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This paper introduces habit-forming preferences in a Barro-type endogenous growth model with
productive public services. Government expenditure, which may be subject to congestion, is
financed by distortionary income taxation. Different from the standard time-separable model, the
presence of habits makes the economy feature transitional dynamics, which are solved in closed
form. Setting the income tax so as to equate the elasticity of public services in production is shown
tomaximize both long-run growth andwelfare as in the standardmodel. This second-best solution
coincides with the first-best outcome only in the presence of proportional congestion.

1. Introduction

Following the seminal work of Barro [1], the effect of productive government expenditure
has been the subject of active research in the theoretical literature on endogenous growth
(see, e.g., Irmen and Kuehnel [2], for a recent survey). This interest has been stimulated by
empirical work, starting from Aschauer [3], providing compelling evidence that productive
public spending has a positive impact on growth (see, e.g., the review by Romp and de Haan
[4]).

Barro [1] introduces the flow of government expenditure, which is fully financed by
a distortionary income tax, as a productive input to private production. (Another strand of
the literature, starting from Futagami et al. [5], considers that it is the accumulated stock
of public capital, rather than the flow of current expenditure, that enters in the production
function (see, e.g., Irmen and Kuehnel [2]).) Thus, public policy has two opposite effects
on growth, which offset each other if the tax rate on income is equal to the elasticity of
public spending in production. Under Cobb-Douglas technology, this growth-maximizing
tax rate also maximizes intertemporal utility in a second-best sense. The ensuing literature



2 Discrete Dynamics in Nature and Society

has enriched the original Barro’s setup to incorporate other relevant features such as, among
others, adjustment costs [6], congestion [7, 8], public consumption services [9, 10], elastic
labor supply [11], alternative government financing [9, 12], progressive taxation [13], rent-
seeking [14, 15], finite lifetimes [16, 17], two countries [18], or stochastic growth [19, 20].

This paper adds to this literature by extending the Barro [1] model to incorporate
habit-persistent preferences. In models with habit formation, individual’s utility depends
not only on her level of current consumption but also on how it compares to a reference
level—the habits stock. Recent empirical works by Chen and Ludvigson [21], Korniotis
[22], and Grishchenko [23] have reported supporting evidence for the presence of habits
that enter utility in a subtractive manner. Furthermore, subtractive habits have been widely
incorporated into dynamic equilibrium models in order to address several empirical facts
that are difficult to explain under standard time-separable preferences. (A partial list includes
the equity premium puzzle, [24, 25] , time-varying expected returns [26] , the term structure
of interest rates [27] , the foreign exchange risk premium [28] , some stylized facts of
business cycles [29] , current account dynamics [30] , and the effects of monetary policy
[31]. Subtractive habits have also become an important feature of many dynamic stochastic
general equilibrium models [32, 33].) Based on these works, we assume that habits enter
subtractively in utility. The literature distinguishes between internal habits (IH), when
individual’s habits depend on her own past consumption, and external habits (EH), when
habits are formed from average past consumption in the economy. However, whether habits
are formed in an internal, external, or hybrid internal-external form appears to be an open
empirical question yet. Therefore, we consider a fairly general specification of the habit
formation process that nests the cases of internal, external, and hybrid internal-external
habits. Besides its own interest, the introduction of habit-persistent preferences is also
relevant because it allows to overcome one important limitation of the flow models based
on the Barro [1] setup, namely, that they lack transitional dynamics, so that the economy
is always on its balanced growth path and all variables grow at a constant rate. (Actually,
this also occurs in stock models in which public capital fully depreciates in one period
(e.g., [34–36]).)

This paper develops an endogenous growth model with habit persistence in utility
and productive government expenditure in production, which is financed by distortionary
income taxation. As Barro and Sala-i-Martin [7] argue, almost all public services are subject to
some degree of congestion. Therefore, public spending is allowed to be subject to congestion,
so that the service of public expenditure to the agent depends on the usage of her capital stock
relative to the aggregate capital stock (e.g., [6, 7]). First, we analyze the equilibrium dynamics
of the decentralized economy, and characterize the tax rate on income that maximizes the
representative agent’s utility; that is, the second-best solution. Next, we study the first-best
outcome that a benevolent central plannerwould implement, and compare it with the second-
best solution. Finally, some numerical simulations are presented.

The main results of this paper are twofold. First, we show that, unlike the standard
time-separable Barro [1] model, the introduction of habit formation makes that, more
realistically, the model features transitional dynamics. Furthermore, we give closed-form
solutions for the dynamics of both the market and the socially-planned economies. Thus,
this paper also adds to a recent literature that investigates the existence of closed-form
solutions to growth models as, e.g., Mehlum [37], Smith [38, 39], and Guerrini [40] for the
Ramsey model, and Bethmann [41], Ruiz-Tamarit [42], Boucekkine and Ruiz-Tamarit [43],
Chilarescu [44, 45], and Hiraguchi [46], among others, for the two-sector Lucas [47] model.
This is interesting because such explicit solutions are analytically tractable, and numerical
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simulations can be performed without error. Second, we find that the results obtained by
Barro [1] are robust to the inclusion of habit formation and, consequently, to the existence
of transition dynamics. On one hand, within a decentralized economy set-up, the growth-
maximizing and welfare-maximizing (in a second-best sense) income tax rates coincide, and
are equal to the elasticity of public spending in production. On the other hand, in a first-best
setting, the optimal ratio of government expenditure to output is equal to the elasticity of
public services in production. Furthermore, the first-best solution can be decentralized as a
market equilibrium only in the presence of proportional congestion, when the second-best
outcome coincides with the first-best solution. In any other case, the first-best solution cannot
be decentralized. The numerical results illustrate the implications for the dynamics of the
economy of the introduction of habit formation.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3
analyzes the equilibrium dynamics of a decentralized economy. Section 4 studies the first-
best solution attainable by a social planner. Some numerical results are presented in Section 5.
Section 6 concludes.

2. The Model

We study a closed economy populated by a large but fixed number N of identical infinitely-
lived individuals, each of whom has an infinite planning horizon and possesses perfect
foresight. Each individual is the owner of a unique firm that produces the single output in
the economy, which can be devoted to consumption or investment. The government provides
productive services to firms, which are financed by an income tax. With all agents being
identical, aggregate private quantities are simply multiples of individual quantities. We will
denote individual quantities by lower case letters and aggregate quantities by corresponding
upper case letters, so that X = Nx.

