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We review the formulation of the problem of electromagnetic self-interaction of a relativistic
charged particle in the framework of the manifestly covariant classical mechanics of Stueckeleberg,
Horwitz, and Piron. The gauge fields of this theory, in general, cause the mass of the particle
to change. We study the four dynamical off-mass-shell orbit equations which result from the
expansion of Green’s function in the Lorentz force equation for the self-interaction. It appears
that there is an attractor in this system which stabilizes the motion of the relativistic charged
electron. The attractor may acquire fractal characteristics in the presence of an external field and
thus become a strange attractor.

1. Introduction

This work is concerned with studying the problem of the classical relativistic charged particle.
The existence of radiation due to the accelerated motion of the particle raises the question of
how this radiation, acting back on the particle, affects its motion. Rohrlich has described the
historical development of this problem, where the first steps were taken by Abraham in 1905,
culminating in the work of Dirac, who derived the equation for the ideal point electron in the
form

m
d2xμ

ds2
=
e

c
F
μ
ν
dxν

ds
+ Γμ, (1.1)
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where m is the electron mass, including electromagnetic correction, s is the proper time along
the trajectory xμ(s) in spacetime, Fμν is the covariant form of the electromagnetic force tensor,
e is the electron charge, and

Γμ =
2
3
e2

c3

(
d3xμ

ds3
− d

2xν

ds2

d2xν
ds2

dxμ

ds

)
. (1.2)

Here, the indices μ, ν, running over 0, 1, 2, 3 label the spacetime variables that represent
the action of the Lorentz group; the index raising and lowering Lorentz invariant tensor ημν
is of the form diag(−1,+1,+1,+1). The expression for Γμ was originally found by Abraham
in 1905 [1], shortly after the discovery of special relativity and is known as the Abraham
four-vector of radiation reaction. Dirac’s derivation [2] was based on a direct application
of Green’s functions for the Maxwell fields, obtaining the form (1.1), the Abraham-Lorentz-
Dirac equation. In this calculation, Dirac used the difference between retarded and advanced
Green’s functions so as to eliminate the singularity carried by each. Sokolov and Ternov [3],
for example, give a derivation using the retarded Green’s function alone and show how the
singular term can be absorbed into the mass m.

The formula (1.1) contains the so-called singular perturbation problem. There is a
small coefficient multiplying a derivative of higher order than that of the unperturbed
problem; since the highest-order derivative is the most important in the equation, one sees
that dividing by e2, any small deviation in the lower order terms results in a large effect on the
orbit, and there are unstable solutions, often called “runaway solutions”. There is extensive
literature (see [4–6] and the references therein) on the methods of treating this instability.

The existence of these “runaway solutions”, for which the electron undergoes an
exponential acceleration with no external force beyond a short initial perturbation of the
free motion, is a difficulty for the point electron picture in the framework of the Maxwell
theory with the covariant Lorentz force. Rohrlich [7–9] has discussed the idea that the point
electron idealization may not be really physical, based on arguments from classical and
quantum theory and emphasized that for the corresponding classical problem, a finite size
can eliminate this instability. Of course, this argument is valid, but it leaves open the question
of the consistency of the Maxwell-Lorentz theory which admits the concept of point charges.

Stueckelberg, in 1941 [10–14], proposed a manifestly covariant form of classical and
quantum mechanics in which space and time become dynamical observables. They are
therefore represented in quantum theory by operators on a Hilbert space on square integrable
functions in space and time. The dynamical development of the state is controlled by an
invariant parameter τ , which one might call the world time, coinciding with the time on the
(on mass shell) freely falling clocks of general relativity.

Stueckelberg postulated the existence of an invariant “Hamiltonian” K, for the
classical theory, which would generate Hamilton equations for the canonical variables xμ

and pμ of the form (we take units for which c = 1 unless otherwise specified)

ẋμ =
∂K

∂pμ
,

ṗμ = − ∂K
∂xμ

,

(1.3)
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where the dot indicates differentiation with respect to τ . Taking, for example, the model

K0 =
pμpμ

2M
, (1.4)

we see that the Hamilton equations imply that

ẋμ =
pμ

M
. (1.5)

It then follows that

d�x

dt
=
�p

E
, (1.6)

where p0 ≡ E, and we set the velocity of light c = 1; this is the correct definition for the
velocity of a free relativistic particle. Moreover, it follows that

ẋμẋμ =
dxμdxμ

dτ2
=
pμpμ

M2
. (1.7)

With our choice of metric, dxμdxμ = −ds2 and pμpμ = −m2, where m is the classical
experimentally measured mass of the particle (at a given instant of τ). We see from this that

ds2

dτ2
=
m2

M2
, (1.8)

and hence the proper time is not identical to the evolution parameter τ . In the case where
m2 =M2, it follows that ds = dτ , and we say that the particle is “on shell”.

For example, in the case of an external potential V (x), where we write x ≡ xμ, the
Hamiltonian becomes

K =
pμpμ

2M
+ V (x), (1.9)

so that, since K is a constant of the motion, m2 varies from point to point with the variations
of V (x). It is important to recognize from this discussion that the observable particle mass
depends on the state of the system (in the quantum theory, the expectation value of the
operator pμpμ provides the expected value of the mass squared).

Since, in nature, particles appear with fairly sharp mass values (not necessarily with
zero spread), we may assume the existence of some mechanism which will drive the particle’s
mass back to its original mass-shell value (after the source responsible for the mass change
ceases to act) so that the particle’s mass shell is defined. We will not take such a mechanism
into account explicitly here in developing the dynamical equations. We will assume that if
this mechanism is working, it is a relatively smooth function (e.g., a minimum in free energy
which is broad enough for our off-shell driving force to work fairly freely) (A relativistic



4 Discrete Dynamics in Nature and Society

Lee model has been worked out which describes a physical mass shell as a resonance, and
therefore a stability point on the spectrum [15], but at this point it is not clear to us how this
mechanism works in general.).

The Stueckelberg formulation implies the existence of a fifth “electromagnetic”
potential, through the requirement of gauge invariance, and there is a generalized Lorentz
force which contains a term that drives the particle off shell, whereas the terms corresponding
to the electric and magnetic parts of the usual Maxwell fields do not (for the nonrelativistic
case, the electric field may change the energy of a charged particle, but not the magnetic field;
the electromagnetic field tensor in our case is analogous to the magnetic field, and the new
field strengths, derived from the τ dependence of the fields and the additional gauge field,
are analogous to the electric field, as we will see).

In Section 2, we give the structure of the field equations and show that the standard
Maxwell theory is properly contained in this more general framework.

In Section 3, we apply Green’s functions to the current source provided by the
relativistic particle. We obtain the equations of motion for a relativistic particle which is, in
general, off-shell. As in Dirac’s result, these equations are of third order in the evolution
parameter and therefore are highly unstable. Our results exhibit what appears to be an
attractor in this system.

We introduce the quantity

ε = 1 + ẋμẋμ, (1.10)

which measures the deviation of the motion of the charged particle from its “mass shell”,
where we used the metric (−,+,+,+) for the four-vector product.

In Section 4, we derive an autonomous mass deviation equation (with coefficients
independent of τ or xμ and its derivatives) for the development of ε in the specific case of
a particle under the influence of self-interaction in the absence of external field.

When the formal derivation of the autonomous equation is complete, a numerical
analysis follows in Section 5 and demonstrates the compatibility between the (four
component) dynamical equation of motion and the autonomous equation.

In Sections 6 and 7, we analyze the motion of the (charged) particle under the influence
of self-interaction in the absence of external fields. We show that when initial conditions
are within a basin of attraction, the trajectory of a particle obeying the equations of motion
developed in Sections 3 and 4 forms an attractor.

We further show that the attractor has a degree of stochasticity which is dictated by
the cutoff frequency one chooses. A closer to zero (and thus more physical) cutoff frequency
causes fluctuations to appear in the attractor, while a higher cutoff frequency results in a non-
fluctuating attractor. There is an opposite relation between stochasticity and stability. Thus,
a stochastic attractor has shorter life span. However, even an attractor with a relatively high
cutoff frequency (and hence a longer life span) eventually ceases to exist as the orbit runs
away to infinity.

Our analysis shows that the effective mass of the electron grows as it propagates
towards the vicinity of ε = 1 (the light cone). This growth can be seen either through the
growing amplitude of the effective mass in the case of a relatively low cutoff frequency
or through a nonfluctuating growth of the effective mass (absolute) value in the case of a
relatively high cutoff frequency.

We demonstrate that the growing effective mass stabilizes the effect of the generalized
Lorentz force. The demonstration consists of a correlation between the growing effective
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mass, the growing trajectory stability (measured through calculating the Lyapunov
exponent), and the decay of acceleration and velocity.

