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Brno University of Technology, Veveřı́ 331/95, 60200 Brno, Czech Republic

3 Department of Complex System Modeling, Faculty of Cybernetics, Taras,
Shevchenko National University of Kyiv, Vladimirskaya Str., 64, 01033 Kyiv, Ukraine

Correspondence should be addressed to Josef Diblı́k, diblik@feec.vutbr.cz

Received 28 January 2010; Accepted 11 May 2010

Academic Editor: Elena Braverman

Copyright q 2010 Josef Diblı́k et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

Many processes are mathematically simulated by systems of discrete equations with quadratic
right-hand sides. Their stability is thought of as a very important characterization of the process. In
this paper, the method of Lyapunov functions is used to derive classes of stable quadratic discrete
autonomous systems in a critical case in the presence of a simple eigenvalue λ = 1 of the matrix of
linear terms. In addition to the stability investigation, we also estimate stability domains.

1. Introduction

The main results on the stability theory of difference equations are presented, for example,
by Agarwal [1], Agarwal et al. [2], Chetaev [3], Elaydi [4], Halanay and Răsvan [5],
Lakshmikantham and Trigiante [6], and Martynjuk [7]. Instability problems are considered,
for example, in [8–10] by Slyusarchuk. Note that stability and instability results often have
a local character and are usually obtained without any estimation of the stability domain,
or without investigating the character of instability. Moreover, it should be emphasized that
global instability questions have only been discussed for linear systems.

Many processes and phenomena are described by differential or difference systems
with quadratic nonlinearities. Among others, let us mention epidemic and populations
models, models of chemical reactions, and models for describing convection currents in the
atmosphere.
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The stability of a zero solution of difference systems

x(k + 1) = f(x(k)), (1.1)

where k = 0, 1, . . ., and x = (x1, . . . , xn)
T with differentiable f = (f1, . . . , fn)

T : R
n → R

n,
is very often investigated by linearly approximating system (1.1) in question by using the
matrix of linear terms

x(k + 1) = Ax(k) + g(x(k)), (1.2)

where A = f ′(0, 0, . . . , 0) is the Jacobian matrix of f at (0, 0, . . . , 0), and g(x) = f(x) −Ax. This
approach becomes unsuitable in what is called a critical case, that is, when the spectral radius
of the matrix ρ(A) = 1 because, among all systems (1.2), there are classes of stable systems
as well as classes of unstable systems. Concerning this, we formulate the following known
results (see, e.g., Corollary 4.34 [4, page 222] and Theorem 4.38 [4, page 226]).

Theorem 1.1. (1) If ρ(A) < 1, then the zero solution of (1.2) is exponentially stable.
(2) If ρ(A) = 1, then the zero solution of (1.2) may be stable or unstable.
(3) If ρ(A) > 1 and g(x) is o(x) as ‖x‖ → 0, then the zero solution of (1.2) is unstable.

In this paper, we consider a particular critical case when there exists a simple
eigenvalue λ = 1 of the matrix of linear terms and the remaining eigenvalues lie inside a
unit circle centered at origin. The purpose of this paper is to obtain (using the method of
Lyapunov functions) conditions for the stability of a zero solution of difference systems with
quadratic nonlinearities in the above case and derive classes of stable systems. In addition to
the stability investigation, we estimate the stability domains as well. The domains of stability
obtained are also called guaranteed domains of stability. Preliminary results in this direction
were published in [11].

1.1. Quadratic System and Preliminary Consideration

In the sequel, the norms used for vectors and matrices are defined as

‖x‖ =
(

n∑
i=1

x2
i

)1/2

(1.3)

for a vector x = (x1, . . . , xn)
T and

‖A‖ =
(
λmax(ATA)

)1/2
(1.4)

for anym×nmatrixA. Here and in the sequel, λmax(·) (or λmin(·)) is the maximal (or minimal)
eigenvalue of the corresponding symmetric and positive- (semi-) definite matrix (see, e.g.,
[12]).
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Consider a nonlinear autonomous discrete system with a quadratic right-hand side

xi(k + 1) =
n∑
s=1

aisxs(k) +
n∑

s,q=1

bisqxs(k)xq(k), i = 1 . . . , n, (1.5)

where k = 0, 1, . . . and the coefficients ais and bisq (we assume that bisq = biqs) are constant. As
emphasized, for example, in [3, 7, 12], system (1.5) can be written in a general vector-matrix
form

x(k + 1) = Ax(k) +XT (k)Bx(k), k = 0, 1, . . . , (1.6)

where

(a) A = {ais}, i, s = 1, 2 . . . , n, is an n × n constant square matrix,

(b) matrix XT = {XT
1 , X

T
2 , . . . , X

T
n} is n × n2 rectangular and all the elements of the n × n

matrices XT
i , i = 1, . . . , n, are equal to zero except the ith row with entries xT =

(x1, x2, . . . , xn), that is,

XT
i (k) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0
· · · · · · · · · · · ·
x1 x2 · · · xn
· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠, (1.7)

(c) matrix BT = {B1, B2, . . . , Bn} is n2 × n rectangular and the n × n constant matrices
Bi = {bisq}, i, s, q = 1, . . . , n, are symmetric.