2.1. Preferences

The intertemporal utility derived by the agent depends both on its current consumption, ct,
and a reference consumption level or habits stock, ht, according to

U =
∞∑

t=0

u
(
ct − γht

)
βt, 0 ≤ γ < 1, 0 < β < 1, (2.1)

where u is the instantaneous utility function, and β is the time discount rate. (Another
commonly-used specification is the “multiplicative” one (e.g., [48–51]), in which habits-
adjusted consumption is defined as the geometric mean of absolute consumption and relative
consumption as a ratio, zt = c

1−γ
t (ct/ht)

γ .) The habits-adjusted consumption, zt ≡ ct − γht,
can be rewritten as zt = (1 − γ)ct + γ(ct − ht). Hence, the parameter γ reflects the importance
of absolute versus relative-to-habits consumption in utility: the higher γ , the greater the
importance of relative consumption. The case γ = 0 corresponds to the standard time-
separable model in which only the absolute level of consumption matters. We will assume
that the instantaneous utility function u is twice differentiable, with u′(z) > 0 and u′′(z) < 0
for all z > 0, and that u′ is homogeneous of degree −ε < 0. Therefore, the utility function
is isoelastic. This last assumption is imposed for guaranteeing the existence of a balanced
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growth path (see, e.g., Acemoglu [52] and Alonso-Carrera et al. [53]). We also assume that u
satisfies standard Inada conditions, limz→ 0u

′(z) = ∞ and limz→∞u′(z) = 0.
Following Gómez [54], the habits stock evolves according to

ht+1 = ht + ρ[m(ct, ct) − ht], 0 < ρ ≤ 1, (2.2)

where ct denotes the economy-wide average level of consumption. The parameter ρ, which
governs the speed with which the habits stock adjusts to previous-period consumption,
determines the relative weight of consumption at different dates: the larger ρ, the more
important is agent’s consumption in the recent past and the smaller is the importance of
the old values of the habits stock. If ρ = 1, then ht+1 = m(ct, ct), so that the habits stock
depends only on previous-period consumption. Note that if ρ = 0, then ht = h0 for all t, so
that the stock of habits would remain constant at its initial value and would not depend on
past consumption levels.

In the internal-habits model, the reference consumption stock depends only on
individual’s own past consumption, so thatm(ct, ct) = ct. In the external-habits model, habits
are formed only from average past consumption in the economy, so that m(ct, ct) = ct. Thus,
in this case average past consumption, which is taken as given by the individual agent, exerts
an external effect in utility. In the hybrid internal-external case, the habits stock is determined
by both its own consumption and the economy-wide average level of consumption, which
are combined by means of a continuously differentiable homogeneous mean. Thus, in this
case m is a continuously differentiable function such that m(c, c) = c for all c > 0, strictly
increasing in its components, and (positively) homogeneous of degree one. Differentiating
m(c, c) = c, and using its linear homogeneity, we get that m1(c, c) = φ and m2(c, c) = 1 − φ
for all c > 0, with 0 ≤ φ ≤ 1, where mi denotes the partial derivative of m with respect
to its ith argument. Hence, the case φ = 1 corresponds to the internal-habits model; the
case φ = 0 to the external-habits model, and the case 0 < φ < 1 to the model with
hybrid internal-external habits. This specification comprises as particular cases the weighted
geometricmean,m(ct, ct) = c

φ
t c

1−φ
t , proposed byAbel [48], and theweighted arithmeticmean,

m(ct, ct) = φct + (1 − φ)ct, considered, for example, by Marrero and Novales [36]. Most of the
literature has considered that habits are formed in an external or internal way, and the papers
that introduce hybrid internal-external habits use a weighted geometric mean or (to a much
lesser extent) a weighted arithmetic mean. All of them are encompassed by the specification
assumed which, therefore, is fairly general.

2.2. Production

At each moment of time, the representative agent is endowed with a fixed and constant stock
of labor, lt = l. Each individual firm produces output, yt, using the inelastically supplied
labor input lt = l, the capital stock kt, and public services provided by the government, Pt, in
accordance with the Cobb-Douglas production function:

yt = Ãkα
t l

1−αP 1−α
t = Akα

t P
1−α
t , (2.3)

where A = Ãl1−α > 0.
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Following Turnovsky [6, 55], the services derived by the agent from public investment
are represented by

Pt = Gt

(
kt
Kt

)1−σ
, 0 ≤ σ ≤ 1, (2.4)

where Kt denotes the aggregate capital stock and Gt denotes the aggregate public
expenditure. The former formulation incorporates the potential for public investment to be
associated with relative congestion. The case σ = 1, so that Pt = Gt, corresponds to a nonrival
nonexcludable public good that is available equally to each individual firm, independent of
the usage of others. Thus, there is no congestion. However, as Barro and Sala-i-Martin [7]
argue, almost all public services are subject to some degree of congestion, so that the pure
public good should be viewed as only a benchmark. As σ deviates from 1, the nonexcludable
public service losses its nonrival nature, and as this occurs the level of public services enjoyed
by the individual firm from a given level of public expenditure is enhanced as his individual
capital stock increases relative to the aggregate. In the case σ = 0, the public good is like
a private good in that, since kt/Kt = 1/N, the individual receives his proportional share
Pt = Gt/N. This case is referred to as proportional relative congestion.

Combining (2.3) and (2.4), firm’s output can be expressed as

yt = Ak
1−σ(1−α)
t G1−α

t K
(σ−1)(1−α)
t . (2.5)

Thus, the productivity of individual capital depends upon the usual elasticity of private
capital, α, and a component, (1−σ)(1−α), which reflects the fact that, from the perspective of
the individual agent, increasing her stock of capital will increase the level of government
services she derives in the presence of relative congestion. Note that the presence of
congestion introduces a distortion because the individual firm takes aggregate capital Kt as
given in her production function (2.5). However, a central planner would take into account
that Kt = Nkt.

2.3. Government

The government levies a tax on income at a constant rate τ . Tax revenues are used to finance
productive public expenditure,

Gt = τYt, (2.6)

so that the government runs a balanced budget. In particular, this means that lump-sum taxes
(or transfers) are not available.

2.4. Individual’s Optimization

Output can be used for consumption or investment. Thus, the agent’s budget constraint is

kt+1 = kt + (1 − τ)yt − ct. (2.7)



6 Discrete Dynamics in Nature and Society

At time t = 0, the agent chooses {ct, kt+1, ht+1}∞t=0 to maximize the lifetime utility (2.1)
subject to the budget constraint (2.7)—where yt is given by (2.5)—and the constraint on
the habits stock accumulation (2.2), taking as given the paths of economy-wide average
consumption, {ct}∞t=0, public expenditure, {Gt}∞t=0, and aggregate capital, {Kt}∞t=0, the income
tax rate, τ , and the initial conditions on capital k0 > 0 and habits stock h0 > 0.

To derive the optimization conditions, let us set up the Lagrangian of the agent’s
maximization problem,

L =
∞∑

t=0

βt
{
u
(
ct − γht

)
+ λt
[
kt + (1 − τ)yt − ct − kt+1

]
+ μt

[(
1 − ρ

)
ht + ρm(ct, ct) − ht+1

]}
,

(2.8)

where λt and μt are the shadow values of capital and habits stock, respectively. The first-order
conditions with respect to ct, kt+1, and ht+1 are given by

ct : u′(ct − γht

)
+ ρμtm1(ct, ct) = λt, (2.9)

kt+1 : β
[
1 + (1 − τ)(1 − σ(1 − α))yt/kt

]
λt+1 = λt, (2.10)

ht+1 : β
(
1 − ρ

)
μt+1 − βγu′(ct+1 − γht+1

)
= μt, (2.11)

together with the transversality condition

lim
t→∞

βtλtkt+1 = lim
t→∞

βtμtht+1 = 0. (2.12)

Equation (2.9) equates the marginal utility of consumption, adjusted by its effect on
the future stock of habits, to the shadow price of capital. Equation (2.10) equates the rate of
return on capital to the rate of return on consumption. From (2.11) and (2.12), we get

μt = −βγu′(ct+1 − γht+1
) − β

∞∑

j=t+1

[
β
(
1 − ρ

)]j−t
γu′(cj+1 − γhj+1

)
. (2.13)

This condition states that the shadow cost of the habits stock is determined as the present
discounted value of the stream of extra utils that would be lost by a marginal unit of habits,
which depreciates at the rate ρ. Note that (2.13) entails that the shadow value of the habits
stock is negative, μt < 0.