The chaotic nature of the electron’s trajectory is also checked, using two methods: the
(mentioned above) Lyapunov exponent calculation and a time series analysis. As will be
shown, the results do not indicate a chaotic nature of the orbit, even in fluctuating cases.

However, the nature of the attractor changes in the presence of an external field, as
shown in Section 8. In that section we show some results with remarkable stochasticity. This
is reflected in the phase space graphs of the dynamical equation of motion, which show
fractal behavior. Thus, the simple attractor of the pure self-interaction becomes a strange
attractor (due to the fractal nature) in the presence of an external field. Experiments with
high-frequency detectors may pick up such stochastic-type signals.

2. Equations of Motion

The Stueckelberg-Schrödinger equation which governs the evolution of a quantum state over
the manifold of spacetime was postulated by Stueckelberg [10–14] to be, for the free particle,

i
∂ψτ
∂τ

=
pμpμ

2M
ψτ, (2.1)

where ipμ is represented by ∂/∂xμ ≡ ∂μ (we take � = 1).
Taking into account full U(1) gauge invariance, corresponding to the requirement

that the theory maintain its form under the replacement of ψ by eie0Λψ, the Stueckelberg-
Schrödinger equation (including a compensation field for the τ-derivative of Λ) [16–18] is

(
i
∂

∂τ
+ e0a5(x, τ)

)
ψτ(x) =

(
pμ − e0a

μ(x, τ)
)(
pμ − e0aμ(x, τ)

)
2M

ψτ(x), (2.2)

where the gauge fields may depend on τ and e0 is a coupling constant which we will see
having the dimension l−1. The corresponding classical Hamiltonian then has the form

K =

(
pμ − e0a

μ(x, τ)
)(
pμ − e0aμ(x, τ)

)
2M

− e0a5(x, τ) (2.3)

in place of (2.1). Stuckelberg did not take into account this full gauge invariance requirement,
working in the analog of what is known in the nonrelativistic case as the Hamilton gauge
(where the gauge function Λ is restricted to be independent of time) and therefore had some
difficulty in accounting for pair creation and annihilation in an electromagnetic field. The
equations of motion for the field variables are given (for both the classical and quantum
theories) by

λ∂αf
βα(x, τ) = e0j

β(x, τ), (2.4)
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where α, β = 0, 1, 2, 3, 5, the last corresponding to the τ index and λ, of dimension l−1, is a
factor on the terms fαβfαβ in the Lagrangian associated with (2.2) (with, in addition, degrees
of freedom of the fields) required by dimensionality. The field strengths are

fαβ = ∂αaβ − ∂βaα, (2.5)

and the current satisfies the conservation law [16–18]

∂αj
α(x, τ) = 0. (2.6)

Integrating over τ on (−∞,∞) and assuming that j5(x, τ) vanishes at |τ | → ∞, one finds that

∂μJ
μ(x) = 0, (2.7)

where [19]

Jμ(x) =
∫∞
−∞

dτjμ(x, τ). (2.8)

We identify this Jμ(x) with the Maxwell conserved current. In [20], for example, this
expression occurs with

jμ(x, τ) = ẋ(τ)δ4(x − x(τ)), (2.9)

and τ is identified with the proper time of particle (an identification which can be made for
the motion of a free particle). The conservation of the integrated current then follows from
the fact that

∂μj
μ = ẋμ(τ)∂μδ4(x − x(τ)) = − d

dτ
δ4(x − x(τ)) (2.10)

is a total derivative. We assume that the world line runs to infinity (at least in the time
dimension) and therefore its integral vanishes at the end points [10–14, 20], in accordance
with the discussion above.

As for the Maxwell case, one can write the current formally in five-dimensional form

jα = ẋαδ4(x(τ) − x). (2.11)

For α = 5, the factor ẋ5 is unity, and this component therefore represents the event density in
spacetime.

Integrating the μ components of (2.4) over τ (assuming fμ5(x, τ) → 0 pointwise for
τ → ±∞), we obtain the Maxwell equation with the (dimensionless) Maxwell charge e =
e0/λ and the Maxwell fields given by

Aμ =
∫∞
−∞

aμ(x, τ)dτ. (2.12)
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A Hamiltonian in the form (2.3) without τ dependence of the fields, and without the
a5 terms, as written by Stuckelberg [10–14], can be recovered in the limit of the zero mode of
the fields (with a5 = 0) in a physical state for which this limit is a good approximation. This
state occurs when the Fourier transform of the fields, defined by

aμ(x, τ) =
∫∞
−∞

ds âμ(x, s)e−isτ , (2.13)

has support only in a small neighborhood Δs of s = 0. The vector potential then takes on the
form aμ(x, τ) ≈ Δsâμ(x, 0) = (Δs/2π)Aμ(x), and we identify e = (Δs/2πλ)e0. The zero mode
therefore emerges when the inverse correlation length of the field Δs is sufficiently small. We
remark that in this limit, the fifth equation obtained from (2.4) decouples. The generalized
Lorentz force obtained from this Hamiltonian, using the Hamilton equations, coincides with
the usual Lorentz force, and, as we have seen, the generalized Maxwell equations reduce to
the usual Maxwell equations. The theory therefore contains the usual Maxwell Lorentz theory
in the zero mode; for this reason we have called this generalized theory the “pre-Maxwell”
theory.

If such a pre-Maxwell theory really underlies the standard Maxwell theory, then there
should be some physical mechanism which restricts most observations in the laboratory to
be close to the zero mode. For example, in a metal there is a frequency, the plasma frequency,
above which there is no transmission of electromagnetic waves. In this case, if the physical
universe is imbedded in a medium which does not allow high “frequencies” to pass, the pre-
Maxwell theory reduces to the Maxwell theory. Some study has been carried out, for a quite
different purpose (of achieving a form of analog gravity), on the properties of the generalized
fields in a medium with general dielectric tensor [21]. We will see in the present work that
the high level of nonlinearity of this theory in interaction with matter may itself generate
an effective reduction to Maxwell-Lorentz theory, with the high frequency chaotic behavior
providing the regularization achieved by models of the type discussed by Rohrlich [7–9].

We remark that integration over τ does not bring the generalized Lorentz force into
the form of the standard Lorentz force, since it is nonlinear, and a convolution remains. If
the resulting convolution is trivial, that is, in the zero mode, the two theories then coincide.
Hence, we expect to see dynamical effects in the generalized theory which are not present in
the standard Maxwell-Lorentz theory.

Writing the Hamilton equations

ẋμ =
dxμ

dτ
=
∂K

∂pμ
, ṗμ =

dpμ

dτ
= − ∂K

∂xμ
, (2.14)

for the Hamiltonian (2.3), we find that the generalized Lorentz force is

Mẍμ = e0f
μ
ν ẋ

ν + fμ5 . (2.15)

Multiplying this equation by ẋμ, one obtains

Mẋμẍ
μ = e0ẋμf

μ

5 . (2.16)
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This equation therefore does not necessarily lead to the simple relation between ds and dτ
discussed above in connection with (1.9). The fμ5 term has the effect of moving the particle
off-shell (as, in the nonrelativistic case, the energy is altered by the electric field). This can be
seen by noting that

ẋμẋμ = − m
2

M2
, (2.17)

and the derivative is

ẋμẍμ = − 1
M2

d

dτ
m2 =

1
M

e0ẋμf
μ

5 , (2.18)

or in another words,

d

dτ
m2 = −Me0ẋμf

μ

5 . (2.19)

Let us now define

ε = 1 + ẋμẋμ = 1 − ds
2

dτ2
, (2.20)

where ds2 = dt2 − d�x2 is the square of the proper time. Since ẋμ = (pμ − e0a
μ)/M and (pμ −

e0a
μ)(pμ − e0aμ) = −m2 is interpreted as the gauge-invariant particle mass [16–18], then

ε = 1 − m2

M2
(2.21)

measures the deviation from “mass shell” (on mass shell, ds2 = dτ2).