The stability of the zero solution of (1.6) depends on the stability of the matrix A. If ρ(A) < 1,
then the zero solution of (1.6) is exponentially stable for an arbitrary matrix B by Theorem 1.1.
In this case, matrix B only impacts on the shape of the stability domain of the equilibrium
state. If the zero solution of (1.6) is investigated on stability by the second Lyapunov method
and an appropriate Lyapunov function is taken as the quadratic form V (x) = xTHx with a
suitable n × n constant real symmetric positive-definite matrix H, which is defined below,
then the first difference ΔV along the trajectories of (1.6) equals

ΔV (x(k)) = V (x(k + 1)) − V (x(k)) = xT (k + 1)Hx(k + 1) − xT (k)Hx(k)

=
[
Ax(k) +XT (k)Bx(k)

]T
H
[
Ax(k) +XT (k)Bx(k)

]
− xT (k)Hx(k)

=
[
xT (k)AT + xT (k)BTX(k)

]
H
[
Ax(k) +XT (k)Bx(k)

]
− xT (k)Hx(k)

= xT (k)
[(
ATHA −H

)
+ATHXT (k)B + BTX(k)HA + BTX(k)HXT (k)B

]
x(k)

= xT (k)
[(
ATHA −H

)
+ 2BTX(k)HA + BTX(k)HXT (k)B

]
x(k)

(1.8)

since (ATHXT (k)B)T = BTX(k)HA.
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Since ρ(A) < 1, for arbitrary positive-definite symmetric matrix C, the matrix
Lyapunov equation

ATHA −H = −C (1.9)

has a unique solution H—a positive-definite symmetric matrix (e.g., [4, Theorem 4.30, page
216]). We use such matrix H to estimate the stability domain. Then, as follows from (1.8),

ΔV (x(k)) ≤ −
[
λmin(C) − 2‖B‖ · ‖HA‖ · ‖x(k)‖ − ‖B‖2 · ‖H‖ · ‖x(k)‖2

]
· ‖x(k)‖2. (1.10)

Analysing (1.10), we deduce that the first difference ΔV (x(k)) will be negative definite if

‖B‖2 · ‖H‖ · ‖x(k)‖2 + 2‖B‖ · ‖HA‖ · ‖x(k)‖ ≤ λmin(C), (1.11)

that is, it will be negative definite in a neighborhood Uδ = {x ∈ R
n : ‖x‖ < δ} of the steady-

state x(k) ≡ 0, k = 0, 1, . . . , if δ is sufficiently small. In the case considered, the domain of
stability can be described by means of two inequalities. The first inequality (1.11) defines
a part of the space R

n, where the first difference ΔV (x(k)) is negative definite. The second
inequality

V (x) ≤ r, x ∈ R
n, r > 0, (1.12)

describes points inside a level surface. The guaranteed domain of stability is given by
inequality (1.12) if r is taken so small that the domain described by (1.12) is embedded in
the domain described by inequality (1.11).

Considering the investigated critical case, we will deal with a different structure of
the right-hand side of the inequality from that seen in (1.10). Namely, we will show that,
unlike the right-hand side of the inequality for ΔV (x(k)) that is multiplied by ‖x(k)‖2 with
dimx(k) = n in (1.10), in the critical case considered, the right-hand side of the inequality
(or equality) for ΔV (x(k)) will be multiplied only by a term ‖xn−1(k)‖2 with dimxn−1(k) =
n − 1 < n (see (2.21) in the case n = 2 and (2.69) in the general case below).

2. Main Results

In this section we derive the classes of the stable systems (1.6) in a critical case when the
matrix A has one simple eigenvalue λ = 1.

2.1. Instability in One-Dimensional Case

We start by discussing a simple scalar equation with the eigenvalue of matrixA equaling one,
that is, a11 = 1. Then (1.6) takes the form

x(k + 1) = x(k) + bx2(k), k = 0, . . . , (2.1)

and it is easy to see that the trivial solution is unstable for an arbitrary b /= 0 (to show this, we
can apply, e.g., Theorem 1.15 [4, page 29]).
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This elementary example shows that stability in the case of system (1.6) has an
extraordinary significance and the results on stability (for n/= 1) lose their meaning for n = 1
when we deal with instability. We show that, if n/= 1 and B satisfies certain assumptions, the
zero solution is stable. Moreover, the shape of the guaranteed domain of stability will be
given.

We divide our forthcoming analysis into two parts. In the first one we give an explicit
coefficient criterion in the subcase of n = 2. Then we consider the general n-dimensional case.

2.2. Stability in the General Two-Dimensional Case

Let n = 2. Then system (1.6) with the matrix A having a simple eigenvalue λ = 1 reduces
(after linearly transforming the dependent variables if necessary) to

x1(k + 1) = ax1(k) +
[
b1

11x
2
1(k) + 2b1

12x1(k)x2(k) + b1
22x

2
2(k)

]
,

x2(k + 1) = x2(k) +
[
b2

11x
2
1(k) + 2b2

12x1(k)x2(k) + b2
22x

2
2(k)

]
.

(2.2)

We will assume that |a| < 1. Define auxiliary numbers as follows:

α = h
(

1 − a2
)
, β1 = hab1

11, β2 = 2hab1
12 + b

2
11,

γ1 = h
(
b1

11

)2
+
(
b2

11

)2
, γ2 = 4h

(
b1

12

)2
, δ1 = 2hb1

11b
1
12,

(2.3)

where h is a positive number.

Theorem 2.1. Let h and r be positive numbers. Assume that |a| < 1 and b2
12 = b1

22 = b2
22 = 0. Then

the zero solution of system (2.2) is stable in the Lyapunov sense and a guaranteed domain of stability
is given by the inequality

hx2
1 + x

2
2 ≤ r

2 (2.4)

if r is taken so small that the domain described by (2.4) is embedded in the domain

γ1x
2
1 + 2δ1x1x2 + γ2x

2
2 + 2β1x1 + 2β2x2 ≤ α. (2.5)

If, moreover, b2
11 · b

1
12 /= 0, then a guaranteed domain of stability can be described using inequality

hx2
1 + x

2
2 ≤ (r∗)2 (2.6)
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with

r∗ = min
(x1,x2)

√
hx2

1 + x
2
2, (2.7)

where (x1, x2) runs over all real solutions of the nonlinear system with unknowns x1 and x2:

γ1x
2
1 + 2δ1x1x2 + γ2x

2
2 + 2β1x1 + 2β2x2 = α,

hx1
(
δ1x1 + γ2x2 + β2

)
− x2

(
γ1x1 + δ1x2 + β1

)
= 0.