3. Equilibrium

An equilibrium for this economy is as a set of paths {ct, kt+1, ht+1}∞t=0 that solves the agent’s
utility maximization problem when ct = ct and Kt = Nkt for all t, and such that the
government obeys its budget constraint.
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3.1. Dynamics in the Aggregate Economy

We will focus on the equilibrium dynamics of aggregate variables, Ct = Nct, Kt = Nkt,
and Ht = NHt. Furthermore, let Zt ≡ Ct − γHt = Nzt denote the aggregate habit-adjusted
consumption, and q̂t ≡ μt/λt the relative shadow cost of habits. Note first that, using the
government budget constraint (2.6) to substitute for Gt in the production function (2.5),
individual output, yt, and aggregate output, Yt = Nyt, can be expressed as

yt = τ (1−α)/αA1/αNσ(1−α)/αkt = Bkt, (3.1)

Yt = τ (1−α)/αA1/αNσ(1−α)/αKt = BKt, (3.2)

where B = τ (1−α)/αA1/αNσ(1−α)/α.
Along a balanced growth path (BGP),Ct,Ht,Kt, and thereforeZt, all grow at the same

constant rate ĝ. Appendix A derives the following system, which drives the dynamics of the
economy in terms of the variables Ẑt ≡ Zt(1 + ĝ)−t, K̂t ≡ Kt(1 + ĝ)−t, Ĥt ≡ Ht(1 + ĝ)−t, and
q̂t ≡ μt/λt, which are constant along a BGP:

(
1 + ĝ

)
Ẑt+1 =

{
1 − ρφq̂t
1 − ρφq̂t+1

β[1 + (1 − τ)(1 − σ(1 − α))B]
}1/ε

Ẑt, (3.3)

(
1 + ĝ

)
K̂t+1 = (1 + (1 − τ)B)K̂t − Ẑt − γĤt, (3.4)

(
1 + ĝ

)
Ĥt+1 = Ĥt + ρ

(
Ẑt −

(
1 − γ

)
Ĥt

)
, (3.5)

[
1 − ρ

(
1 − γφ

)]
q̂t+1 = [1 + (1 − τ)(1 − σ(1 − α))B]q̂t + γ. (3.6)

The following proposition, which is proved in Appendix B, yields a closed-form
expression for the equilibrium dynamics of the decentralized economy.

Proposition 3.1. The decentralized economy has a unique feasible equilibrium with positive long-run
growth which is described by

Ĥt − Ĥ∞ =

(
1 − ρ

(
1 − γ

)

1 + ĝ

)t(
Ĥ0 − Ĥ∞

)
, (3.7)

Ĉt − Ĉ∞ = γ
(
Ĥt − Ĥ∞

)
, (3.8)

K̂t − K̂∞ =
γ

(1 − τ)B + ρ
(
1 − γ

)
(
Ĥt − Ĥ∞

)
, (3.9)
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which converges to a BGP given by

Ĉ∞ =

(
ĝ + ρ

)
Ẑ∞

ĝ + ρ
(
1 − γ

) , (3.10)

K̂∞ =

(
ĝ + ρ

)
Ẑ∞(

(1 − τ)B − ĝ
)(
ĝ + ρ

(
1 − γ

)) , (3.11)

Ĥ∞ =
ρẐ∞

ĝ + ρ
(
1 − γ

) , (3.12)

where

Ẑ∞ =
(
(1 − τ)B − ĝ

)
[
K0 −

γ
(
ρK0 +H0

)

(1 − τ)B + ρ

]
, (3.13)

and the long-run growth rate is

ĝ =
{
β[1 + (1 − τ)(1 − σ(1 − α))B]

}1/ε − 1, (3.14)

if and only if parameter values and initial conditions are that

ĝ > 0 > β
(
1 + ĝ

)1−ε − 1, (3.15)

γH0

K0
< (1 − τ)B + ρ

(
1 − γ

)
. (3.16)

The equilibrium paths of aggregate consumption, capital, and habits stock are then
given by Ct = Ĉt(1 + ĝ)t, Kt = K̂t(1 + ĝ)t, and Ht = Ĥt(1 + ĝ)t. Note, in particular, that the
initial value of consumption is given by C0 = Ĉ0 = Ẑ∞ + γH0.

One important consequence of Proposition 3.1 is that the equilibrium dynamics of the
economy is invariant to the specific homogeneous mean m chosen; that is, to the implied
value of φ. Hence, the dynamics are invariant to whether habits are internally or externally
formed and, therefore, the presence of externalities associated to past consumption in the
external-habits model does not provoke equilibrium inefficiency. This theoretical finding
seems to accord with empirical evidence supporting the habit-formation hypothesis but
inconclusive about whether habits are formed in an internal or external way.

IfH0 = Ĥ0 > Ĥ∞, from (3.7)–(3.12) in Proposition 3.1, we can find that

Ĥt

Ĥ∞
>

Ĉt

Ĉ∞
>

K̂t

K̂∞
> 1. (3.17)

Furthermore, as the economy evolves, Ĥt, Ĉt, and K̂t decrease monotonically toward their
respective steady-state values. Intuitively, to maintain a flat pattern of detrended adjusted-
consumption, given the relatively high level of the habits stock (with respect to its stationary
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value), the agent starts with a relatively high level of consumption, Ĉt, and a low level of
investment. Therefore, the capital stock, K̂t, decreases. As the economy evolves, in order
to drive the de-trended habits stock to its long-run level, consumption decreases steadily
towards its stationary value. These results should be reversed in the case thatH0 = Ĥ0 < Ĥ∞.

The explicit expressions derived in Proposition 3.1 allow us, for example, to compute
analytically the speed of convergence towards the balanced growth path. Adapting the
measure proposed by Eicher and Turnovsky [56] (see also Papageorgiou and Perez-sebastian
[57]), the speed of convergence of a variable xt is defined as

Φt = − (xt+1 − xt) − (x∞,t+1 − x∞,t)
xt − x∞,t

, (3.18)

where x∞,t is the equilibrium balanced growth path, which may or may not be stationary. In
particular, if xt converges to a (constant) stationary value, then x∞,t+1 = x∞,t = x∞. If γ /= 0, the
convergence speed of the aggregate variables, H, K and C, is given by Φ̂ = ρ(1 − γ). Hence,
the convergence speed is increasing in the speed of adjustment of habits to consumption, ρ,
and decreasing in the strength of habits in utility, γ . If γ = 0, we recover the standard time-
separable Barro [1] model. As it is wellknown, in this case the adjustment is instantaneous:
at the initial time, consumption jumps to its BGP value, C0 = Ĉ∞ = ((1 − τ)B − ĝ)K0, and
thereafter consumption and capital both increase at the constant rate ĝ.