3. Derivation of the Differential Equations for the Spacetime Orbit
with Off-Shell Corrections

We now review the derivation of the radiation reaction formula in the Stueckelberg formalism
(see also [19]). Calculating the self-interaction contribution, one must include the effects of
the force acting upon the particle due to its own field (fself) in addition to the fields generated
by other electromagnetic sources (fext). Therefore, the generalized Lorentz force, using (2.14)
takes the form:

Mẍμ = e0ẋ
νf

μ
ext ν + e0ẋ

νf
μ

self ν + e0f
μ

ext 5 + e0f
μ

self 5, (3.1)
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where the derivatives (dot) are with respect to the universal time τ and the fields are
evaluated on the event’s trajectory. Multiplying (3.1) by ẋμ, we get the projected equation
(2.16) in the form

M

2
ε̇ = e0ẋμf

μ

ext 5 + e0ẋμf
μ

self 5. (3.2)

The field generated by the current is given by the pre-Maxwell equations (2.4), and
choosing for it the generalized Lorentz gauge ∂αaα = 0, we get

λ∂α∂
αaβ(x, τ) = λ

(
σ∂2

τ − ∂2
t +∇2

)
aβ = −e0j

β(x, τ), (3.3)

where σ = ±1 corresponds to the possible choices of metric for theO(4, 1) orO(3, 2) symmetry
of the homogeneous field equations.

Green’s functions for (3.3) can be constructed from the inverse Fourier transform

G(x, τ) =
1

(2π)5

∫
d4k dk

ei(k
μxμ+σkτ)

kμkμ + σk2
. (3.4)

Integrating this expression over all τ gives Green’s function for the standard Maxwell field
(treatment of the zeros in the denominator must be reconsidered after the τ integration).
Assuming that the radiation reaction acts causally in τ , we will use here the τ-retarded
Green’s function. In this calculation of the Lorentz force, Dirac used the difference between
advanced and retarded Green’s functions in order to cancel the singularities that they contain.
One can, alternatively, use the retarded Green’s function and “renormalize” the mass in order
to eliminate the singularity [3]. In this analysis, we follow the latter procedure.

The τ-retarded Green’s function [19] is given by multiplying the principal part of the
integral (3.4) by θ(τ). Carrying out the integrations (on a complex contour in k we consider
the case σ = +1 in what follows), one finds (this Green’s function differs from the t-retarded
Green’s function, constructed on a complex contour in k0)

G(x, τ) =
2θ(τ)

(2π)3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

tan−1
(√
−x2 − τ2/τ

)
(−x2 − τ2)3/2

− τ

x2(x2 + τ2)
, x2 + τ2 < 0,

1
2

1

(x2 + τ2)3/2
ln

∣∣∣∣∣τ −
√
τ2 + x2

τ +
√
τ2 + x2

∣∣∣∣∣ − τ

x2(x2 + τ2)
, x2 + τ2 > 0,

(3.5)

where we have written x2 ≡ xμxμ.
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With the help of this Green’s function, the solutions of (3.3) for the self-fields
(substituting the current from (2.11)) are

a
μ

self(x, τ) =
e0

λ

∫
d4x′dτ ′G

(
x − x′, τ − τ ′

)
ẋμ
(
τ ′
)
δ4(x′ − x(τ ′))

=
e0

λ

∫
dτ ′ẋμ

(
τ ′
)
G
(
x − x

(
τ ′
)
, τ − τ ′

)
,

a5
self(x, τ) =

e0

λ

∫
d4x′dτ ′G

(
x − x

(
τ ′
)
, τ − τ ′

)
.

(3.6)

The Green’s function is written as a scalar, acting in the same way on all five
components of the source jα; to assure that the resulting field is in Lorentz gauge, however,
it should be written as a five by five matrix, with the factor δα

β
− kαkβ/k2(k5 = k) included

in the integrand. Since here we compute only the gauge-invariant field strengths, this extra
term will not influence any of the results. It then follows that the generalized Lorentz force
for the self-action (the force of the fields generated by the world line on a point xμ(τ) of the
trajectory), along with the effect of external fields, is

Mẍμ =
e2

0

λ

∫
dτ ′
(
ẋν(τ)ẋν

(
τ ′
)
∂μ − ẋν(τ)ẋμ

(
τ ′
)
∂ν
)
G
(
x − x

(
τ ′
))∣∣

x=x(τ)

+
e2

0

λ

∫
dτ ′
(
∂μ − ẋμ

(
τ ′
)
∂τ
)
G
(
x − x

(
τ ′
))∣∣

x=x(τ) + e0

(
f
μ
ext νẋ

ν + fμext 5

)
.

(3.7)

We define u ≡ (xμ(τ) − xμ(τ ′))(xμ(τ) − xμ(τ ′)), so that

∂μ = 2
(
xμ(τ) − xμ

(
τ ′
)) ∂
∂u

. (3.8)

Equation (3.7) then becomes

Mẍμ = 2
e2

0

λ

∫
dτ ′
[
ẋν(τ)ẋν

(
τ ′
)(
xμ(τ) − xμ

(
τ ′
))

−ẋν(τ)ẋμ
(
τ ′
)(
xν(τ) − xν

(
τ ′
))] ∂

∂u
G
(
x − x

(
τ ′
))∣∣∣∣

x=x(τ)

+
e2

0

λ

∫
dτ ′
[

2
(
xμ(τ) − xμ

(
τ ′
)) ∂
∂u
− ẋμ

(
τ ′
)
∂τ

]
G
(
x − x

(
τ ′
)
, τ − τ ′

)∣∣∣∣∣
x=x(τ)

+ e0

(
f
μ
ext νẋ

ν + fμext 5

)
.

(3.9)

In the self-interaction problem where τ → τ ′,xμ(τ ′) − xμ(τ) → 0, Green’s function
is very divergent. Therefore one can expand all expressions in τ ′′ = τ − τ ′ assuming that the
dominant contribution is from the neighborhood of small τ ′′. The divergent terms are later
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absorbed into the mass and charge definitions leading to renormalization (effective mass and
charge). Expanding the integrands in Taylor series around the most singular point τ = τ ′ and
keeping the lowest-order terms, the variable u reduces to

u ∼= ẋμẋμτ ′′2 − ẋμẍμτ ′′3 +
1
3
ẋμ

...
xμτ

′′4 +
1
4
ẍμẍμτ

′′4. (3.10)

We now recall the definition of the off-shell deviation ε given in (2.20), along with its
derivatives:

ẋμẋμ = −1 + ε,

ẋμẍμ =
1
2
ε̇,

ẋμ
...
xμ + ẍμẍμ =

1
2
ε̈.

(3.11)

Next, we define

ω ≡ 1
12
ẋμ

...
xμ +

1
8
ε̈,

Δ ≡ −1
2
ε̇τ ′′ +ωτ ′′2.

(3.12)

Using these definitions along with those of (3.10) and (3.11), we find

u + τ2

τ ′′2
∼= ε + Δ. (3.13)

We then expand Green’s function to leading orders:

∂G

∂u
∼=

Θ(τ ′′)f1(ε + Δ)

(2π)3τ ′′5
=

Θ(τ ′′)

(2π)3

[
f1(ε)
τ ′′5

−
ε̇f ′1(ε)
2τ ′′4

+
(
ωf ′1(ε) +

1
8
ε̇2f ′′1 (ε)

)
1
τ ′′3

]
,

∂G

∂τ ′′
∼=

2Θ(τ ′′)f2(ε + Δ)

(2π)3τ ′′4
+

2δ(τ ′′)f3(ε + Δ)

(2π)3τ ′′3

=
2Θ(τ ′′)

(2π)3

[
f2(ε)
τ ′′4

−
ε̇f ′2(ε)
2τ ′′3

+
(
ωf ′2(ε) +

1
8
ε̇2f ′′2 (ε)

)
1
τ ′′2

]

+
2δ(τ ′′)

(2π)3

[
f3(ε)
τ ′′3

−
ε̇f ′3(ε)
2τ ′′2

+
(
ωf ′3(ε) +

1
8
ε̇2f ′′3 (ε)

)
1
τ ′′

]
,

(3.14)
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where f ′ ≡ df/dε. For ε < 0

f1(ε) =
3tan−1(√−ε)

(−ε)5/2
− 3
ε2(1 − ε)

+
2

ε(1 − ε)2
,

f2(ε) =
3tan−1(√−ε)

(−ε)5/2
− 1
ε2
− 2 − ε
ε2(1 − ε)

,

f3(ε) =
tan−1(√−ε)

(−ε)3/2
+

1
ε(1 − ε) ,

(3.15)

and for ε > 0

f1(ε) =
(3/2) ln

∣∣(1 +
√
ε
)
/
(
1 −
√
ε
)∣∣

ε5/2
− 3
ε2(1 − ε)

+
2

ε(1 − ε)2
,

f2(ε) =
(3/2) ln

∣∣(1 +
√
ε
)
/
(
1 −
√
ε
)∣∣

ε5/2
− 1
ε2
− 2 − ε
ε2(1 − ε)

,

f3(ε) = −
(1/2) ln

∣∣(1 +
√
ε
)
/
(
1 −
√
ε
)∣∣

ε3/2
+

1
ε(1 − ε) .