(2.8)

Proof. Define

B1 =

(
b1

11 b1
12

b1
12 b1

22

)
, B2 =

(
b2

11 b2
12

b2
12 b2

22

)
, x2 = y, x =

(
x1

y

)
. (2.9)

We rewrite system (2.2) as

x1(k + 1) = ax1(k) + xT (k)B1x(k),

y(k + 1) = y(k) + xT (k)B2x(k).
(2.10)

To investigate the stability of the zero solution, we use, in accordance with the direct
Lyapunov method, an appropriate Lyapunov function V . Let a matrix H, defined as

H =

(
h h12

h12 h22

)
, (2.11)

where instead of the entry h11 we put the number h, be positive definite. We set

V (x(k)) = V
(
x1(k), y(k)

)
:= xT (k)Hx(k) =

(
x1(k), y(k)

)( h h12

h12 h22

)(
x1(k)

y(k)

)

= hx2
1(k) + 2h12x1(k)y(k) + h22y

2(k).

(2.12)
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The first difference of the function V along the trajectories of system (2.10) equals

ΔV (x(k)) = V (x(k + 1)) − V (x(k))

= hx2
1(k + 1) + 2h12x1(k + 1)y(k + 1) + h22y

2(k + 1)

− hx2
1(k) − 2h12x1(k)y(k) − h22y

2(k)

= h
[
ax1(k) + xT (k)B1x(k)

]2

+ 2h12

[
ax1(k) + xT (k)B1x(k)

][
y(k) + xT (k)B2x(k)

]

+ h22

[
y(k) + xT (k)B2x(k)

]2
− hx2

1(k) − 2h12x1(k)y(k) − h22y
2(k)

= h
(
a2 − 1

)
x2

1(k) + 2h12(a − 1)x1(k)y(k)

+ h
[

2ax1(k)
[
xT (k)B1x(k)

]
+
[
xT (k)B1x(k)

]2
]

+ 2h12

[
ax1(k)

[
xT (k)B2x(k)

]
+ y(k)

[
xTB1x(k)

]

+
[
xT (k)B1x(k)

][
xT (k)B2x(k)

]]

+ h22

[
2y(k)

[
xT (k)B2x(k)

]
+
[
xT (k)B2x(k)

]2
]
.

(2.13)

It is easy to see that ΔV does not preserve the sign if h12 /= 0. Therefore, we put h12 = 0 and
ΔV reduces to

ΔV (x(k)) = h
(
a2 − 1

)
x2

1(k) + h
[

2ax1(k)
[
xT (k)B1x(k)

]
+
[
xT (k)B1x(k)

]2
]

+ h22

[
2y(k)

[
xT (k)B2x(k)

]
+
[
xT (k)B2x(k)

]2
]
.

(2.14)

In the polynomial ΔV , with respect to x1 and y, we will put together the third-degree
terms (the expression F3(x1(k), y(k)) below) and the fourth-degree terms (the expression
F4(x1(k), y(k)) below). In the computations we use the formulas

xT (k)Bix(k) = bi11x
2
1(k) + 2bi12x1(k)y(k) + bi22y

2(k), i = 1, 2,

[
xT (k)Bix(k)

]2 =
(
bi11

)2
x4

1(k) + 4
(
bi12

)2
x2

1(k)y
2(k) +

(
bi22

)2
y4(k)

+4bi11b
i
12x

3
1(k)y(k) + 2bi11b

i
22x

2
1(k)y

2(k) + 4bi12b
i
22x1(k)y3(k), i = 1, 2.

(2.15)
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We get

ΔV (x(k)) = h
(
a2 − 1

)
x2

1(k) + F3
(
x1(k), y(k)

)
+ F4

(
x1(k), y(k)

)
, (2.16)

where

F3
(
x1(k), y(k)

)
= 2hab1

11x
3
1(k) + 2

[
2hab1

12 + h22b
2
11

]
x2

1(k)y(k)

+ 2
[
hab1

22 + 2h22b
2
12

]
x1(k)y2(k) + 2h22b

2
22y

3(k),

F4
(
x1(k), y(k)

)
=
[
h
(
b1

11

)2
+ h22

(
b2

11

)2
]
x4

1(k) + 4
[
hb1

11b
1
12 + h22b

2
11b

2
12

]
x3

1(k)y(k)

+ 2
[

2h
(
b1

12

)2
+ 2h22

(
b2

12

)2
+ hb1

11b
1
22 + h22b

2
11b

2
22

]
x2

1(k)y
2(k)

+ 4
[
hb1

12b
1
22 + h22b

2
12b

2
22

]
x1(k)y3(k) +

[
h
(
b1

22

)2
+ h22

(
b2

22

)2
]
y4(k).

(2.17)

Analysing the increment of V , we see that, if |a| < 1, ΔV will be nonpositive in a small
neighborhood of the zero solution if the multipliers of the terms x1y

2, y3 and x1y
3 are equal

to zero and the multiplier of the term y4 is nonpositive, that is, if

hab1
22 + 2h22b

2
12 = 0,

h22b
2
22 = 0,

hb1
12b

1
22 + h22b

2
12b

2
22 = 0,

h
(
b1

22

)2
+ h22

(
b2

22

)2
≤ 0.