3.2. Second-Best Solution

Among the different competitive equilibria indexed by the value of the income tax rate, τ ,
this section determines the one that maximizes individual welfare; that is, the second-best
outcome.

Using that zt = ct − γht = Ẑ∞(1 + ĝ)t/N, the lifetime utility obtained is

Û =
∞∑

t=0

u

[
Ẑ∞
(
1 + ĝ

)t

N

]
βt. (3.19)

Therefore, we are looking for the value of the tax rate on income, τ , that maximizes (3.19).
Using (3.14), we can obtain that

(1 − τ)B =

(
1 + ĝ

)ε − β

β(1 − σ(1 − α))
, (3.20)

which can be used to substitute (1 − τ)B as a function of ĝ in (3.19) by means of (3.13), and
allows us to express the lifetime utility Û as a function of ĝ. Now, we have that dÛ/dτ =
(dÛ/dĝ)(dĝ/dτ). Appendix D shows that dÛ/dĝ > 0. Hence, the first-order condition to
maximize the lifetime utility Û with respect to τ becomes

dĝ

dτ
=

(
1 + ĝ

)ε−1
Bβ(1 − σ(1 − α))(1 − α − τ)

αετ
= 0, (3.21)
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which yields the familiar result that the optimal income tax is equal to the elasticity of public
services in production,

τ̂ = 1 − α. (3.22)

Given that

d2ĝ

dτ2
(τ̂) = −

(
1 + ĝ

)ε−1
Bβ(1 − σ(1 − α))(1 − α)

αετ̂2
< 0, (3.23)

lifetime utility Û is maximized at the income tax rate τ̂ = 1−α, which alsomaximizes long-run
growth.

This result is similar to that obtained by Barro [1] in the time-separable model. There
is a hump-shaped relationship between growth (and welfare) and the income tax rate or,
equivalently, the ratio of public spending to output: long-run growth first increases, reaches
its maximum value, and then decreases as the tax rate increases. This shape results from the
combination of two opposing forces on the marginal product of capital, which determines
long-run growth: the positive effect caused by the increased provision of productive public
services, and the negative effect of a higher tax rate needed to finance them. The growth- and
welfare-maximizing tax rate on income is equal to the elasticity of public services in goods
production.

4. The Socially-Planned Economy

We now turn to the first-best solution that a benevolent social planner would implement. The
planner takes into account that private and aggregate outputs are related by Kt = Nkt in the
production function, and so,

Yt = ANσ(1−α)Kα
t G

1−α
t . (4.1)

The planner also takes into account that ct = ct or, in aggregate terms, Nct = Ct, and,
therefore, the constraint on the habits stock accumulation becomes

Ht+1 = Ht + ρ(Ct −Ht). (4.2)

Thus, given the initial conditions on capital, K0 > 0, and habits stock, H0 > 0, the
planner chooses {Ct,Gt,Kt+1,Ht+1}∞t=0 to maximize the lifetime utility

∞∑

t=0

u

[(
Ct − γHt

)

N

]
βtdt, (4.3)
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subject to the resource’s constraint

Kt+1 = Kt + Yt − Ct −Gt, (4.4)

where Yt is given by (4.1), and the constraint on the habits stock accumulation (4.2).

4.1. First-Best Solution

The Lagrangian of the planner’s problem is

L =
∞∑

t=0

βt
{
u

[(
Ct − γHt

)

N

]
+ λt[Kt + Yt − Ct −Gt −Kt+1] + μt

[(
1 − ρ

)
Ht + ρCt −Ht+1

]
}
,

(4.5)

where λt and μt are the shadow values of capital and habits stocks, respectively. The first-
order conditions with respect to Ct, Gt, Kt+1, andHt+1 are given by

Ct : u′(Ct − γHt

)
Nε−1 + ρμt = λt, (4.6)

Gt : λt

(
(1 − α)Yt

Gt
− 1
)

= 0, (4.7)

Kt+1 : β

(
1 +

αYt

Kt

)
λt+1 = λt, (4.8)

Ht+1 : β
(
1 − ρ

)
μt+1 − βγu′(Ct+1 − γHt+1

)
Nε−1 = μt, (4.9)

where it has been used that u′ is homogeneous of degree −ε in (4.6) and (4.9), together with
the transversality condition

lim
t→∞

βtλtKt+1 = lim
t→∞

βtμtHt+1 = 0. (4.10)

Let πt ≡ Gt/Yt denote the ratio of public expenditure to output. Equation (4.7) yields
the standard rule that the optimal ratio of public expenditure to output is the (constant)
elasticity of public services in production,

πt = π =
Gt

Yt
= 1 − α. (4.11)

Substituting (4.11) into (4.1), we obtain the following expression for aggregate output:

Yt = (1 − α)(1−α)/αA1/αNσ(1−α)/αKt = BKt, (4.12)

where B ≡ (1 − α)(1−α)/αA1/αNσ(1−α)/α.
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Let g denote the long-run growth rate, and let qt ≡ μt/λt denote the relative shadow
cost of habits. Proceeding in a similar manner as in the market economy, taking into account
(4.11), we can derive the system that drives the dynamics of the centralized economy in terms
of the variablesZt ≡ Zt(1 + g)−t,Kt ≡ Kt(1 + g)−t,Ht ≡ Ht(1 + g)−t, and qt, which are constant
along a BGP

(
1 + g

)
Zt+1 =

[
1 − ρqt
1 − ρqt+1

β
(
1 + αB

)]1/ε
Zt, (4.13)

(
1 + g

)
Kt+1 =

(
1 + αB

)
Kt − Zt − γHt, (4.14)

(
1 + g

)
Ht+1 = Ht + ρ

(
Zt −

(
1 − γ

)
Ht

)
, (4.15)

[
1 − ρ

(
1 − γ

)]
qt+1 =

(
1 + αB

)
qt + γ. (4.16)

The following proposition, which is proved in Appendix C, yields a closed-form
solution for the dynamics of the efficient (first-best) solution.

Proposition 4.1. The socially-planned economy has a unique feasible optimal solution with positive
long-run growth which is described by

Ht −H∞ =

(
1 − ρ

(
1 − γ

)

1 + g

)t(
H0 −H∞

)
, (4.17)

Ct − C∞ = γ
(
Ht −H∞

)
, (4.18)

Kt −K∞ =
γ

αB + ρ
(
1 − γ

)
(
Ht −H∞

)
, (4.19)

where the (constant) ratio of public expenditure to output is

πt =
Gt

Yt
= 1 − α, (4.20)

which converges to a BGP given by

C∞ =

(
g + ρ

)
Z∞

g + ρ
(
1 − γ

) , (4.21)

K∞ =

(
g + ρ

)
Z∞(

αB − g
)(

g + ρ
(
1 − γ

)) , (4.22)

H∞ =
ρZ∞

g + ρ
(
1 − γ

) , (4.23)
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where

Z∞ =
(
αB − g

)[
K0 −

γ
(
ρK0 +H0

)

αB + ρ

]
, (4.24)

and the long-run growth rate is

g =
[
β
(
1 + αB

)]1/ε − 1 (4.25)

if and only if parameter values and initial conditions are that

g > 0 > β
(
1 + g

)1−ε − 1, (4.26)

γH0

K0
< αB + ρ

(
1 − γ

)
. (4.27)

The efficient paths of aggregate consumption, capital, and habits stock can be easily
computed as Ct = Ct(1 + g)t, Kt = Kt(1 + g)t, and Ht = Ht(1 + g)t. In particular, the initial
value of consumption is given by C0 = C0 = Z∞ + γH0.