(3.16)

For either sign of ε, when ε ≈ 0,

f1(ε) ≈
8
5
+

24
7
ε +

16
3
ε2 +O

(
ε3
)
,

f2(ε) ≈ −
2
5
− 4

7
ε − 2

3
ε2 +O

(
ε3
)
,

f3(ε) ≈
2
3
+

4
5
ε +

6
7
ε2 +O

(
ε3
)
.

(3.17)

One sees that the derivatives in (3.14) have no singularity in ε at ε = 0.
From (3.6), we have

f
μ

self 5(x(τ), τ) = e
∫[

2
(
xμ(τ) − xμ

(
τ ′
)) ∂
∂u
− ẋμ

(
τ ′
)
∂τ

]

×G
(
x − x

(
τ ′
)
, τ − τ ′

)∣∣
x=x(τ)dτ

′.

(3.18)

We then expand xμ(τ)−xμ(τ ′) and ẋμ(τ)− ẋμ(τ ′) in power series in τ ′′ and write the integrals
formally with infinite limits.
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Substituting (3.18) into (3.2), we obtain (note that xμ and its derivatives are evaluated
at the point τ and are not subject to the τ ′′ integration), after integrating by parts using δ(τ ′′) =
(∂/∂τ ′′) θ(τ ′′),

M

2
ε̇ =

2e2
0

λ(2π)3

∫∞
−∞

dτ ′′
[
g1

τ ′′4
(ε − 1) −

g2

τ ′′3
ε̇

2
+
g3

τ ′′2
ẋν

...
xν

− h1

τ ′′3
(ε − 1)ε̇ +

h2

2τ ′′2
ε̇2

+
h3

τ ′′2
(ε − 1)ω +

h4

8τ ′′2
ε̇2(ε − 1)

]
Θ
(
τ ′′
)
+ e0ẋμf

μ

ext 5,

(3.19)

where we have defined

g1 = f1 − f2 − 3f3, g2 =
1
2
f1 − f2 − 2f3, g3 =

1
6
f1 −

1
2
f2 −

1
2
f3,

h1 =
1
2
f ′1 −

1
2
f ′2 − f ′3, h2 =

1
4
f ′1 −

1
2
f ′2 −

1
2
f ′3, h3 =

(
f ′1 − f

′
2 − f ′3

)
,

h4 = f ′′1 − f
′′
2 − f ′′3 .

(3.20)

The integrals are divergent at the lower bound τ ′′ = 0 imposed by the θ-function; we
therefore take these integrals to a cut-off μ > 0. Equation (3.19) then becomes

M

2
ε̇ =

2e2
0

λ(2π)3

[
g1

3μ3 (ε − 1) −
g2

4μ2
ε̇ +

g3

μ
ẋν

...
xν

− h1

2μ2 (ε − 1)ε̇ +
h2

2μ
ε̇2 +

h3

μ
(ε − 1)ω +

h4

8μ
ε̇2(ε − 1)

]
+ e0ẋμf

μ

ext 5.

(3.21)

Following a similar procedure, we obtain from(3.7)

Mẍμ =
2e2

0

λ(2π)3

[
−1

2

(
(1 − ε)ẍμ + ε̇

2
ẋμ
)(

f1

2μ2
−
ε̇f ′1
2μ

)
+
f1

3μ
(ẋν

...
xνẋμ + (1 − ε)...xμ)

+
g1

3μ3
ẋμ −

g2

2μ2
ẍμ +

g3

μ

...
xμ − h1ε̇

2μ2
ẋμ +

h2ε̇

μ
ẍμ +

h3ω

μ
ẋμ +

h4ε̇
2

8μ
ẋμ
]

+ e0

(
f
μ
ext νẋ

ν + fμext 5

)
.

(3.22)
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Substituting (3.21) for the coefficients of the ẋμ terms in the second line of (3.22), we
find

M(ε, ε̇)ẍμ = −1
2
M(ε, ε̇)
(1 − ε) ε̇ẋ

μ +
2e2

0

λ(2π)3μ
F(ε)

[
...
xμ +

1
(1 − ε) ẋν

...
xνẋμ

]

+
e0ẋ

μẋνf
ν
ext 5

1 − ε + e0f
μ
ext νẋ

ν + e0f
μ

ext 5,

(3.23)

where

F(ε) =
f1

3
(1 − ε) + g3. (3.24)

Here, the coefficients of ẍμ have been grouped formally into a renormalized (off-shell)
mass term, defined (as done in the standard radiation reaction problem) as

M(ε, ε̇) =M +
e′2

2μ

[
f1(1 − ε)

2
+ g2

]
− e′2

[
1
4
f ′1(1 − ε) + h2

]
ε̇. (3.25)

We have here a Lorentz effective charge as

e′2 =
2e2

0

λ(2π)3μ
, (3.26)

corresponding to a renormalization depending as well on the cut-off. We will call this
quantity e in the following formulas, since, in this context, it can be identified with the
measured electric charge through the radiation reaction formulas.

We remark that one can change variables, with the help of (2.20) (here, for simplicity,
assuming ε < 1), to obtain a differential equation in which all derivatives with respect to τ
are replaced by derivatives with respect to the proper time s. The coefficient of the second
derivative of xμ with respect to s, as well as “effective mass” for the proper-time equation, is
then given by

MS(ε, ε̇) =
2

3F(ε)(1 − ε)

[
M +

e2

2c3μ

[
f1(1 − ε)2 + g2

]
− e

2

c3

[
1
4
f1(1 − ε) + h2 +

3
2
F(ε)

√
1 − ε

]
ε̇

]
.

(3.27)

Note that the renormalized mass depends on ε(τ); for this quantity to act as a mass, ε
must be slowly varying on some interval on the orbit of the evolution compared to all other
motions. The computer analysis we give below indeed shows that there are large intervals of
almost constant ε. In case, as at some points, ε may be rapidly varying, one may consider the
definition (3.25) as formal; clearly, however, if M(ε, ε̇) is large, ẍμ will be suppressed (e.g.,
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for ε close to unity, where MS(ε, ε̇) goes as ε̇/(1− ε)2 and M(ε, ε̇) as ε̇/(1− ε)3; note that F(ε)
goes as (1 − ε)−3).

We now obtain from (3.23)

M(ε, ε̇)ẍμ = −1
2
M(ε, ε̇)
(1 − ε) ε̇ẋ

μ + F(ε)e2
[

...
xμ +

1
(1 − ε) ẋν

...
xνẋμ

]

+ e0f
μ
ext νẋ

ν + e0

(
ẋμẋν
1 − ε + δμν

)
fνext 5.

(3.28)

We remark that when one multiplies this equation by ẋμ, it becomes an identity (all of
the terms except for fμext νẋ

ν may be grouped to be proportional to (ẋμẋν/(1 − ε) + δ
μ
ν )); one

must use (3.21) to compute the off-shell mass shift ε corresponding to the longitudinal degree
of freedom in the direction of the four-velocity of the particle. Equation (3.28) determines
the motion orthogonal to the four-velocity. Equations (3.21) and (3.28) are the fundamental
dynamical equations governing the off-shell orbit.

We remark that as in [19] it can be shown that (3.28) reduces to the ordinary
(Abraham-Lorentz-Dirac) radiation reaction formula for small, slowly changing ε and that
no instability, no radiation, and no acceleration of the electron occur when it is on shell. There
is therefore no “runaway solution” for the exact mass-shell limit of this theory; the unstable
Dirac result is approximate for ε close to, but not precisely, zero.

4. The ε Evolution

We now derive an equation for the evolution of the off-shell deviation, ε, when the external
field is removed. We then use this equation to prove that a fixed mass shell is consistent
only if the particle is not accelerating, and therefore no runaway solution occurs. Using the
definitions

F1(ε) =
g1(ε − 1)

3μ2
, F2(ε) =

g2 + 2(ε − 1)h1

4μ
,

F3(ε) = g3 +
1

12
(ε − 1)h3, F4(ε) =

1
2
h2 +

1
8
(ε − 1)h4,

F5(ε) =
1
8
(ε − 1)h3

(4.1)

in (3.21), in the absence of external fields, we write

ẋμ
...
xμ =

1
F3(ε)

{
M

2e2
ε̇ − F1(ε) + F2(ε)ε̇ − F4(ε)ε̇2 − F5(ε)ε̈

}
. (4.2)
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Differentiating with respect to τ , we find that

ẋμ
....
x
μ + ẍμ

...
xμ =

1
F3

{
F ′2ε̇

2 + ε̈
(
M

2e2
+ F2

)
− F ′1ε̇ − F

′
4ε̇

3 −
(
2F4 + F ′5

)
ε̇ε̈ − F5

...
ε

}

−
F ′3
F2

3

{
F2ε̇ +

M

2e2
ε̇ − F1 − F4ε̇

2 − F5ε̈

}
ε̇

≡ H − F5

F3

...
ε .