(2.18)

As long as the Lyapunov function is positive definite, h > 0 and h22 > 0. Therefore, conditions
(2.18) hold if and only if

b1
22 = 0, b2

12 = 0, b2
22 = 0. (2.19)

Then, system (2.2) turns into

x1(k + 1) = ax1(k) +
[
b1

11x
2
1(k) + 2b1

12x1(k)x2(k)
]
,

x2(k + 1) = x2(k) + b2
11x

2
1(k)

(2.20)
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and ΔV (without loss of generality, we put h22 = 1, i.e., V (x1, y) = hx2
1 + y

2) into

ΔV (x(k)) = −
[
h
(

1 − a2
)
− 2hab1

11x1(k) − 2
[
2hab1

12 + b
2
11

]
y(k) −

[
h
(
b1

11

)2
+
(
b2

11

)2
]
x2

1(k)

−4hb1
11b

1
12x1(k)y(k) − 4h

(
b1

12

)2
y2(k)

]
x2

1(k)

= −
[
α − 2β1x1(k) − 2β2y(k) − γ1x

2
1(k) − 2δ1x1(k)y(k) − γ2y

2(k)
]
x2

1(k).

(2.21)

The first difference of the Lyapunov function is nonpositive in a sufficiently small
neighborhood of the origin (this is because h > 0, |a| < 1, and α = h(1 − a2) > 0). In other
words, the zero solution is stable in the Lyapunov sense.

Now we will discuss the shape of the guaranteed domain of stability. It can be defined
by the inequalities

γ1x
2
1 + 2δ1x1y + γ2y

2 + 2β1x1 + 2β2y ≤ α,

hx2
1 + y

2 ≤ r2,
(2.22)

where r > 0. This means that inequalities (2.4) and (2.5) are correct. Both inequalities
geometrically express closed ellipses if b2

11 · b
1
12 /= 0. For the second inequality, this is obvious.

For the first one, this follows from the following inequalities: γ1 > 0, γ2 > 0 and

γ1γ2 − δ2
1 =

[
h
(
b1

11

)2
+
(
b2

11

)2
]
·
[

4h
(
b1

12

)2
]
− 4

[
hb1

11b
1
12

]2
= 4h

(
b2

11b
1
12

)2
> 0. (2.23)

Moreover, for r → 0, the ellipse (2.4)

hx2
1 + y

2 ≤ r2 (2.24)

is contained (because it shrinks to the origin) in the ellipse (2.5), that is, there exists such
r = r∗ that, for r ∈ (0, r∗), the ellipse (2.4) lies inside the ellipse (2.5) without any intersection
points and, for r = r∗, there exists at least one common boundary point of both ellipses. Let
us find the value r∗. It is characterized by the requirement that the slope coefficients k1 and
k2 of both ellipses are the same at the point of contact. Therefore

k1 = −
γ1x1 + δ1y + β1

δ1x1 + γ2y + β2
, k2 = −hx1

y
, (2.25)

where we assume (without loss of generality) that the denominators are nonzero. Thus, we
get a quadratic system of two equations to find the contact points (x1, y):

γ1x
2
1 + 2δ1x1y + γ2y

2 + 2β1x1 + 2β2y = α,

hx1
(
δ1x1 + γ2y + β2

)
− y

(
γ1x1 + δ1y + β1

)
= 0.

(2.26)
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For the corresponding values of r, we have

hx2
1 + y

2 = r2. (2.27)

In accordance with the geometrical meaning of the above quadratic system, we take such a
solution (x1, y) as a defintion of the minimal positive value of r and set r∗ = r.

Example 2.2. Consider a system

x(k + 1) = 0.5x(k) + x2(k) − 4x(k)y(k),

y(k + 1) = y(k) + x2(k).
(2.28)

In our case, n = 2, a = 0.5 < 1, and b1
22 = b2

12 = b2
22 = 0. Therefore, by Theorem 2.1, the zero

solution of system (2.28) is stable in the Lyapunov sense. We will find the guaranteed domain
of stability. We have

b1
11 = 1, b1

12 = −2, b2
11 = 1, (2.29)

and b2
11 · b

1
12 = −2/= 0. Set h = 2. Then

α = h
(

1 − a2
)
= 2(1 − 0.25) = 1.5,

β1 = hab1
11 = 2 · 0.5 · 1 = 1,

β2 = 2hab1
12 + b

2
11 = 2 · 2 · 0.5 · (−2) + 1 = −3,

γ1 = h
(
b1

11

)2
+
(
b2

11

)2
= 2 · 12 + 12 = 3,

γ2 = 4h
(
b1

12

)2
= 4 · 2 · (−2)2 = 32,

δ1 = 2hb1
11b

1
12 = 2 · 2 · 1 · (−2) = −8.

(2.30)

That is, the guaranteed domain of stability is given by the inequalities

3x2 − 16xy + 32y2 + 2x − 6y ≤ 1.5, (2.31)

2x2 + y2 ≤ r2 (2.32)

if r is so small that the domain described by inequality (2.32) is embedded in the domain
described by inequality (2.31). We consider the case when the ellipse (2.32) is embedded in
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−1

−0.5

0

0.5

1

−1.5 −1 −0.5 0 0.5 1 1.5

Figure 1: Graphical solution of system (2.33) and (2.34).

the ellipse (2.31) and the boundaries of both ellipses have only one intersection point. Solving
the system (2.8), that is, the system

3x2 − 16xy + 32y2 + 2x − 6y = 1.5, (2.33)

2x
(
−8x + 32y − 3

)
− y

(
3x − 8y + 1

)
= 0, (2.34)

with Mathematica software, we get the solutions (see Figure 1 where the x-axis is identified
with the horizontal line and the y-axis is identified with the vertical line, the blue ellipse
graphically depicts equation (2.33), and the red hyperbola graphically depicts equation
(2.34)):

(
x, y

)
=
(
x1, y1

)
= (−1.60766,−0.31220),(

x, y
)
=
(
x2, y2

)
= (−0.03568,−0.32187),(

x, y
)
=
(
x3, y3

)
= (0.01952,−0.13664),(

x, y
)
=
(
x4, y4

)
= (1.10728, 0.37750).