As in the Barro [1] model, the share of output claimed to finance public services that
maximizes welfare is equal to the elasticity of public services in production. The intuition is
simple. On one hand, an increase in public expenditure raises the marginal product of capital
and this has positive welfare effects. On the other hand, an increase in public expenditure also
decreases the amount of output available for consumption. The optimal size of government
balances off these two effects.

If γ /= 0, the convergence speed of K, C, and H towards their respective BGPs in the
socially-planned economy can be easily shown to be constant and equal to the one in the
decentralized economy, Φ = Φ̂ = ρ(1 − γ). The case γ = 0 corresponds to the standard time-
separable Barro [1] model, in which the economy displays no transitional dynamics: at the
initial time, consumption jumps to its balanced growth path, C0 = C∞ = Z∞ = (αB − g)K0,
and thereafter consumption and capital both increase at a constant rate g.

4.2. First-Best versus Second-Best Solution

In the second-best solution, the income tax rate is set according to (3.22) at τ̂ = 1 − α, and
so, B = B. Comparing the transition paths of Ĥt, Ĉt, and K̂t in the market economy given
by (3.7)–(3.9) when τ = τ̂ = 1 − α with their counterparts Ht, Ct, and Kt in the centrally-
planned economy given by (4.17)–(4.19), it is immediate to see that they coincide if and
only if the long-run growth rates in the market and the centralized economies coincide,
ĝ = g. Comparing (3.14) with (4.11), we observe that the optimal and equilibrium long-run
growth rates are related through ĝ ≤ g, with equality if and only if σ = 0. Thus, the first-
best and the second-best solutions coincide if and only if there is proportional congestion
associated to public expenditure. With proportional congestion, σ = 0, setting the income
tax rate according to (3.22) ensures that the social marginal return to capital, as viewed
by the central planner, αB, coincides with the private after-tax return, as viewed by the
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individual agent, (1 − τ)B. Intuitively, the agent ignores the negative externality caused by
congestion and overaccumulates capital relative to the optimum. Thus, an income tax can
restore efficiency by increasing the effective marginal product of capital, which discourages
capital accumulation.

The dynamics of consumption in the first-best and second-best solutions can be
easily compared by using the closed-form expressions derived in Propositions 3.1 and 4.1.
Comparison of (4.24) and (3.13) when τ = τ̂ = 1 − α, and so, B = B, reveals that

Z∞
Ẑ∞

=

(
αB − g

)

(
αB − ĝ

) ≤ 1, (4.28)

with equality if and only if g = ĝ. Hence, the initial value of consumption in the second-
best solution, Ĉ0, is greater than that in the centrally-planned economy, C0. However,
as the optimal long-run growth rate of consumption is higher than the equilibrium one,
consumption in the first-best solution eventually catches up the corresponding one in the
second-best solution.

5. Some Numerical Results

This section illustrates the implications for the dynamics of the economy of introducing habits
in the Barro [1]model. To this end, we assume that the instantaneous utility function is given
by

u(ct, ht) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ct − γht

)1−ε − 1
1 − ε

if ε /= 1,

ln
(
ct − γht

)
if ε = 1,

(5.1)

where ε is the relative risk aversion.
The baseline parameterization is shown in Table 1. The values of the relative risk

aversion, ε, and the time discount rate, β, are standard. As usual in AK-type models, the
stock of capital, Kt, comprises both physical and human capital, which explains the value of
α = 0.9. The tax rate on income is set at its (second-best) optimal value. As a benchmark,
we assume that there is no congestion, σ = 1. Given these parameter values, the value of
B is chosen so that the long-run growth rate in the market economy, ĝ, is 2 percent. For
example, normalizing N = 1, this entails a value of A = 0.1832. This calibration yields a
plausible share of consumption in output of 72.8 percent. In the baseline, we set the strength
of habits in utility to γ = 0.9, following empirical work suggesting a value of γ near unity. The
value ρ = 0.25 is then chosen so as to obtain a realistic rate of convergence, Φ̂, of 2.5 percent.
Notwithstanding, we will illustrate the effect of assuming different values of ρ and γ on the
equilibrium dynamics.

We perform an exercise similar to that in Carroll et al. [49], and consider the effect of a
10 percent unanticipated reduction in the capital stock of an economy that was initially on its
balanced growth path. It should be noted that this shock does not affect the long-run growth
rate. Figure 1(a) illustrates the time paths of consumption, capital and habits relative to their
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Figure 1: Transition dynamics after a 10% reduction in capital.

Table 1: Parameter and steady-state values.

β ε α B σ ρ γ τ ĝ ̂C/Y Φ̂
0.95 2 0.90 0.1175 1 0.25 0.90 0.10 0.02 0.728 0.025

respective balanced growth path values. At t = 0, the capital stock experiments a reduction
of 10 percent. Hence, income also falls a 10 percent at the outset, which causes a reduction
in consumption. The percentage reduction in consumption is lower than the one in capital
in order to keep a flat shape of adjusted-consumption. Hereafter, K̂t, Ĉt, and, consequently,
Ĥt decrease steadily towards their respective steady-state values, which are a 28.3 percent
lower than the initial ones. Figure 1(b) depicts the evolution of the growth rates of aggregate
consumption, capital, and habits. At the initial time, the growth rates fall below their common
preshock stationary value. Subsequently, they increase monotonically towards their common
steady sate. Note that in the standard Barro [1]model, the economywould jump immediately
to its new steady state, while the long-run growth rate would keep constant at 2 percent.

Figure 2 depicts the growth rate of consumption for different values of ρ and γ .
As (3.14) shows, variations of these parameters do not affect the long-run growth rate of
the economy. The behaviour of the growth rate of consumption reflects the fact that the
convergence speed, Φ̂ = ρ(1 − γ), decreases as ρ decreases and/or γ increases.

Figure 3 compares the transition dynamics of the growth rates of consumption and
capital in the first-best and second-best outcomes. We assume that the economy was initially
at the BGP of the decentralized economy, and at time t = 0, it experiments a shock that reduces
its capital stock a 10 percent. Figure 3 depicts the time paths of the growth rates in the socially-
planned and the decentralized economies. Note that in the standard time-separable Barro [1]
model the adjustment would be instantaneous; that is, the equilibrium growth rates of the
market economy would keep constant at their common value ĝ, and the optimal growth
rates of the socially-planned economy would jump at the initial time to their new common
value, g.