(4.3)

Together with (4.4), which is the τ derivative of the last equation in (3.11), one finds (using
(4.3)) that

ẋμ
....
x
μ + 3ẍμ

...
xμ =

1
2

...
ε , (4.4)

which is the τ derivative of the last equation in (3.11), one finds using(4.3)

ẍμ
...
xμ =

(
1
4
+
F5

2F3

)
− 1

2
H(ε, ε̇, ε̈). (4.5)

Multiplying (3.28) by ẍμ (with no external fields) and using (4.2) and (4.5), we obtain

(
1 + 2

F5

F3

)
...
ε −A(ε)ε̈ + B(ε)ε̇2 + C(ε)ε̇ −D(ε) + E(ε)ε̇3 + I(ε)ε̇ε̈ = 0, (4.6)

where

A =
2
F3

(
M

2e2
+ F2

)
+

2M(ε, ε̇)
e2F(ε)

+
4M(ε, ε̇)F5

F3e2F(ε)
,

B =
2F ′3
F2

3

(
F2 +

M

2e2

)
−

2F ′2
F3

+
2

1 − ε
1
F3

(
M

2e2
+ F2

)
− M(ε, ε̇)
e2F(ε)(1 − ε)

− 4F4M(ε, ε̇)
F3e2F(ε)

,

C =
4M(ε, ε̇)
e2F(ε)F3

(
M

2e2
+ F2

)
− 2
F2

3

F1F
′
3 −

2F1

(1 − ε)F3
+

2
F3
F ′1,

D =
4M(ε, ε̇)F1

e2F(ε)F3
,

E = − 2F4

(1 − ε)F3
− 2

(
F4F

′
3

F2
3

−
F ′4
F3

)
,

I = 2

(
F ′5
F3

+ 2
F4

F3
−
F5F

′
3

F2
3

)
− 2F5

(1 − ε)F3
.

(4.7)

We will call this the autonomous equation.
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5. The Mass Correction Equation and the Orbit Equation:
A Compatibility Check

One needs to verify that the off-shell mass correction equation (4.6) gives the same results as
the four-component orbit equation (3.22).

In the absence of external fields, (3.22) can also be written as

aμ
(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3

)
=
f1

3μ
(ẋν

...
xνẋμ + (1 − ε)...xμ) +

g3

μ

...
xμ +

h3ẋν
...
xν

3μ
ẋμ, (5.1)

where

aμ
(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3

)
≡ M · λ(2π)3

2e2
0

ẍμ +
1
2

(
(1 − ε)ẍμ ε̇

2
ẋμ
)(

f1

2μ2
−
ε̇f ′1
2μ

)

−
g1

3μ3
ẋμ +

g2

2μ2
ẍμ +

h1ε

2μ2
ẋμ − h2ε

μ
ẍμ − h3ẍνẍ

ν

4μ
ẋμ − h4ε̇

2

8μ
ẋμ.

(5.2)

In order to obtain
...
xμ as a function of the components of the first and second derivatives, one

may treat this system as a nonhomogeneous, linear system:

A
...
x = a, (5.3)

where A is a 4 × 4 matrix.
The solutions for this system, which were calculated using the computer package

Mathematica, yield initial values for
...
xμ for a set of initial numeric values assigned in ẋμ and

ẍμ.
Differentiating (5.1) with respect to τ , we find

ȧμ
(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3,

...
x0,

...
x1,

...
x2,

...
x3
)

=
f1

3μ

(
ẋν

....
x
ν
ẋμ + (1 − ε)....xμ

)
+
g3

μ

....
x
μ +

h3ẋν
....
x
ν

3μ
ẋμ.

(5.4)

The initial values
...
x0,

...
x1,

...
x2,

...
x3 of (5.4) are the solutions to (5.1) with initial values for

ẋ0, . . . , ẋ3 and ẍ0, . . . , ẍ3 (of course (5.1) and (5.4) have the same initial values of ẋ0, . . . , ẋ3

and ẍ0, . . . , ẍ3). Equations (5.4) and (5.1) have the same form, and therefore the solutions for
...
xμ and

....
x
μ also have the same form, with the only difference being in replacing aμ (5.2) with

ȧμ(ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3,
...
x0,

...
x1,

...
x2,

...
x3).

Now, we have to show that (4.4) is satisfied. One has

ẋμ
....
x
μ + 3ẍμ

...
xμ =

1
2

...
ε , (5.5)

where
...
xμ(ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3) are the solutions of (5.1),

....
x
μ(ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1,

ẍ2, ẍ3,
...
x0,

...
x1,

...
x2,

...
x3) are the solutions of (5.4), and

...
ε (ε, ε̇, ε̈) is the solution of the autonomous
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Table 1: First set. The parameters: μ = 3 ∗ 10−3 GeV−1, Mα = 4.84473 ∗ 105 GeV2.

Initial conditions for the orbit The third and forth derivatives (calculated with the initial

equation conditions for the orbit equation)

ẋ0 = 1.6 ẍ0 = 15
...
x0 = −394197.84731

....
x0 = 5.85464 ∗ 109

ẋ1 = 0.1 ẍ1 = 10
...
x1 = 20879.93019

....
x1 = 5.62709 ∗ 108

ẋ2 = 0.3 ẍ2 = −13
...
x2 = −153331.92947

....
x2 = 7.54373 ∗ 108

ẋ3 = 0.9 ẍ3 = −23
...
x3 = 379634.21816

....
x3 = 6.46893 ∗ 109

The orbit equation result
...
ε = 2 · (ẋμ

...
xμ + 3ẍμ

...
xμ) = −1.726245753395 ∗ 109

Initial conditions for the autonomous equation

ε = 1 − ẋ2
0 + ẋ

2
1 + ẋ

2
2 + ẋ

2
3 = −0.65

ε̇ = 2 · (−ẋ0 · ẍ0 + ẋ1 · ẍ1 + ẋ2 · ẍ2 + ẋ3 · ẍ3) = −95.2

ε̈ = 2 · (−ẋ0 ·
...
x0 + ẋ1 ·

...
x1 + ẋ2 ·

...
x2 + ẋ3 ·

...
x3 − ẍ0 · ẍ0 + ẍ1 · ẍ1 + ẍ2 · ẍ2 + ẍ3 · ẍ3) = 1.8581 ∗ 106

The autonomous equation result
...
ε = −1.726245753395 ∗ 109

Table 2: Second set. The parameters: μ = 3 ∗ 105 GeV−1 Hz, M/α = 4.84473 ∗ 10−10 GeV2.

Initial conditions for the orbit The third and forth derivatives (calculated with the initial

equation conditions for the orbit equation)

ẋ0 = 1.001 ẍ0 = 1.6476
...
x0 = 22.5575

....
x0 = 124.9841

ẋ1 = 0.1 ẍ1 = 4
...
x1 = 11.9631

....
x1 = 58.5639

ẋ2 = 0.2 ẍ2 = 1
...
x2 = 6.2052

....
x2 = 33.0308

ẋ3 = 0.3 ẍ3 = 2
...
x3 = 10.5736

....
x3 = 55.5532

The orbit equation result
...
ε = 2 · (ẋμ

....
x
μ + 3ẍμ

...
xμ) = 36.272327445316

Initial conditions for the autonomous equation

ε = 1 − ẋ2
0 + ẋ

2
1 + ẋ

2
2 + ẋ

2
3 = 0.13800

ε̇ = 2 · (−ẋ0 · ẍ0 + ẋ1 · ẍ1 + ẋ2 · ẍ2 + ẋ3 · ẍ3) = −0.89850

ε̈ = 2 · (−ẋ0 ·
...
x0 + ẋ1 ·

...
x1 + ẋ2 ·

...
x2 + ẋ3 ·

...
x3 − ẍ0 · ẍ0 + ẍ1 · ẍ1 + ẍ2 · ẍ2 + ẍ3 · ẍ3) = 2.62951

The autonomous equation result
...
ε = 36.272327445316

equation with initial conditions which are consistent with the ones in (5.1) and (5.4) that
satisfy (3.11).

In Tables 1 and 2, we see two sets of parameters and initial conditions which were
chosen for the components of ẋμ and ẍμ. For each set, the orbit equation yields its results for
...
xμ and

····
xμ and the autonomous equation yields its results for

...
ε . In both sets the results satisfy

(5.5).
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As a further test we compared trajectories of the orbit equations and the autonomous
equation using the Runge-Kutta method.