(2.35)

Then, in accordance with (2.7),

r∗ = min
i=1,2,3,4

√
2xi2 + yi2 =

√
2x3

2 + y3
2 .= 0.1369, (2.36)
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Figure 2: The guaranteed domain of stability.

and the guaranteed domain of stability

2x2 + y2 ≤ (r∗)2 = (0.1369)2 (2.37)

obtained from (2.31), (2.32) is depicted in Figure 2 (as an ellipsoidal domain shaded in red
and bounded by the thick red ellipse, with the identification of x-axis and y-axis being the
same as before). Here, the domain (2.31) is bounded by the blue ellipse (2.33).

2.3. Stability in the General n-Dimensional Case

Consider system (1.6) in R
n. Assume that the matrixA has a simple eigenvalue that is equal to

unity with the others lying inside the unit circle. After linearly transforming the dependent
variables if necessary, we can assume, without loss of generality, that the matrix A of the
linear terms in a block form, that is,

A =
(
A0 θ
θT 1

)
, A0 =

(
aij
)
, i, j = 1, 2, . . . , n − 1, (2.38)

where θ = (0, 0, . . . , 0)T , is the (n − 1)-dimensional zero vector and all the eigenvalues of the
matrix A0 lie inside the unit circle. In order to formulate the next result and its proof, we
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have to introduce some new definitions (they copy the ones used in Section 1.1, but we use
dimension or size n − 1 instead of n and note this change as a subscript if necessary):

x(n−1) = (x1, x2, . . . , xn−1)T , y = xn,

B0
i =

⎛
⎜⎜⎜⎜⎜⎝

bi11 bi12 · · · bi1,n−1

bi21 bi22 · · · bi2,n−1

· · · · · · · · · · · ·
bin−1,1 bin−1,2 · · · b

i
n−1,n−1

⎞
⎟⎟⎟⎟⎟⎠, i = 1, 2, . . . , n, B̃ =

⎛
⎜⎜⎝

b1
1n · · · b

1
n−1,n

· · · · · · · · ·
bn−1

1n · · · bn−1
n−1,n

⎞
⎟⎟⎠,

B
T
=

⎛
⎜⎜⎝

b1
11 · · · b1

1,n−1 b1
21 · · · b1

2,n−1 · · · b
1
n−1,1 · · · b

1
n−1,n−1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
bn−1

11 · · · bn−1
1,n−1 bn−1

21 · · · bn−1
2,n−1 · · · b

n−1
n−1,1 · · · b

n−1
n−1,n−1

⎞
⎟⎟⎠.

(2.39)

Matrices B0
i , i = 1, 2, . . . , n, are symmetric since bisq = biqs, i, s, q = 1, 2, . . . , n (see Section 1.1).

Moreover, we assume that there exists a symmetric positive definite (n − 1) × (n − 1) matrix
H such that the symmetric matrix

C = H −AT
0HA0 (2.40)

is positive definite. Let h > 0 be a positive number and

α = λmin(C),

β1 =
1
2

∥∥∥∥AT
0HB

T
∥∥∥∥,

β2 =
1
2

∥∥∥∥B̃HA0 + 3AT
0HB̃T + 2h

(
B0
n

)T∥∥∥∥,

γ1 =
∥∥∥∥BHB

T
∥∥∥∥ + h

∥∥∥B0
n

∥∥∥2
,

γ2 = 4
∥∥∥B̃HB̃T

∥∥∥,
δ1 = 2

∥∥∥B∥∥∥ · ‖H‖ · ∥∥∥B̃∥∥∥.

(2.41)
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Theorem 2.3. Let h and r be positive numbers. Assume that

b1
nn = b2

nn = · · · = bnnn = 0, bn1n = bn2n = · · · = bnn−1,n = 0. (2.42)

Then the zero solution of system (1.6) is stable by Lyapunov and the guaranteed domain of stability is
described by the inequalities

γ1‖x‖2 + 2δ1‖x‖
∣∣y∣∣ + γ2y

2 + 2β1‖x‖ + 2β2
∣∣y∣∣ ≤ α, (2.43)

xT(n−1)Hx(n−1) + hy2 ≤ r2 (2.44)

if r is so small that the domain described by inequality (2.44) is embedded into the domain described
by inequality (2.43).

Proof. We will perform auxiliary matrix computations. With this in mind, we have defined
an (n − 1)2 × (n − 1) matrix X(n−1) as

XT
(n−1) =

(
XT

1(n−1), X
T
2(n−1), . . . , X

T
n−1(n−1)

)
, (2.45)

where all the elements of the (n − 1) × (n − 1) matrices XT
i(n−1), i = 1, 2, . . . , n − 1 are equal to

zero except the row i, which equals xT(n−1), that is,

XT
i(n−1) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0
· · · · · · · · · · · ·
x1 x2 · · · xn−1

· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠. (2.46)

Moreover, we define

(a) vectors Yi, i = 1, 2, . . . , n − 1, as a row (n − 1)-dimensional vector with coordinates
equal to zero except the ith element, which equals xn, that is,

Yi = (0, 0, . . . , 0, xn, 0, . . . , 0), (2.47)

(b) (n − 1) × (n − 1) zero matrix Θ,

(c) vectors bi = (bi1n, b
i
2n, . . . , b

i
n−1,n)

T , i = 1, 2, . . . , n,

(d) vector b̃ = (b1
nn, b

2
nn, . . . , b

n−1
nn )T .
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It is easy to see that

XT (k) =

⎛
⎝XT

1(n−1)(k) YT
1 (k) · · · X

T
n−1(n−1)(k) YT

n−1(k) Θ θ

θT 0 · · · θT 0 xT(n−1)(k) y(k)

⎞
⎠,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0
1 b1

bT1 b1
nn

· · · · · ·
B0
n bn

bTn bnnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.48)

Now we are able to rewrite system (1.6) in an equivalent form

(
x(n−1)(k + 1)
y(k + 1)

)
=
(
A0 θ
θT 1

)(
x(n−1)(k)
y(k)

)