6. Conclusion

This paper develops an endogenous growth model with habit-persistent preferences and
productive public services. Government expenditure, which may be subject to congestion,
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Figure 2: Growth rate of consumption after a 10% reduction in capital.
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Figure 3: Growth rates of capital and consumption after a 10% reduction in capital: First-best versus
second-best solution.

is financed by an income tax. Unlike the standard time-separable Barro [1] model, the
introduction of habit formation makes the model to feature transitional dynamics, which
are solved in closed form. As in the Barro [1] model, within a decentralized economy
setup, the growth- and welfare-maximizing (in a second-best sense), income tax rates
coincide and are equal to the elasticity of public services in production. This is also the
optimal share of government expenditure on income in a first-best setting. The first-best
solution can be decentralized as a market equilibrium only in the presence of proportional
congestion.

In this paper, we have considered that it is the current flow of public investment
which is productive. Another strand of the literature assumes instead that the accumulated
stock, rather than the current flow, is the source of contribution to productive capacity. One
interesting extension would be to analyze a model with public capital or with a mix of
productive capital and public expenditure. Another valuable extension would be to consider
a more general parameterization of technology, such as CES production. These topics will be
the subject of future research.
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Appendices

A. Derivation of the Dynamic System (3.3)–(3.6)

Since u′ is homogeneous of degree −ε, and using the fact that ct = ct, (2.9) can be rewritten as

u′(ct − γht

)
= u′
(
Zt

N

)
= NεZ−ε

t u′(1) = λt
(
1 − ρφq̂t

)
. (A.1)

Given that (3.1) entails that yt/kt = B, (2.10) becomes

λt+1 =
λt

β[1 + (1 − τ)(1 − σ(1 − α))B]
. (A.2)

Now, evaluating (A.1) at t = t + 1, dividing the result by (A.1), and using (A.2) to
eliminate λt+1/λt from the ensuing expression, we get

(
Zt+1

Zt

)−ε
=

λt+1
(
1 − ρφq̂t+1

)

λt
(
1 − ρφq̂t

) =

(
1 − ρφq̂t+1

)
/
(
1 − ρφq̂t

)

β[1 + (1 − τ)(1 − σ(1 − α))B]
. (A.3)

Using (A.1) evaluated at t = t + 1 to eliminate u′(ct+1 − γht+1) from (2.11), we get

β
(
1 − ρ

)
μt+1 − βγλt+1

(
1 − ρφq̂t+1

)
= μt. (A.4)

Now, (3.3) follows immediately from (A.3). Equations (3.4) and (3.5) result from
aggregating the agent’s budget constraint (2.7) and the habits stock accumulation law (2.2),
respectively, over the N identical individuals and multiplying both sides of the resulting
expressions by (1 + ĝ)−t. Equation (3.6) can be obtained after dividing (A.4) by (A.2) and
solving out for q̂t+1 in the ensuing expression.

B. Proof of Proposition 3.1

Firstly, the long-run growth rate (3.14) can be immediately derived from (3.3), using that
q̂t, and Ẑt are constant at the BGP. Taking into account the homogeneity of degree −ε of u′,
the transversality condition (2.12) is equivalent to β(1 + ĝ)1−ε < 1, which combined with the
requirement of positive growth yields (3.15). Note that, if ĝ > 0, the transversality condition
is automatically satisfied if ε ≥ 1.

Equation (3.6) is a linear difference equation that depends solely on q̂t, which is a jump
variable. Its steady state,

q̂∞ = − γ

ρ
(
1 − γφ

)
+ (1 − τ)(1 − σ(1 − α))B

, (B.1)
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is unstable because

dq̂t+1
dq̂t

=
1 + (1 − τ)(1 − σ(1 − α))B

1 − ρ
(
1 − γφ

) > 1. (B.2)

Hence, q̂t displays no transition dynamics: it jumps at the initial time to its stationary value
q̂∞. Substituting q̂t+1 = q̂t into (3.3), and using (3.14), we get that Ẑt+1 = Ẑt = Ẑ∞ at any time,
where Ẑ∞ = Z0 denotes the stationary (and the initial) value of Ẑt. Now, the solution to the
linear difference equation (3.5) with initial value Ĥ0 = H0 is

Ĥt =
ρẐ∞

ĝ + ρ
(
1 − γ

) +
[
H0 −

ρẐ∞
ĝ + ρ

(
1 − γ

)
](

1 − ρ(1 − γ)
1 + ĝ

)t

, (B.3)

and so,

Ĉt = Ẑt + γĤt =

(
ĝ + ρ

)
Ẑ∞

ĝ + ρ
(
1 − γ

) + γ

[
H0 −

ρẐ∞
ĝ + ρ

(
1 − γ

)
](

1 − ρ(1 − γ)
1 + ĝ

)t

. (B.4)

Substituting Ĥt from (B.3) and Ẑt = Ẑ∞ into (3.4), the solution to the resulting
difference equation is

K̂t =

(
ĝ + ρ

)
Ẑ∞(

(1 − τ)B − ĝ
)(
ĝ + ρ

(
1 − γ

)) + Ω
(
1 + (1 − τ)B

1 + ĝ

)t

+
γ

(1 − τ)B + ρ
(
1 − γ

)
[
H0 −

ρẐ∞
ĝ + ρ

(
1 − γ

)
](

1 − ρ
(
1 − γ

)

1 + ĝ

)t

,

(B.5)

where Ω is a constant to be determined. As condition (3.15) implies that (1 − τ)B − ĝ > 0,
convergence of K̂t to its stationary value K̂∞ as t tends to infinity requires that Ω = 0 and,
therefore,

K̂t =

(
ĝ + ρ

)
Ẑ∞(

(1 − τ)B − ĝ
)(
ĝ + ρ

(
1 − γ

))

+
γ

(1 − τ)B + ρ
(
1 − γ

)
[
H0 −

ρẐ∞
ĝ + ρ

(
1 − γ

)
](

1 − ρ
(
1 − γ

)

1 + ĝ

)t

.

(B.6)

The stationary value Ẑ∞ in (3.13) can now be derived by evaluating (B.6) at t = 0,
taking into account that K̂0 = K0. From (3.13), the feasibility condition Z0 = Ẑ∞ > 0 is
satisfied if and only if condition (3.16) holds, which also ensures that the equilibrium paths
are feasible. The BGP of the market economy given by (3.10), (3.11), and (3.12) can be easily
computed by computing the limit as t goes to infinity of expressions (B.4), (B.6), and (B.3),
respectively. Substituting the BGP values into (B.4), (B.6), and (B.3), we can readily obtain
(3.8), (3.9), and (3.7).
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C. Proof of Proposition 4.1

The proof is similar to that in Proposition 3.1. Firstly, the long-run growth rate (4.25) can be
immediately obtained from (4.13), using that qt and Zt are constant at the BGP. Taking into
account the homogeneity of degree −ε of u′, the transversality condition (4.10) is equivalent
to β(1 + g)1−ε < 1, which combined with the requirement of positive growth yields (4.26).