5.1. The Numerical Solution Techniques

We investigated the dynamical behavior of the system using two methods: the first is the
completely “computerized” method and the second is the “manual” fourth-order Runge-
Kutta algorithm.

The first method is based upon Mathematica’s numerical equation-solving set of
commands. This method was only used with the autonomous equation (as the orbit equations
are too complicated and thus require a different approach). The second “manual” method
was used to numerically solve both the orbit equation and the autonomous equation (also
using Mathematica’s computation power), as follows.

The four dynamical equations (or orbit equations), (3.22), can be written as a set of
eight first-order equations of the form

dẋ0

dτ
= ẍ0,

dẋ1

dτ
= ẍ1,

dẋ2

dτ
= ẍ2,

dẋ3

dτ
= ẍ3,

dẍ0

dτ
= f0

(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3

)
,

dẍ1

dτ
= f1

(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3

)
,

dẍ2

dτ
= f2

(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3

)
,

dẍ3

dτ
= f3

(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3

)
.

(5.6)

We assigned the expressions obtained earlier for the four third-order derivatives
...
x0 −

...
x3 into the functions f0− f3, respectively, and used the Runge-Kutta method to calculate the
trajectory for the system of equations. The algorithm was programmed in Mathematica.

As for the autonomous equation, (4.6), it can be written as a set of three first-order
equations of the form

dε

dτ
= ε̇,

dε̇

dτ
= ε̈,

dε̈

dτ
= Q(ε, ε̇, ε̈),

(5.7)
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Figure 1: (a) First set, the autonomous equation trajectory. (b) First set, the orbit equation trajectory.

with

Q =
...
ε =

1
1 + 2(F5/F3)

(
A(ε, ε̇)ε̈ − B(ε, ε̇)ε̇2 − C(ε, ε̇)ε̇ +D(ε, ε̇) − E(ε)ε̇3 − I(ε)ε̇ε̈

)
. (5.8)

Again, the initial values ε, ε̇, ε̈ for the autonomous quation were chosen to match those
of the orbit equation, according to (3.11). Thus, they obey the three conditions

ε = ẋμẋμ + 1,

ε̇ = 2ẋμẍμ,

ε̈ = 2
(
ẋμ

...
xμ + ẍμẍμ

)
.

(5.9)

With these initial values inserted, we calculated the trajectory for the autonomous
equation using the Runge-Kutta method.

As explained above, we used two sets of initial values, which appear in Tables 1 and
2, and evolve to the trajectories shown in Figures 1 and 2, respectively. Figures 1(a) and 2(a)
show the trajectories of the autonomous equation for each set, and Figures 1(b) and 2(b) show
those of the orbit equation. The identical results demonstrate the compatibility between the
orbit equation and the autonomous equation.

Mathematica’s numerical equation-solving commands produced identical results to
the Runge-Kutta method for the autonomous equation in both sets of the initial conditions.

5.2. About the Parameters Used

The calculation carried out uses the parametersM/α and μ, where α = μe2 (the orbit equation
contains the factor α on the right-hand side, so that M/α is a convenient parameter for the
numerical analysis). We chose to work with natural units: � = c = 1, and so energy has units
of GeV, and mass (m and M) is also in units of GeV. Length (�/mc) is in units of GeV−1,
and time (�/mc2) is in units of GeV−1 (both proper and universal). The velocity is therefore
without units, acceleration has units of GeV, and so on. The cutoff frequency, μ, has units of
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+ ẋ12
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+ ẋ32

(b)

Figure 2: (a) Second set, the autonomous equation trajectory. (b) Second set, the orbit equation trajectory.

time, GeV−1, and the charge, e =
√

2e2
0/λ(2π)

3μ, has no units. The value e2 can be identified
with the measured electric charge squared. It depends on three bare parameters: e0, μ, and
λ. In our examples we chose these bare parameters so that e would be equal to the electron’s
charge. The initial conditions were chosen to be close to the mass shell (ε = 1 −m2/M2 ≈ 0).

6. The Autonomous Equation and the (Universal Time)
Effective Mass M(ε, ε̇)

In both the orbit equation and the autonomous equation, initial conditions within a basin of
attraction will evolve to an orbit of an attractor. In the phase space of ε, ε̇, ε̈, and

...
ε , the orbit of

the attractor propagates towards the vicinity of the coordinate (ε, ε̇, ε̈,
...
ε ) = (1, 0, 0, 0), which

will simply be named unity.
The nature of the orbit depends on the cutoff frequency μ. Higher cutoff frequency

results in a nonfluctuating orbit, while a lower, more physical frequency (closer to zero)
results in a fluctuating one. The fluctuations appear as loop cycles in the phase space graphs.

6.1. Analysis of a Cycling Attractor
(with a Lower, More “Physical” Cutoff Frequency)

In this subsection, we bring an example of a fluctuant attractor’s orbit and present its
properties. We start with Figures 3(a) and 3(b), which are the orbit’s phase space graphs
(ε, ε̇) and (ε̇, ε̈), respectively.

In Figure 3(c) we show the global Lyapunov exponent of the attractor. We have
computed the global Lyapunov exponent by studying the average separation of orbits
associated with nearby initial conditions. Segments of relative stability and instability can
be observed.

Despite the fluctuations which create temporary instabilities, in general the Lyapunov
exponent decays. A time series of the correlation between the attractor and an orbit with
an initial coordinate at a distance of 0.00001 (Figure 3(d)) shows the same phenomenon: the
distance between the orbits generally decreases, despite the temporary fluctuations. Thus, no
evidence of chaotic behavior is found.
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Figure 3: (a) and (b) The orbit of an attractor in two phase space graphs. Initial conditions: ε = 0.01, ε̇ = 55,
ε̈ = 106, M/α = 556.85 GeV2, and μ = 10−5 GeV−1. (c) The Lyapunov exponent λ. (d) The correlation
between two close orbits: the attractor and an orbit which starts close to it (distance 0.00001). One can
clearly see the correlation between the orbits, which is not a chaotic pattern. (e) and (f) ε and the effective
mass as a function of the number of time iterations. As ε becomes close to unity the mass fluctuation
amplitude grows significantly.

Figures 3(e) and 3(f) show the attractor’s ε and the effective mass as a function of the
universal time iterations. The effective mass fluctuation amplitude grows significantly near
unity.

We will analyze three consecutive cycles (fluctuations) in our chosen attractor and
observe the phase space trajectory, its stability, and the mass behavior.
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Figure 4: (a) and (b). The ε, ε̇ and the ε̇, ε̈ graphs, respectively. One can see the loop cycle in both phase
space graphs. (c) and (d) ε and the (universal time) effective mass M(ε, ε̇) as functions of the number
of iterations. One can see how ε temporarily decreases during the cycle. The effective mass significantly
grows (in absolute value) as the cycle terminates. (e) The Lyapunov exponent fluctuates during the cycle
(relative instability) but generally decreases.

6.1.1. First Cycle

In Figures 4(a) and 4(b), we see ε, ε̇ and ε̇, ε̈ graphs of this cycle, respectively. Figures 4(c) and
4(d) show ε and the effective mass as functions of the number of iterations. Figure 4(e) shows
the Lyapunov exponent. The orbit in Figure 4(a) enters a region of folding, which develops
to a loop. In Figure 4(b), one can see an apparent attractor inducing motion beginning at the
lower convex portion of the orbit which then turns back in a characteristic way to reach the
last point visible on this graph.
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The instability in the Lyapunov exponent (Figure 4(e)) is accompanied by a temporary
decrease in the ε graph (Figure 4(c)). This instability is the climax of the loop cycle in the ε, ε̇
and the ε̇, ε̈ graphs. As the loop cycle terminates, ε climbs to a higher value than the one it
had when the cycle began, and the exponent continues to decay.

In Figure 4(d) we see that the effective mass fluctuates with a growing amplitude. As
the cycle reaches towards its end, the effective mass continues to a higher amplitude and has
its highest absolute values.

6.1.2. Second Cycle

The attractor’s orbit continues to a second cycle, as can be seen in the ε, ε̇ and ε̇, ε̈ graphs
(Figures 5(a) and 5(b), resp.). This second cycle is again accompanied by a fluctuation
(relative instability) in the Lyapunov exponent, as can be seen in Figure 5(e). The mass, as
before, fluctuates with growing amplitude (we can observe the growing values on the y-axis
in Figure 5(d) in comparison to Figure 4(d)). As the mass reaches a relatively low absolute
value, the Lyapunov exponent rises to a relatively high one (the “jump” area of the exponent
graph).

