈ C(Ω,Rn), and define z(t, x) = u(t, x)−v(t, x), φz(x) = φu(x)−φv(x),
then z(t, x) is governed by the following equations:

zΔi (t, x) =
m∑

k=1

∂

∂xk

(
aik

∂zi(t, x)
∂xk

)
− bizi(t, x) +

n∑

j=1

cij
(
fj
(
uj(t, x)

) − fj
(
vj(t, x)

))
, (3.10)

where i = 1, 2, . . . , n. Calculating the delta derivation of ‖zi(t, ·)‖22 along the solution of (3.10),
we have, for i = 1, 2, . . . , n,

(
‖zi(t, ·)‖22

)Δ
=
∫

Ω

(
(zi(t, x))2

)Δ
dx =

∫

Ω
(zi(t, x) + zi(σ(t), x))(zi(t, x))Δdx

=
∫

Ω

(
2zi(t, x) + μ(t)(zi(t, x))Δ

)
(zi(t, x))Δdx

= 2
∫

Ω
zi(t, x)(zi(t, x))Δdx + μ(t)

∫

Ω

(
(zi(t, x))Δ

)2
dx

= 2
m∑

k=1

∫

Ω
zi(t, x)

∂

∂xk

(
aik

∂zi(t, x)
∂xk

)
dx − 2bi

∫

Ω
(zi(t, x))2dx

+ 2
n∑

j=1

cij

∫

Ω
zi(t, x)

(
fj
(
uj(t, x)

) − fj
(
vj(t, x)

))
dx

+ μ(t)
∥∥∥(zi(t, ·))Δ

∥∥∥
2

2
.

(3.11)
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From Green formula [26], Dirichlet boundary condition, and Lemma 3.1, we have, for i =
1, 2, . . . , n,

m∑

k=1

∫

Ω
zi(t, x)

∂

∂xk

(
aik

∂zi(t, x)
∂xk

)
dx = −

m∑

k=1

∫

Ω
aik

(
∂zi(t, x)
∂xk

)2

dx

≤ −
m∑

k=1

∫

Ω

aik

l2k
(zi(t, x))2dx.

(3.12)

By (3.11), (3.12), condition (H1), and Holder inequality, we get

(
‖zi(t, ·)‖22

)Δ ≤ −
m∑

k=1

2aik

l2
k

‖zi(t, ·)‖22 − 2bi‖zi(t, ·)‖22

+ 2
n∑

j=1

∣∣cij
∣∣Fj‖zi(t, ·)‖2

∥∥zj(t, ·)
∥∥
2 + μ(t)

∥∥∥(zi(t, ·))Δ
∥∥∥
2

2

= −
m∑

k=1

2aik

l2k
‖zi(t, ·)‖22 − 2bi‖zi(t, ·)‖22

+ 2
n∑

j=1

∣∣cij
∣∣Fj‖zi(t, ·)‖2

∥∥zj(t, ·)
∥∥
2 + μ(t)q(t)‖zi(t, ·)‖22,

(3.13)

where ‖(zi(t, ·))Δ‖22 = q(t)‖zi(t, ·)‖22, q(t) ≥ 0, i = 1, 2, . . . , n.
If condition (H3) holds, we can always choose a positive number σ > 0 (may be very

small) such that for i = 1, 2, . . . , n,

−2bi −
m∑

k=1

2aik

l2k
+

n∑

j=1

(∣∣cij
∣∣Fj +

∣∣cji
∣∣Fi

)
+ σ < 0. (3.14)

Let us consider functions

qi
(
yi

)
= yi ⊕ yi − 2bi −

m∑

k=1

2aik

l2k
+

n∑

j=1

(∣∣cij
∣∣Fj +

∣∣cji
∣∣Fi

)

+
w
(
yi

)
μ(t)q(t)max

{
eyi⊕yi(σ(t), 0), e(w(yi)−1)μ(t)q(t)‖zi(t,·)‖22(t, 0)