Equation (4.16) is a linear difference equation that depends solely on qt, a jump
variable. Its steady state,

q∞ = − γ

ρ
(
1 − γ

)
+ αB

, (C.1)

is unstable because

dqt+1
dqt

=
1 + αB

1 − ρ
(
1 − γ

) > 1. (C.2)

Hence, qt displays no transition dynamics: it jumps at the initial time to its stationary value
q∞. Substituting qt+1 = qt into (4.13), we get Zt+1 = Zt = Z∞ at any time, where Z∞ = Z0

denotes the stationary (and the initial) value of Zt. Now, the solution to the linear difference
equation (4.15) with initial value H0 = H0 is

Ht =
ρZ∞

g + ρ
(
1 − γ

) +
[
H0 −

ρZ∞
g + ρ

(
1 − γ

)
](

1 − ρ(1 − γ)
1 + g

)t

, (C.3)

and so,

Ct = Zt + γHt =

(
g + ρ

)
Z∞

g + ρ
(
1 − γ

) + γ

[
H0 −

ρZ∞
g + ρ

(
1 − γ

)
](

1 − ρ(1 − γ)
1 + g

)t

. (C.4)

As in Proposition 3.1, since condition (4.26) entails that αB − g > 0, the solution to
(4.14)with terminal condition limt→∞Kt = K∞ is

Kt =

(
g + ρ

)
Z∞(

αB − g
)(

g + ρ
(
1 − γ

))

+
γ

αB + ρ
(
1 − γ

)

[
H0 −

ρZ∞
g + ρ

(
1 − γ

)
](

1 − ρ
(
1 − γ

)

1 + g

)t

.

(C.5)

The stationary value Z∞ in (4.24) can now be derived from making K0 = K0 in (C.5).
The feasibility condition Z0 = Z∞ > 0 is satisfied if and only if the initial values of capital
and habits stock are such that condition (4.27) holds, which also ensures that the optimal
growth paths are feasible. The BGP of the socially-planned economy given by (4.21), (4.22),
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and (4.23) can be easily computed by computing the limit as t goes to infinity of expressions
(C.4), (C.5), and (C.3), respectively. Substituting these BGP values into (C.4), (C.5), and (C.3),
we can readily obtain (4.18), (4.19), and (4.17).

D. Second-Best Solution

This appendix shows that dÛ/dĝ > 0. Using that u′ is homogeneous of degree −ε, and taking
into account the condition (3.15), we get that

dÛ

dĝ
=

1
N

∞∑

t=0

(
dẐ∞
dĝ

(
1 + ĝ

)t + Ẑ∞
(
1 + ĝ

)t−1
t

)
u′
[
Ẑ∞
(
1 + ĝ

)t

N

]
βt

=
Nε−1u′(1)

Ẑε∞

∞∑

t=0

(
dẐ∞
dĝ

(
1 + ĝ

)−(ε−1)t + Ẑ∞
(
1 + ĝ

)−(ε−1)t−1
t

)
βt

=
Nε−1u′(1)

Ẑε∞
(
1 − β

(
1 + ĝ

)1−ε)
[
dẐ∞
dĝ

+
β
(
1 + ĝ

)−ε
Ẑ∞

1 − β
(
1 + ĝ

)1−ε

]
.

(D.1)

Using (3.20) to substitute (1 − τ)B as a function of ĝ into (3.13), we can get that

dẐ∞
dĝ

=
ε
(
1 + ĝ

)ε−1
γ
(
ρK0 +H0

)(
(1 − τ)B − ĝ

)

β(1 − σ(1 − α))
(
(1 − τ)B + ρ

)2 +
ε
(
1 + ĝ

)ε−1 − β(1 − σ(1 − α))

β(1 − σ(1 − α))
(
(1 − τ)B − ĝ

) Ẑ∞, (D.2)

which substituted into (D.1) yields, after simplification,

dÛ

dĝ
=

Nε−1u′(1)

Ẑε∞
(
1 − β

(
1 + ĝ

)1−ε)
{(

(1 − τ)B − ĝ
)
ε
(
1 + ĝ

)ε−1
γ
(
ρK0 +H0

)

β(1 − σ(1 − α))
(
(1 − τ)B + ρ

)2

+

[((
1 + ĝ

)ε−1 − β
)
ε + (1 − α)β

(
1 − β

(
1 + ĝ

)−ε)
σ
]

(
(1 − τ)B − ĝ

)(
1 − β

(
1 + ĝ

)1−ε)
β(1 − σ(1 − α))

Ẑ∞

⎫
⎬

⎭ > 0,

(D.3)

where we have used condition (3.15) to determine its sign.

Acknowledgment

Financial support from the Spanish Ministry of Science and Innovation through Grant
ECO2008-04180 is gratefully acknowledged.



Discrete Dynamics in Nature and Society 21

References

[1] R. J. Barro, “Government spending in a simple model of endogenous growth,” Journal of Political
Economy, vol. 98, no. 5, pp. S103–S125, 1990.

[2] A. Irmen and J. Kuehnel, “Productive government expenditure and economic growth,” Journal of
Economic Surveys, vol. 23, no. 4, pp. 692–733, 2009.

[3] D. A. Aschauer, “Is public expenditure productive?” Journal of Monetary Economics, vol. 23, no. 2, pp.
177–200, 1989.

[4] W. Romp and J. De Haan, “Public capital and economic growth: a critical survey,” Perspektiven der
Wirtschaftspolitik, vol. 8, no. 1, pp. 6–52, 2007.

[5] K. Futagami, Y. Morita, and A. Shibata, “Dynamic analysis of an endogenous growth model with
public capital,” Scandinavian Journal of Economics, vol. 95, no. 4, pp. 607–625, 1993.

[6] S. J. Turnovsky, “Fiscal policy, adjustment costs, and endogenous growth,” Oxford Economic Papers,
vol. 48, no. 3, pp. 361–381, 1996.

[7] R. J. Barro and X. Sala-i-Martin, “Public finance in models of economic growth,” Review of Economic
Studies, vol. 59, no. 4, pp. 645–661, 1992.

[8] I. Ott and S. J. Turnovsky, “Excludable and non-excludable public inputs: consequences for economic
growth,” Economica, vol. 73, no. 292, pp. 725–748, 2006.

[9] S. J. Turnovsky, “Optimal tax, debt, and expenditure policies in a growing economy,” Journal of Public
Economics, vol. 60, no. 1, pp. 21–44, 1996.

[10] B.-L. Chen, “Economic growth with an optimal public spending composition,” Oxford Economic
Papers, vol. 58, no. 1, pp. 123–136, 2006.

[11] S. J. Turnovsky, “Fiscal policy, elastic labor supply, and endogenous growth,” Journal of Monetary
Economics, vol. 45, no. 1, pp. 185–210, 2000.

[12] A. Minea and P. Villieu, “Threshold effects in monetary and fiscal policies in a growth model:
assessing the importance of the financial system,” Journal of Macroeconomics, vol. 31, no. 2, pp. 304–319,
2009.

[13] W. Li and P.-D. Sarte, “Progressive taxation and long-run growth,” American Economic Review, vol. 94,
no. 5, pp. 1705–1716, 2004.

[14] P. Mauro, “The persistence of corruption and slow economic growth,” IMF Staff Papers, vol. 51, no. 1,
pp. 1–18, 2004.

[15] H. Park, A. Philippopoulos, and V. Vassilatos, “Choosing the size of the public sector under rent
seeking from state coffers,” European Journal of Political Economy, vol. 21, no. 4, pp. 830–850, 2005.