6.1.3. Third Cycle

The consecutive cycle behaves in the same way as the two previous ones, as can be seen in
Figures 6(a)–6(e). The occurrence of the present loop cycle is seen when ε has a down spike
(around the iteration value 2500 in Figure 6(c)). In this area the Lyapunov exponent has an
up spike (Figure 6(e)). The effective mass, in contrast to the Lyapunov exponent, decreases
during the cycle but rises to a higher amplitude as it ends (Figure 6(d)).

The above results suggest that as long as the electron “survives” the fluctuations (or
cycles) and its orbit doesn’t run away to infinity, the effective mass will reach higher absolute
values in the end of each cycle. The effective mass, in general, fluctuates with increasing
amplitude. As can be seen from the Lyapunov exponent graphs, the attractor is relatively
unstable during the cycles but regains stability between them. A correlation is clearly observed
between a relatively high absolute value of the effective mass and a relatively low value of the Lyapunov
exponent (which indicates a relative stability).

We also saw correlation between our attractor and nearby orbits, as seen in the time
series associated with them, even in the vicinity of unity (the light cone). This correlation
shows the absence of chaotic behavior.

6.2. A Smooth (Less Physical) Attractor

In this subsection we give an example of a smooth attractor, as can be seen in Figures 7(a)–
7(e).

The only change in the initial conditions and parameters between this smooth orbit
and the former, fluctuant, one is the cutoff frequency, which has a higher value now:
10−1 GeV−1 (instead of 10−5 GeV−1 in the fluctuant case). This orbit has no loop cycles in its
phase space graphs. It has, however, a higher life span than the previous, fluctuant attractor,
and thus it stays a longer time in the vicinity of unity. Nevertheless, also in this case the orbit
will, at some point, run away to infinity.

Although a higher cutoff frequency is less “physical”, the advantage of showing an
attractor with relatively high cutoff frequency is that the fluctuations are removed, and the
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Figure 5: (a) and (b) The ε, ε̇ and the ε̇, ε̈ phase space graphs, respectively. (c) and (d) ε and the (universal
time) effective mass M(ε, ε̇) as functions of the number of iterations. As in the previous cycle, the mass
fluctuation amplitude grows. (e) Again, the Lyapunov exponent fluctuates during the cycle and returns to
decay as it ends.

“pure” correlation between the growing effective mass and the rising stability (in the form
of declining and even negative Lyapunov exponent) can be seen. Indeed, the attractor’s
Lyapunov exponent in Figure 7(c) turns to be unambiguously negative and smooth, which
may indicate the existence of a fixed point.

The attractor’s ε and effective mass as functions of the time iterations appear in Figures
7(d) and 7(e), respectively. There are no fluctuations. We can therefore conclude that the
pattern is even clearer in the present example: as the attractor is steadily approaching the
light cone, the effective mass is steadily growing (in absolute value), without fluctuations,
and the Lyapunov exponent is negative and stable.
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Figure 6: (a) and (b) The ε, ε̇ and the ε̇, ε̈ phase space graphs, respectively. (c) and (d) ε and the (universal
time) effective mass M(ε, ε̇) as functions of the number of iterations. As in the previous cycles, the mass
fluctuation amplitude significantly grows towards the cycle’s end. One should also observe the relatively
low value of the effective mass around the iteration value of 2500 (the climax of the cycle). (e) Again, the
Lyapunov exponent fluctuates during the cycle and returns to decay afterwards.

7. The Dynamical Equations

In this section, we will demonstrate some characteristics the orbit equation exhibits, which
were previously found to be properties of the autonomous equation for the off-mass shell.

As a first example, we choose a fluctuant, two-loop-cycle orbit (Figures 8(a)–8(c), 9(a)–
9(c), 10(a)–10(e)) with given initial conditions, and analyze it. In Figures 8(a)–8(c) we see (ẋ1,
ẍ1) graphs of the orbit. An attractor can be clearly seen. The orbit reaches velocities which are
very large (These velocities, in which ε is close to unity, correspond to very short segments of
the world line due to the factor

√
1 − ε connecting dτ and ds.)
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Figure 7: (a) and (b) An attractor without fluctuations (cycles). (a) ε, ε̇ graph and (b) ε̇, ε̈ graph. (c)
Lyapunov exponent and (d) ε itself, as functions of the (universal) time iterations. (e) The effective mass
steadily grows (in absolute value) as ε moves towards unity.

Figures 9(a)–9(c) show the (ε, ε̇) graphs of the orbit. While the second loop cycle in
the (ε, ε̇) graph becomes smaller than the first and closer to unity, the second loop cycle in the
velocity-acceleration graph becomes larger than the first one.

The fact that the second loop cycle in the velocity-acceleration graph is larger than the
first means that during the attraction towards the light cone the velocity reaches more extreme
values. One can look at this with connection to the behavior shown in the autonomous
equation case, in which each loop cycle causes relative instability.

Figures 10(a)–10(e) show ε, the ẋ1 component of the velocity, the ẍ1 component of
the acceleration, the effective mass M(ε, ε̇), and the Lyapunov exponent, respectively, as
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ẍ
1

(b)

20 40 60 80 100

ẋ1
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Figure 8: See also Figure 9. Figures 8(a) and 9(a) a two-loop-cycle orbit, as shown in ẋ1, ẍ1 graph
(Figure 8(a)) and ε, ε̇ graph (Figure 9(a)). Initial conditions: ẋ0 = 0.8, ẋ1 = 0.1, ẋ2 = 0.1, ẋ3 = 0.1,
ẍ0 = −10000, ẍ1 = 4, ẍ2 = 5, ẍ3 = 7,M/α = 4.8 · 107 GeV2, and μ = 10−5 GeV−1. Figures 8(b) and
9(b). The first loop cycle. ε has relatively low value (Figure 9(b)) when the value of ẋ1 is relatively high
(Figure 8(b)). Figures 8(c) and 9(c). The second loop cycle, smaller than the first in the ε, ε̇ graph and larger
than the first in the ẋ1, ẍ1 graph.

functions of the time iterations during the first loop cycle (Figures 8(b) and 9(b)). When the
fluctuation occurs (around the iteration value of 2200), the Lyapunov exponent rises (relative
instability). This is accompanied by a sudden rise in the velocity and the acceleration.
However, the acceleration suddenly and very sharply jumps down and becomes negative.
The powerful force which is responsible for the acceleration (brutal) change is the generalized
Lorentz force. It is exactly at this point that the effective mass starts to grow (in absolute
value), in order to reach a higher amplitude in its sinusoidal orbit. The effective mass is now
growing, and at the same time the acceleration is decaying. The acceleration becomes less
negative but slows the electron down, and the fluctuation terminates. Along with the slowing
down, stability is restored (i.e., the Lyapunov exponent decays again).

To repeat, the effective mass markedly grows (in absolute value) immediately after the
sharp change of the acceleration, which is caused by the generalized Lorentz force. Actually,
the effective mass increases its fluctuation amplitude. As the mass grows the acceleration
decays, and stability is restored. The growth of the effective mass should therefore be regarded as a
“stabilizing reaction” of the electron against the generalized Lorentz force laid upon it. The effective
mass generated in the vicinity of unity (the light cone) is very large (The effective mass value
at ε ≈ 0.999 is about 300 times greater than its value at ε ≈ 0.84.)
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Figure 9: See the caption of Figure 8 which applies to both Figures 8 and 9.

As a second example, of which the motivation for presentation was discussed in
the former section, we present a smooth, nonfluctuant orbit. This orbit has the same initial
conditions and parameters as the former, fluctuant one. However, its cutoff frequency is
higher: 10−1 GeV−1. The higher cutoff frequency removes the fluctuations and shows a
clear connection between the effective mass growth and the decay of the velocity and the
acceleration. Figures 11(a)–11(e) present ε, the acceleration, the velocity, Lyapunov exponent,
and the effective mass of this orbit, respectively. The effective mass (absolute value) growth
(Figure 11(e)) is accompanied by decaying acceleration and velocity (Figures 11(b) and 11(c),
resp.) and growing stability (Figure 11(d)).

The growth of effective mass and stability on the one hand and the decay of
acceleration and velocity on the other hand go together. This, again, should be regarded as a
stabilizing effect, which occurs also near the light cone.

