
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2010, Article ID 491023, 11 pages
doi:10.1155/2010/491023

Research Article
Large Solutions for Semilinear Parabolic Equations
Involving Some Special Classes of Nonlinearities

Constantin P. Niculescu and Ionel Rovenţa
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We consider a new class of nonlinearities for which a nonlocal parabolic equation with Neumann
boundary conditions has finite time blow-up solutions. Our approach is inspired by previous work
done by Jazar and Kiwan (2008) and El Soufi et al. (2007) .

1. Introduction

This paper is devoted to the existence of large solutions of the semilinear parabolic problem

ut −Δu = f(|u|) − 1
m(Ω)

∫
Ω
f(|u|)dx, in Ω,

∂u

∂n
= 0, on ∂Ω ,

(1.1)

with the initial conditions

u(x, 0) = u0(x), on Ω, where
∫
Ω
u0dx = 0. (1.2)

Here Ω ⊂ R
N is a bounded regular domain of class C2, f : [0,∞) �→ [0,∞) is a locally

Lipschitz function, m(Ω) represents the Lebesgue measure of the domain Ω, and Δ is the
Laplace operator.

The above problem was recently studied by El Soufi et al. [1] and Jazar and Kiwan [2],
under the assumption that f is a power function of the form f(u) = up (with p > 1).Under the
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same restriction on f , some lower bounds estimates for the blow-up time were established in
[3]. See also [4, 5].

The aim of our paper is to extend their results to a larger class of nonlinearities whose
precise definition is as follows.

Definition 1.1. A real-valued function f defined on an interval [a,∞) (with a ≥ 0) satisfies
property (C) if it is locally Lipschitz, nonnegative, and its mean value (1/(t − a))

∫ t
a f(x)dx

has a superlinear growth in the sense that the ratio

(1/(t − a))
∫ t
a f(x)dx

(t − a)α
(1.3)

is nondecreasing for t large enough and some α > 1.

The monotonicity condition on (1.3) means precisely the existence of a constant C ∈
(0, 1/2) (precisely, C = (1 + α)−1) such that

Cf(t) ≥ 1
t − a

∫ t

a

f(x)dx (1.4)

for t > a large enough.
For example, if g ∈ C1([0,∞)), g(0) = 0, and g is nondecreasing, then the function

f(t) = g(t)tα, with α > 1, satisfies property (C). In fact,

∫ t

0
f(x)dx =

tα+1

α + 1
g(t) −

∫ t

0
g ′(x)

xα+1

α + 1
dx

≤ tα+1

α + 1
g(t) = Ctf(t),

(1.5)

where C = 1/(α + 1) ∈ (0, 1/2).
Assuming that f(0) = 0 (which is the case if a = 0 and (1.4) works for all t > 0), one

can infer from (1.4) that

f(t) + f(0)
2

≥ 1
t

∫ t

0
f(x)dx, (1.6)

a fact that reminds of the Hermite-Hadamard inequality in convex functions theory. See [6,
page 50]. Thus property (C) can be ascribed to the field of generalized convexity.

The problems of type (1.1) and (1.2) arise naturally in mechanics, biology, and
population dynamics. For example, if we consider a couple or a mixture of two equations
of the above type, the resulting problem describes the temperatures of two substances, which
constitute a combustible mixture, or represents a model for the behavior of densities of two
diffusion biological species which interact with each other. This type of problems is connected
also with parabolic systems of heat equations with local sources, which arise in population
dynamics. See [4, 7–11].
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Our paper is organized as follows. In Section 2 we show that every solution u of the
problems (1.1) and (1.2) (with u0 not identically 0 and f satisfying property (C)) is large,
provided that its energy at t = 0 is nonpositive. See Theorem 2.4. Our approach combines
previous work done by El Soufi et al. [1], with a careful analysis of the properties of energy
of solutions.

In Section 3 we discuss the connection of property (C) with other special classes of
nonlinearities, well known in the literature. We prove that every function with generalized
regular variation (à la Karamata), as well as everyN-function in the sense of Orlicz, satisfies
property (C). Meantime property (C) and the classical Keller-Osserman condition have a
large overlap (though they are distinct from each other). Thus the class of functions satisfying
property (C) provides indeed a natural framework for the existence of large solutions for the
problems (1.1) and (1.2).