}

eyi⊕yi(σ(t), 0)
,

(3.15)

wherew(yi) =
∫yi

0 (eyi−s/(yi−s)2)ds, i = 1, 2, . . . , n. From (3.15), we obtain that qi(0) < −σ < 0
and qi(yi) is continuous for yi ∈ [0,+∞), furthermore, qi(yi) → +∞ as yi → +∞, thus there
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exist constant εi ∈ (0,+∞) such that qi(ε∗i ) = 0 and qi(εi) < 0, for εi ∈ (0, ε∗i ). By choosing
ε = min1≤i≤n{εi}, obviously ε > 0, we have, for i = 1, 2, . . . , n,

qi(ε) = ε ⊕ ε − 2bi −
m∑

k=1

2aik

l2
k

+
n∑

j=1

(∣∣cij
∣∣Fj +

∣∣cji
∣∣Fi

)

+
w(ε)μ(t)q(t)max

{
eε⊕ε(σ(t), 0), e(w(ε)−1)μ(t)q(t)‖zi(t,·)‖22(t, 0)

}

eε⊕ε(σ(t), 0)
≤ 0.

(3.16)

Now consider the Lyapunov functional

V (t, z(t)) =
n∑

i=1

{
eε⊕ε(t, 0)‖zi(t, ·)‖22 + e(w(ε)−1)μ(t)q(t)‖zi(t,·)‖22(t, 0)

}
. (3.17)

Calculating the delta derivatives of V (t, z(t)) along the solution of (3.10) and noting
that d/dz[ez(t, s)] = (

∫ t
s(1/(1 + μ(τ)z))Δτ)ez(t, s) > 0 if and only if z ∈ R+(i.e., ez(t, s) is

increasing with respect to z if and only if z ∈ R+), we have

D+VΔ(t, x(t))

=
n∑

i=1

{
(ε ⊕ ε)eε⊕ε(t, 0)‖zi(t, ·)‖22 + eε⊕ε(σ(t), 0)

(
‖zi(t, ·)‖22

)Δ

+(w(ε) − 1)μ(t)q(t)‖zi(t, ·)‖22e(w(ε)−1)μ(t)q(t)‖zi(t,·)‖22(t, 0)
}

≤
n∑

i=1

{
(ε ⊕ ε)eε⊕ε(t, 0)‖zi(t, ·)‖22 + eε⊕ε(σ(t), 0)

×
⎛

⎝−
m∑

k=1

2aik

l2
k

‖zi(t, ·)‖22−2bi‖zi(t, ·)‖22+2
n∑

j=1

∣∣cij
∣∣Fj‖zi(t, ·)‖2

∥∥zj(t, ·)
∥∥
2+μ(t)q(t)‖zi(t, ·)‖22

⎞

⎠

+(w(ε) − 1)μ(t)q(t)‖zi(t, ·)‖22e(w(ε)−1)μ(t)q(t)‖zi(t,·)‖22(t, 0)

}

≤ eε⊕ε(σ(t), 0)
n∑

i=1

{
(ε ⊕ ε)‖zi(t, ·)‖22 −

m∑

k=1

2aik

l2
k

‖zi(t, ·)‖22 − 2bi‖zi(t, ·)‖22

+
n∑

j=1

∣∣cij
∣∣Fj

(
‖zi(t, ·)‖22 +

∥∥zj(t, ·)
∥∥2
2

)

+
max

{
eε⊕ε(σ(t), 0), e(w(ε)−1)μ(t)q(t)‖zi(t,·)‖22(t, 0)

}
w(ε)μ(t)q(t)

eε⊕ε(σ(t), 0)
‖zi(t, ·)‖22 )

⎫
⎬

⎭
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≤ eε⊕ε(σ(t), 0)
n∑

i=1

‖zi(t, ·)‖22

⎧
⎨

⎩(ε ⊕ ε) −
m∑

k=1

2aik

l2k
+

n∑

j=1

(∣∣cij
∣∣Fj +

∣∣cji
∣∣Fi

)

+
max

{
eε⊕ε(σ(t), 0), e(w(ε)−1)μ(t)q(t)‖zi(t,·)‖22(t, 0)

}
w(ε)μ(t)q(t)

eε⊕ε(σ(t), 0)

⎫
⎬

⎭≤0.