8. An External Force Added

When an external force of the form

e0f
μ

ext 5 = A cos(ωτ) (8.1)

is added, the orbit equation (3.22) is

aμ
(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3, τ

)
=
f1

3μ
(ẋν

...
xνẋμ + (1 − ε)...xμ) +

g3

μ

...
xμ +

h3ẋν
...
xν

3μ
ẋμ. (8.2)
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Figure 10: (a) ε during the first loop cycle. (b) The ẋ1 velocity during the first loop cycle. (c) The ẍ1

acceleration during the first loop cycle. (d) The effective mass M(ε, ε̇) during the first loop cycle. (e) The
Lyapunov exponent during the first loop cycle.
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Figure 11: (a) and (b) ε and the acceleration component ẍ1 as functions of the number of time iterations.
(c) and (d) The velocity component ẋ1 and the Lyapunov exponent as functions of the number of time
iterations. (e) The effective (universal time) mass.
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This time we obtain the initial conditions
...
xμ as a function of the components of the first

and second derivatives and also of τ explicitly. The expressions for
...
xμ have the same form as

the τ-independent solutions, with the only difference being in replacing aμ from (5.2) with

aμ
(
ẋ0, ẋ1, ẋ2, ẋ3, ẍ0, ẍ1, ẍ2, ẍ3, τ

)
≡ (M · ẍμ −A cos(ωτ)) · λ(2π)3

2e2
0

+
1
2

(
(1 − ε)ẍμ + ε̇

2
ẋμ
)(

f1

2μ2
−
ε̇f ′1
2μ

)
−
g1

3μ3
ẋμ

+
g2

2μ2
ẍμ +

h1ε

2μ2
ẋμ − h2ε

μ
ẍμ − h3ẍνẍ

ν

4μ
ẋμ − h4ε̇

2

8μ
ẋμ.

(8.3)

Again, the values for ẋμ and ẍμ were chosen, and the values for
...
xμ were calculated

using the orbit equation with the added perturbation (8.2). We used the initial values for
ẋμ, ẍμ,

...
xμ built in this way to program a Runge-Kutta algorithm as before. The program’s

output is a trajectory of a self-interaction attractor, as a function of the external perturbation.
In Figure 12(a), we present an (ε, ε̇) graph of the attractor’s pure self-interaction, with the
external perturbation turned off.

In Figure 12(b), the external perturbation, which we chose to be

e0f
μ

ext 5 = 1.6 · 10−9 cos
(

1014τ
)
, (8.4)

was turned on. The time step in this figure is of order 10−9 GeV−1. The figure shows a cycling
polygonal orbit whose edges form an oval frame. The oval frame can be seen more clearly in
Figure 12(c), where we removed the orbit lines which connect the coordinates.

As a large number of iterations are done, the polygonal orbit propagates in the path of
the unperturbed attractor (Figure 12(d)).

When we use a different time step which is ten times smaller than the one in Figures
12(b)–12(d), we see again a cycling orbit whose edges form an oval (Figure 13(a)), but this
time the oval frame is “filled” with a different polygonal pattern and looks like a “stretched”
version of the previous one. As for the scale in Figure 13(a), it is about 12 times smaller than
the one in Figures 12(b)–12(d). As before, there is a sinusoidal orbit when more iterations are
taken (Figure 13(b)) and the propagation is in the path of the pure self-interaction attractor
of Figure 12(a).

Two more similar reductions of the time step result in smaller-scale oval patterns,
which are similar to the larger ones (Figures 14(a), 14(b) and 15(a), 15(b)). Here, again, the
sinusoidal nature appears. This self-similarity on smaller time steps (and smaller scales) is a
fractal feature and hence may suggest the existence of a strange attractor.

9. Summary and Discussion

We have shown that a generalized Lorentz force can be derived directly from the Hamiltonian
for the classical relativistic motion of a charged particle in interaction with a generalized
electromagnetic field by means of the Hamilton equations.
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ẋ

22
+
ẋ
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Figure 12: (a) The orbit without an external field. Initial conditions: ẋ0 = 3.2, ẋ1 = 0.4, ẋ2 = 0.2, ẋ3 = 0.00049,
ẍ0 = 2.83, ẍ1 = 0.3, ẍ2 = 0.1, ẍ3 = −0.0011, M/α = 105 GeV2, and μ = 10−5 GeV−1. (b) and (c) The external
perturbation added. The edges of the cycling polygonal orbit (b) form an oval frame, which can be seen
as the lines connecting the coordinates are removed (c). Time step: 10−9 GeV−1. (d) The propagation of the
perturbate attractor after many time iterations is in the path of the pure self-interaction attractor of (a).

We computed the charged particle self-interaction and obtained differential equations
for its motion by using the Green’s function for the electromagnetic fields, and by taking the
motion of the particle as the current source. We studied the motion both in the absence and
in the presence of an external field. We introduced the quantity

ε = 1 + ẋμẋμ, (9.1)

which measures the deviation of the charged particle from its “mass shell”.

9.1. In the Absence of an External Field

In the absence of an external field, we obtained an autonomous equation for the development
of ε. This equation describes the mass deviation which is caused by pure self-interaction.
Alongside with the autonomous equation, we also derived the four-component equation
of motion (which we termed the orbit equation). Their compatibility was demonstrated by
solving them numerically using consistent initial values.
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Figure 13: The smaller scale polygonal orbit and its propagation. One can observe the cycling polygonal
orbit “filling” the oval frame in a star-like pattern (a). There is also a sinusoidal propagation (b). Time step:
10−10 GeV−1. The scale is about 12 times smaller than the one in Figures 12(b)–12(d).
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Figure 14: The cycling orbit filling the oval frame and the beginning of its propagation. Time step:
10−11 GeV−1. The scale is about 6 times smaller than the one in Figures 13(a) and 13(b).

Both the autonomous equation and the orbit equation show the existence of an
attractor. We investigated the accumulation area of the attractor—the vicinity to the phase
space coordinate (ε, ε̇, ε̈) = (1, 0, 0). We demonstrated that a lower and more “physical” cutoff
frequency results in fluctuations in the orbit, as opposed to a higher (less physical) cutoff
frequency, which results in a smooth orbit. Each fluctuation (or cycle, as it is seen in a phase
space graph), causes a temporary instability, and a fluctuating attractor has shorter life span
than a nonfluctuating one.

A lower cutoff frequency leads to M(ε, ε̇) fluctuating with increasing amplitude as the
orbit propagates towards the light cone. Within each such fluctuation the Lyapunov exponent
jumps when the effective mass is relatively close to zero and decays when the absolute value
of the effective mass increases. This phenomenon was demonstrated in three consecutive
cycles.

A higher cutoff frequency removes the cycles/fluctuations and causes the absolute
value of the effective mass to grow with increasing rate as ε propagates towards the light cone.
In this scenario, the Lyapunov exponent decays steadily and without jumps (Figure 11(d))
and may become negative (Figure 7(c)).

In both cases mentioned above, a very large effective mass is generated as ε ≈ 1
(Figures 3(f), 7(e), and 11(e)). This feature is possibly associated with effective nonzero size.
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ẋ

32

−9.04 −9.04 −9.04 −9.04 −9.04 −9.04 −9.04

−7500

−5000

−2500

2500

5000

7500

(a)
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Figure 15: Time step: 10−12 GeV−1. The scale is about 13 times smaller than the one in Figures 14(a) and
14(b).

The numerical solution of the orbit equations shows that the velocities and
accelerations attained by the electron become more extreme with each fluctuation as ε
propagates towards unity. The acceleration, which is shown in Figure 10(c), increases at the
beginning of a fluctuation and then suddenly and forcefully changes direction and reduces
the velocity of the electron (Figure 10(b)). This powerful and sudden change is caused by the
generalized Lorentz force. The slowing down of the electron is accompanied by a markedly
growing effective mass, which stabilizes the electron against that force (Figures 10(d) and
10(e)). The velocity decay along with the growing effective mass and stability is also seen in
the nonfluctuating case (Figures 11(a)–11(e)).

We also checked whether the attractor has chaotic nature, using a Lyapunov exponent
calculation and a time series analysis. The results did not indicate chaotic nature.

9.2. In the Presence of External Field

In the presence of an external field, the attractor acquires a remarkable stochasticity which
may suggest fractal nature. The propagation nature of the attractor changes from a flat line
propagation in the pure self-interaction case to a spring like, sinusoidal propagation of a
cycling polygon in the external perturbation case (Figures 12, 13, and 14). However, the
general path of the propagation remains the path of the pure self-interaction propagation
(Figure 12(d)). A polygonal pattern also appears as smaller time steps are taken and the
scales are smaller. This feature of self-similarity in smaller scales is of fractal nature and
may suggest the existence of a strange attractor. Its stochastic type signals may be found
in experiments with high-frequency detectors.
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quanta,” Helvetica Physica Acta, vol. 15, pp. 23–37, 1942 (French) (French).
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