[16] I. A. Mourmouras and J. E. Lee, “Government spending on infrastructure in an endogenous growth
model with finite horizons,” Journal of Economics and Business, vol. 51, no. 5, pp. 395–407, 1999.

[17] S. Kosempel, “Finite lifetimes and government spending in an endogenous growth model,” Journal of
Economics and Business, vol. 56, no. 3, pp. 197–210, 2004.

[18] S. Ghosh and I. A. Mourmouras, “On public investment, long-run growth, and the real exchange
rate,” Oxford Economic Papers, vol. 54, no. 1, pp. 72–90, 2002.

[19] S. J. Turnovsky, “On the role of government in a stochastically growing open economy,” Journal of
Economic Dynamics and Control, vol. 23, no. 5-6, pp. 873–908, 1999.

[20] C. Clemens, “Income taxation, productive government expenditure and stochastic growth: on
conditions for an optimal policy and the role of the risk premium,” The B.E. Journal of Macroeconomics
(Topics), vol. 5, no. 1, article 14, 2005.

[21] X. Chen and S. C. Ludvigson, “Land of addicts? An empirical investigation of habit-based asset
pricing models,” Journal of Applied Econometrics, vol. 24, no. 7, pp. 1057–1093, 2009.

[22] G. M. Korniotis, “Estimating panel models with internal and external habit formation,” Journal of
Business & Economic Statistics, vol. 28, no. 1, pp. 145–158, 2010.

[23] O. V. Grishchenko, “Internal vs. external habit formation: the relative importance for asset pricing,”
Journal of Economics and Business, vol. 62, no. 3, pp. 176–194, 2010.

[24] G. M. Constantinides, “Habit formation: a resolution of the equity premium puzzle?” Journal of
Political Economy, vol. 98, no. 3, pp. 519–543, 1990.

[25] J. Y. Campbell and J. H. Cochrane, “By force of habit: a consumption-based explanation of aggregate
stock market behavior,” Journal of Political Economy, vol. 107, no. 2, pp. 205–251, 1999.

[26] S. V. Møller, “Habit persistence: explaining cross-sectional variation in returns and time-varying
expected returns,” Journal of Empirical Finance, vol. 16, no. 4, pp. 525–536, 2009.

[27] J. A. Wachter, “A consumption-based model of the term structure of interest rates,” Journal of Financial
Economics, vol. 79, no. 2, pp. 365–399, 2006.

[28] A. Verdelhan, “A habit-based explanation of the exchange rate risk premium,” Journal of Finance, vol.
65, no. 1, pp. 123–146, 2010.



22 Discrete Dynamics in Nature and Society

[29] M. Boldrin, L. J. Christiano, and J. D. M. Fisher, “Habit persistence, asset returns, and the business
cycle,” American Economic Review, vol. 91, no. 1, pp. 149–166, 2001.

[30] J. W. Gruber, “A present value test of habits and the current account,” Journal of Monetary Economics,
vol. 51, no. 7, pp. 1495–1507, 2004.

[31] C. E. Walsh, “Labor market search, sticky prices, and interest rate policies,” Review of Economic
Dynamics, vol. 8, no. 4, pp. 829–849, 2005.

[32] F. Smets and R. Wouters, “An estimated dynamic stochastic general equilibrium model of the euro
area,” Journal of the European Economic Association, vol. 1, no. 5, pp. 1123–1175, 2003.

[33] L. J. Christiano, M. Eichenbaum, and C. L. Evans, “Nominal rigidities and the dynamic effects of a
shock to monetary policy,” Journal of Political Economy, vol. 113, no. 1, pp. 1–45, 2005.

[34] G. Glomm and B. Ravikumar, “Public investment in infrastructure in a simple growthmodel,” Journal
of Economic Dynamics and Control, vol. 18, no. 6, pp. 1173–1187, 1994.

[35] F.-S. Hung, “Optimal composition of government public capital financing,” Journal of Macroeconomics,
vol. 27, no. 4, pp. 704–723, 2005.

[36] G. A. Marrero and A. Novales, “Income taxes, public investment and welfare in a growing economy,”
Journal of Economic Dynamics and Control, vol. 31, no. 10, pp. 3348–3369, 2007.

[37] H.Mehlum, “A closed form Ramsey Saddle path,” Contributions to Macroeconomics, vol. 5, no. 1, article
2, 2005.

[38] W. T. Smith, “A closed form solution to the Ramsey model,” Contributions to Macroeconomics, vol. 6,
no. 1, article 3, 2006.

[39] W. T. Smith, “Inspecting themechanism exactly: a closed-form solution to a stochastic growthmodel,”
The B.E. Journal of Macroeconomics, vol. 7, no. 1, article 30, 2007.

[40] L. Guerrini, “A closed-form solution to the Ramseymodel with logistic population growth,” Economic
Modelling, vol. 27, no. 5, pp. 1178–1182, 2010.

[41] D. Bethmann, “A closed-form solution of the Uzawa-Lucas model of endogenous growth,” Journal of
Economics, vol. 90, no. 1, pp. 87–107, 2007.

[42] J. R. Ruiz-Tamarit, “The closed-form solution for a family of four-dimension nonlinear MHDS,”
Journal of Economic Dynamics and Control, vol. 32, no. 3, pp. 1000–1014, 2008.

[43] R. Boucekkine and J. R. Ruiz-Tamarit, “Special functions for the study of economic dynamics: the case
of the Lucas-Uzawa model,” Journal of Mathematical Economics, vol. 44, no. 1, pp. 33–54, 2008.

[44] C. Chilarescu, “An analytical solutions for a model of endogenous growth,” Economic Modelling, vol.
25, no. 6, pp. 1175–1182, 2008.

[45] C. Chilarescu, “A closed-form solution to the transitional dynamics of the Lucas-Uzawa model,”
Economic Modelling, vol. 26, no. 1, pp. 135–138, 2009.

[46] R. Hiraguchi, “A note on the closed-form solution to the Lucas-Uzawa model with externality,”
Journal of Economic Dynamics and Control, vol. 33, no. 10, pp. 1757–1760, 2009.

[47] R. E. Lucas Jr., “On the mechanics of economic development,” Journal of Monetary Economics, vol. 22,
no. 1, pp. 3–42, 1988.

[48] A. B. Abel, “Asset prices under habit formation and catching up with the Joneses,” American Economic
Review, vol. 80, no. 2, pp. 38–42, 1990.

[49] C. D. Carroll, J. Overland, and D. N.Weil, “Comparison utility in a growthmodel,” Journal of Economic
Growth, vol. 2, no. 4, pp. 339–367, 1997.

[50] F. Alvarez-Cuadrado, G. Monteiro, and S. J. Turnovsky, “Habit formation, catching up with the
Joneses, and economic growth,” Journal of Economic Growth, vol. 9, no. 1, pp. 47–80, 2004.
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[53] J. Alonso-Carrera, J. Caballé, and X. Raurich, “Welfare implications of the interaction between habits
and consumption externalities,” International Economic Review, vol. 47, no. 2, pp. 557–571, 2006.
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