+

(
XT

1(n−1)(k) YT
1 (k) · · · X

T
n−1(n−1)(k) YT

n−1(k) Θ θ

θT 0 · · · θT 0 xT(n−1)(k) y(k)

)

×

⎛
⎜⎜⎜⎜⎜⎝

B0
1 b1

bT1 b1
nn

· · · · · ·
B0
n bn
bTn bnnn

⎞
⎟⎟⎟⎟⎟⎠
(
x(n−1)(k)
y(k)

)

=
(
A0 + r11 r12

r21 1 + r22

)(
x(n−1)(k)
y(k)

)
,

(2.49)

where

r11 = r11
(
x(n−1)(k), y(k)

)
=

n−1∑
j=1

[
XT
j(n−1)(k)B

0
j + Y

T
j (k)b

T
j

]
= B

T
X(n−1)(k) + B̃y(k),

r12 = r12
(
x(n−1)(k), y(k)

)
=

n−1∑
j=1

[
XT
j(n−1)(k)bj + Y

T
j (k)b

j
nn

]
= B̃Tx(n−1)(k) + b̃y(k),

r21 = r21
(
x(n−1)(k), y(k)

)
= xT(n−1)(k)B

0
n + y(k)b

T
n ,

r22 = r22
(
x(n−1)(k), y(k)

)
= xT(n−1)(k)bn + y(k)b

n
nn.

(2.50)
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Before the following computations, for the reader’s convenience, we recall that for the (n −
1)× (n−1) matricesA,A1, 1× (n−1) vectors 	, 	1, (n−1)×1 vectors C, C1 and 1×1 “matrices”
m, m1, we have

(
A C
	 m

)
×
(
A1 C1

	1 m1

)
=
(
A ×A1 + C × 	1 A × C1 + C ×m1

	 ×A1 +m × 	1 	 × C1 +m ×m1

)
. (2.51)

To investigate the stability of system (1.6), we use the Lyapunov function

V
(
x(n−1)(k), y(k)

)
= xT(n−1)(k)Hx(n−1)(k) + hy2(k)

=
(
xT(n−1)(k), y(k)

)(H θ
θT h

)(
x(n−1)(k)
y(k)

)
,

(2.52)

where H = H(n−1) is an (n − 1) × (n − 1) constant real symmetric and positive definite matrix.
Let us find the first difference of the Lyapunov function (2.52) along the solutions of (2.49).
We get

ΔV
(
x(n−1)(k), y(k)

)

=
(
xT(n−1)(k + 1), y(k + 1)

)(H θ
θT h

)(
x(n−1)(k + 1)
y(k + 1)

)

−
(
xT(n−1)(k), y(k)

)(H θ
θT h

)(
x(n−1)(k)
y(k)

)

=
(
xT(n−1)(k), y(k)

)(A0 + r11 r12

r21 1 + r22

)T(
H θ
θT h

)(
A0 + r11 r12

r21 1 + r22

)(
x(n−1)(k)
y(k)

)

−
(
xT(n−1)(k), y(k)

)(H θ
θT h

)(
x(n−1)(k)
y(k)

)

=
(
xT(n−1)(k), y(k)

){(AT
0 + rT11 rT21
rT12 1 + r22

)(
H θ
θT h

)
×
(
A0 + r11 r12

r21 1 + r22

)
−
(
H θ
θT h

)}

×
(
x(n−1)(k)
y(k)

)
(2.53)
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or, using formula (2.51),

ΔV
(
x(n−1)(k), y(k)

)

=
(
xT(n−1)(k), y(k)

){(AT
0H + rT11H hrT21

rT12H h(1 + r22)

)
×
(
A0 + r11 r12

r21 1 + r22

)
−
(
H θ

θT h

)}

×
(
x(n−1)(k)

y(k)

)

=
(
xT(n−1)(k), y(k)

)

×

⎛
⎝
(
AT

0 + rT11

)
H(A0 + r11) + rT21hr21 −H

(
AT

0 + rT11

)
Hr12 + rT21h(1 + r22)

rT12H(A0 + r11) + (1 + r22)hr21 rT12Hr12 + (1 + r22)h(1 + r22) − h

⎞
⎠

×
(
x(n−1)(k)

y(k)

)
.

(2.54)

Using formulas (2.50), we have

ΔV
(
x(n−1)(k), y(k)

)
=
(
xT(n−1)(k), y(k)

)
×
(
c11 c12

c21 c22

)(
x(n−1)(k)
y(k)

)
, (2.55)

where

c11 = c11
(
x(n−1)(k), y(k)

)
=
[
A0 + B

T
X(n−1)(k) + B̃y(k)

]T
H
[
A0 + B

T
X(n−1)(k) + B̃y(k)

]
+h
[(
B0
n

)T
x(n−1)(k) + bny(k), xT(n−1)(k)B

0
n + y(k)b

T
n

]
−H,

c12 = c12
(
x(n−1)(k), y(k)

)
=
[
A0 + B

T
X(n−1)(k) + B̃y(k)

]T
H
[
B̃Tx(n−1)(k) + b̃y(k)

]
+h
(

1 + xT(n−1)(k)bn + b
n
nny(k)

)[(
B0
n

)T
x(n−1)(k) + bny(k)

]
,

c21 = c21
(
x(n−1)(k), y(k)

)
= cT12,

c22 = c22
(
x(n−1)(k), y(k)

)
=
[
B̃Tx(n−1)(k) + b̃y(k)

]T
H
[
B̃Tx(n−1)(k) + b̃y(k)

]

+h
(

1 + xT(n−1)(k)bn + b
n
nny(k)

)2
− h.