(3.18)

From (3.17) and (3.18), we have, for t > 0,

eε⊕ε(t, 0)‖z(t, ·)‖2 = eε⊕ε(t, 0)
n∑

i=1

‖zi(t, ·)‖22 ≤ V (t, z(t)) ≤ V (0, z(0))

=
n∑

i=1

{
‖zi(0, ·)‖22 + 1

}
=

n∑

i=1

{∥∥φz
i

∥∥2
τ + 1

}
=
∥∥φz

∥∥2
0 + n,

(3.19)

which implies that

‖z(t, ·)‖ ≤ Me�ε(t, 0), (3.20)

where M =
√
‖φz‖20 + n > 1.

Let u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)

T and u∗∗ = (u∗∗
1 , u∗∗

2 , . . . , u∗∗
n )T be two arbitrary equilibrium

solutions of system (1.1)–(1.3). According to (3.20), we get ‖u∗ − u∗∗‖ ≤ Me�ε(t, 0) → 0 (t →
+∞), here M =

√
‖u∗ − u∗∗‖20 + n > 1. It follows that u∗ = u∗∗, that is, the equilibrium solution

of (1.1)–(1.3) is unique.
Let u(t, x) = (u1(t, x), u2(t, x), . . . , un(t, x))

T and u∗ = (u∗
1, u

∗
2, . . . , u

∗
n)

T be arbitrary
solutions and an unique equilibrium solution of (1.1)–(1.3), respectively. In the light of (3.20),

we obtain ‖u(t, x) − u∗‖ ≤ Me�ε(t, 0), here M =
√
‖φ − u∗‖20 + n > 1. Thus, by Definition 2.11,

we obtain the global exponential stability of unique equilibrium solution of (1.1)–(1.3). The
proof is complete.

4. An Illustrative Example

Example 4.1. Consider the following reaction-diffusion recurrent neural network with
Dirichlet boundary conditions on time scales:

uΔ
i (t, x) =

m∑

k=1

∂

∂xk

(
aik

∂ui

∂xk

)
− biui(t, x) +

n∑

j=1

cijfj
(
uj(t, x)

)
+ Ii, (t, x) ∈ T ×Ω,

ui(0, x) = φi(x), x ∈ Ω,

ui(t, x) = 0, (t, x) ∈ [0,+∞)
T
× ∂Ω,

(4.1)

where T ⊂ R is a time scale and T ∩ [0,+∞) = [0,+∞)
T
is unbounded, f1(v) = f2(v) =

(ev − e−v)/(ev + e−v), Ω = {x : |xi| < 1, i = 1, 2}, and I = (I1, I2) is the constant input vector.



Discrete Dynamics in Nature and Society 11

Obviously, fj(v) satisfies the Lipschitz condition with Fj = 1. Let a11 = 0.5, a12 = 0.5, a21 = 0.3,
a22 = 0.7, b1 = 1.5, b2 = 0.4, c11 = 0.5, c12 = 0.4, c21 = 0.3, and c22 = 0.2. By simple calculation,
we have

B − C+F =

(
1.5 0

0 0.4

)
−
(
0.5 0.4

0.3 0.2

)(
1 0

0 1

)
=

(
1 −0.4

−0.3 0.2

)
,

−2b1 −
2∑

k=1

2a1k

l2
k

+
2∑

j=1

(∣∣c1j
∣∣Fj +

∣∣cj1
∣∣F1
)
= −3.3 < 0,

−2b2 −
2∑

k=1

2a2k

l2k
+

2∑

j=1

(∣∣c2j
∣∣Fj +

∣∣cj2
∣∣F2
)
= −0.9 < 0,

(4.2)

that is, (H1), (H2), and (H3) hold. Hence, it follows from Theorem 3.3 that (4.1) has one
unique equilibrium solution which is globally exponentially stable.
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