(2.56)
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Then

ΔV
(
x(n−1)(k), y(k)

)
= xT(n−1)(k)c11x(n−1)(k) + 2xT(n−1)(k)c12y(k) + y(k)c22y(k)

= xT(n−1)

[[
A0 + B

T
X(n−1)(k) + B̃y(k)

]T
H
[
A0 + B

T
X(n−1)(k) + B̃y(k)

]

+h
[(
B0
n

)T
x(n−1)(k) + bny(k)

][
xT(n−1)(k)B

0
n + y(k)b

T
n

]
−H

]
x(n−1)(k)

+ 2xT(n−1)(k)
[[
A0 + B

T
X(n−1)(k) + B̃y(k)

]T
H
[
B̃Tx(n−1)(k) + b̃y(k)

]

+h
(

1 + xT(n−1)(k)bn + b
n
nny(k)

)[(
B0
n

)T
x(n−1)(k) + bny(k)

]]
y(k)

+ y(k)
[[
B̃Tx(n−1)(k) + b̃y(k)

]T
H
[
B̃Tx(n−1)(k) + b̃y(k)

]

+h
(

1 + xT(n−1)(k)bn + b
n
nny(k)

)2
− h

]
y(k).

(2.57)

After further computation, we get

ΔV
(
x(n−1)(k), y(k)

)
= xT(n−1)(k)

[
AT

0HA0 −H +AT
0HB

T
X(n−1)(k) +XT

(n−1)BHA0

+XT
(n−1)(k)BHB

T
X(n−1)(k) +

[
XT

(n−1)(k)BHB̃ + B̃THB
T
X(n−1)(k)

]
y(k)

+
[
B̃THA0 +AT

0HB̃T
]
y(k) + B̃THB̃y2(k) + h

(
B0
n

)T
x(n−1)(k)xT(n−1)(k)B

0
n

+2h
(
B0
n

)T
x(n−1)(k)bTny(k) + hbny

2(k)bTn

]
x(n−1)(k)

+ 2xT(n−1)(k)
[
AT

0HB̃Tx(n−1)(k) +AT
0Hb̃y(k) +XT

(n−1)(k)BHB̃Tx(n−1)(k)

+XT
(n−1)(k)BHb̃y(k) + B̃HB̃Tx(n−1)(k)y(k) + B̃Hb̃y2(k)

+ h
[(
B0
n

)T
x(n−1)(k) + bny(k)

]
+ hxT(n−1)(k)bn

[(
B0
n

)T
x(n−1)(k) + bny(k)

]

+hbnnny(k)
[(
B0
n

)T
x(n−1)(k) + bny(k)

]]
y(k)

+
[
xT(n−1)(k)B̃H

[
B̃Tx(n−1)(k) + b̃y(k)

]

+ b̃TH
[
B̃Tx(n−1)(k) + b̃y(k)

]
y(k) + h

(
xT(n−1)(k)bn

)2

+h
(
bnnny(k)

)2 + 2hxT(n−1)(k)bn + 2hbnnny(k) + 2hxT(n−1)(k)bnb
n
nny(k)

]
y2(k).

(2.58)
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Now we can represent ΔV as

ΔV
(
x(n−1)(k), y(k)

)
= F2

(
x(n−1)(k)

)
+ F3

(
x(n−1)(k), y(k)

)
+ F4

(
x(n−1)(k), y(k)

)
, (2.59)

where F2 contains only second-order polynomial terms, F3 third-order polynomial terms and
F4 fourth-order polynomial terms with respect to the dependent variables. For F2, we have

F2
(
x(n−1)(k)

)
= −xT(n−1)(k)

[
H −AT

0HA0

]
x(n−1)(k)

= −xT(n−1)(k)Cx(n−1)(k) ≤ −λmin(C)
∥∥x(n−1)(k)

∥∥2
.

(2.60)

For F3, we get

F3
(
x(n−1)(k), y(k)

)
= F30

(
x(n−1)(k)

)
+ F21

(
x(n−1)(k), y(k)

)

+ F12
(
x(n−1)(k), y(k)

)
+ F03

(
y(k)

)
,

(2.61)

where

F30
(
x(n−1)(k)

)
= xT(n−1)(k)

[
AT

0HB
T
X(n−1)(k) +XT

(n−1)(k)BHA0

]
x(n−1)(k),

F21
(
x(n−1)(k), y(k)

)
= xT(n−1)(k)

[
B̃THA0 + 3AT

0HB̃T + 2h
(
B0
n

)T]
x(n−1)(k)y(k),

F12
(
x(n−1)(k), y(k)

)
= 2xT(n−1)(k)

[
AT

0Hb̃ + 2hbn
]
y2(k),

F03
(
y(k)

)
= 2hbnnny

3(k).

(2.62)

Finally, F4 can be represented as

F4
(
x(n−1)(k), y(k)

)
= F40

(
x(n−1)(k)

)
+ F31

(
x(n−1)(k), y(k)

)

+ F22
(
x(n−1)(k), y(k)

)
+ F13

(
x(n−1)(k), y(k)

)
+ F04

(
y(k)

)
,

(2.63)
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where

F40
(
x(n−1)(k)

)
=xT(n−1)

[
XT

(n−1)(k)BHB
T
X(n−1)(k)+h

(
B0
n

)T
x(n−1)(k)xT(n−1)(k)B

0
n

]
x(n−1)(k),

F31
(
x(n−1)(k), y(k)

)
= xT(n−1)

[
XT

(n−1)(k)BHB̃ + 2XT
(n−1)(k)BHB̃T + B̃THB

T
X(n−1)(k)

+2h
(
B0
n

)T
x(n−1)(k)bTn + hxT(n−1)(k)bn

(
B0
n

)T]
y(k)x(n−1)(k),

F22
(
x(n−1)(k), y(k)

)
= xT(n−1)

[
3B̃HB̃Tx(n−1)(k) + B̃THB̃x(n−1)(k) + 4h

(
x(n−1)(k)bn

)
bn

+2XT
(n−1)(k)BHb̃ + 2hbnnn

(
B0
n

)T
x(n−1)(k)

]
y2(k),

F13
(
x(n−1)(k), y(k)

)
= xT(n−1)

[
3B̃Hb̃ + 4hbnnnbn

]
y3(k),

F04
(
y(k)

)
=
[
b̃THb̃ + h(bnnn)

2
]
y4(k).

(2.64)

Assume the parameters of the system and the coefficients of matrix H to be such that

F12
(
x(n−1)(k), y(k)

)
≡ 0,

F03
(
y(k)

)
≡ 0,

F13
(
x(n−1)(k), y(k)

)
≡ 0,

F04
(
y(k)

)
≡ 0.

(2.65)

Identities (2.65) hold if and only if

AT
0Hb̃ + 2hbn = 0,

hbnnn = 0,

3B̃Hb̃ + 4hbnnnbn = 0,

b̃THb̃ + h(bnnn)
2 = 0.

(2.66)

As the matrix H is positive definite, (2.66) hold if

bnnn = 0, b̃ = 0, bn = 0 (2.67)
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(these relations coincide with (2.42)). Hence

F30
(
x(n−1)(k)

)
≤
∥∥∥∥AT

0HB
T
∥∥∥∥ · ∥∥x(n−1)(k)

∥∥3
,

F21
(
x(n−1)(k), y(k)

)
=
∥∥∥∥B̃HA0 + 3AT

0HB̃T + 2h
(
B0
n

)T∥∥∥∥ · ∥∥x(n−1)(k)
∥∥2∣∣y(k)∣∣,

F40
(
x(n−1)(k)

)
≤
(∥∥∥∥BHB

T
∥∥∥∥ + h

∥∥∥B0
n

∥∥∥2
)
·
∥∥x(n−1)(k)

∥∥4
,

F31
(
x(n−1)(k), y(k)

)
≤ 4

∥∥∥B∥∥∥ · ‖H‖∥∥∥B̃∥∥∥ · ∥∥x(n−1)(k)
∥∥3 ·

∣∣y(k)∣∣,
F22

(
x(n−1)(k), y(k)

)
≤ 4

∥∥∥B̃HB̃T
∥∥∥ · ‖x(k)‖2 ·

∣∣y(k)∣∣2
.

(2.68)

The first difference (2.59) of V (x(n−1)(k), y(k)) can be estimated as

ΔV
(
x(n−1)(k), y(k)

)
≤ −

{
α − 2β1

∥∥x(n−1)(k)
∥∥ − 2β2

∣∣y(k)∣∣ − γ1
∥∥x(n−1)(k)

∥∥2

−2δ1
∥∥x(n−1)(k)

∥∥ · ∣∣y(k)∣∣ − γ2
∣∣y(k)∣∣2

}∥∥x(n−1)(k)
∥∥2

(2.69)

and is nonpositive if

γ1
∥∥x(n−1)(k)

∥∥2 + 2δ1
∥∥x(n−1)(k)

∥∥ · ∣∣y(k)∣∣ + γ2y
2(k) + 2β1

∥∥x(n−1)(k)
∥∥ + 2β2

∣∣y(k)∣∣ ≤ α. (2.70)

The stability domain is defined by the inequality

xT(n−1)(k)Hx(n−1)(k) + h
∣∣y(k)∣∣ ≤ r2 (2.71)

supposing that r is so small that the domain (2.71) is embedded in the domain (2.70).

3. Concluding Remarks

Since 1892, when the general problem of stability of differential equations by the linear
approximation was considered by A.M. Lyapunov, investigation of stability by linear
approximation has been attracting permanent interest. For example, Malkin [13, Chapter 3]
considered a general case of stability by linear approximation and derived stability criteria.
In our paper we deal with systems of difference equations of a special form (with quadratic
right-hand sides). Comparing our results with possible extensions of Malkin’s results to
difference equations, we point out that the primary purpose of our results, unlike those of
Malkin, is to select such terms of the quadratic right-hand sides as contributing as much
as possible to the loss of stability. The domains of stability are described in terms of the
coefficients.

Since the matrix A has one simple eigenvalue λ = 1, a question on asymptotic stability
is not asked. In fact, we are looking for a domain V (x) < c, c > 0 (embedded in the
domain described by inequality ΔV (x) ≤ 0), of admissible initial perturbations, that is,
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a set of invariance. All solutions generated by the initial data within this set remain in an
ε neighborhood of the zero steady state provided that the initial perturbations are in a δ(ε)
neighborhood of the zero steady state in the phase plane.

The method presented can be extended to further classes of systems. It is, for example,
possible to consider the case of the multiplicity of eigenvalue λ = 1 being more than one or
the case of |λ| = 1 and get stability criteria. But the computations needed are too cumbersome.
Other questions are related to the results of Theorem 2.1 and Theorem 2.3. Is the zero solution
of system (2.2) or of system (1.6) unstable when the coefficients indicated are not necessarily
zero coefficients? We formulate them as open problems—prove or disprove the following
conjecture.

Conjecture 3.1. (a) Let |a| < 1 and (b2
12)

2 + (b1
22)

2 + (b2
22)

2
> 0. Then the zero solution of system

(2.2) is unstable.
(b) Let all the eigenvalues of the matrix A0 lie inside the unit circle and

n∑
j=1

(
b
j
nn

)2
+
n−1∑
j=1

(
bnjn

)2
> 0. (3.1)

Then the zero solution of system (1.6) is unstable.

Finally, we formulate an open problem related to the shape of the guaranteed domain
of stability.

Problem 1. The guaranteed domain of stability of the zero solution of system (2.2) is described
by inequality (2.6) with r∗ defined by (2.7) where (x1, x2) runs over all real solutions of the
nonlinear system (2.8). Is it possible to derive an analogous shape of the guaranteed domain
of stability for the zero solution of system (1.6) using inequalities (2.43), (2.44) and an analogy
of method applied in the proof of Theorem 2.1?
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