2. The Existence of Large Solutions

The existence of a solution to the problems (1.1) and (1.2) can be found in [1]. It can be
summarized as follows.

Theorem 2.1. Assume thatΩ ⊂ R
N is a bounded regular domain of classC2 and f : [0,∞) �→ [0,∞)

is a locally Lipschitz function. Then for every u0 ∈ C(Ω) there is an element tmax ∈ [0,∞] such that
the problems (1.1) and (1.2) has a unique solution

u ∈ C
(
[0, tmax);C

(
Ω
))

∩ C1
(
(0, tmax);C

(
Ω
))

, (2.1)

which solves the integral equation

u(t) = etδu0 +
∫ t

0
e(t−s)Δf(u(s))ds (2.2)

on [0, tmax). Moreover,

∫
Ω
u(t)dx = 0, ∀t ∈ [0, tmax), (2.3)

and if tmax < ∞, then limt→ tmax‖u(t)‖L∞(Ω) = ∞.

Each solution u of the problems (1.1) and (1.2) has the property
∫
Ω udx = 0 because

the integral in the right-hand side of (1.1) is 0 and

d

dt

(∫
Ω
udx

)
=
∫
Ω
utdx =

∫
Ω
Δudx = 0. (2.4)

Hence, by the initial condition (1.2), we have
∫
Ω udx = 0.
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Lemma 2.2. Let u ∈ C(Ω) be a solution of (1.1) and (1.2). Then the energy of u at the moment t,

E(t) =
∫
Ω

(
1
2
|∇u|2 −

∫u

0
f(|t|)dt

)
dx, (2.5)

verifies the formula

E(t) = E(0) −
∫ t

0

∫
Ω
u2
t dx dt, ∀t > 0. (2.6)

Proof. In fact,

dE

dt
(t) =

∫
Ω

(∇ut∇u − utf(|u|)
)
dx

=
∫
∂Ω

∂u

∂n
utdσ −

∫
Ω
utΔudx −

∫
Ω
ut f(|u|)dx

= −
∫
Ω
ut

(
Δu + f(|u|))dx = −

∫
Ω
u2
t dx,

(2.7)

and by integrating both sides over [0, t], we obtain formula (2.6).

According to the previous lemma, if E(0) is nonpositive, then E(t) is nonpositive for
all t > 0. In the case of functions f satisfying condition (C), this leads to

C

∫
Ω
uf(|u|)dx ≥

∫
Ω

∫u

0
f(|t|)dt dx ≥ 1

2

∫
Ω
|∇u|2. (2.8)

Lemma 2.3. Under the assumptions of Lemma 2.2 consider the two auxiliary functions

m(t) :=
1
2

∫
Ω
u2(x, t)dx, h(t) :=

∫ t

0
m(s)ds. (2.9)

Then

m′(t) ≥ 1
C

∫ t

0

∫
Ω
u2
t dt, (2.10)

m′(t) ≥
(

1
2C

− 1
)
λm(t), for some λ > 0, (2.11)

1
2C

(
h′(t) − h′(0)

)2 ≤ h(t)h′′(t), (2.12)

provided that f satisfies condition (C).
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Proof. In fact,

m′(t) =
∫
Ω
utu dx =

∫
Ω
u
(
Δu + f(|u|))dx

≥
∫
Ω

(
−|∇u|2 + 1

C

∫u

0
f(|t|)dt

)
dx

= − 1
C

∫
Ω

(
1
2
|∇u|2 −

∫u

0
f(|t|)dt

)
dx +

(
1
2C

− 1
)∫

Ω
|∇u|2dx.

(2.13)

Hence,

m′(t) ≥ − 1
C
E(u) +

(
1
2C

− 1
)∫

Ω
|∇u|2dx

≥ − 1
C
E(u) = − 1

C
E(u0) +

1
C

∫ t

0

∫
Ω
u2
t dx dt

≥ 1
C

∫ t

0

∫
Ω
u2
t dx dt.

(2.14)

On the other hand, by the Poincaré inequality, we have

m′(t) ≥
(

1
2C

− 1
)∫

Ω
|∇u|2dx ≥

(
1
2C

− 1
)
λ

∫
Ω
u2dx =

(
1
2C

− 1
)
λm(t), (2.15)

where λ is a suitable positive constant.
We pass now to the proof of (2.12). Since

h′(t) − h′(0) =
∫ t

0
m′(s)ds =

∫ t

0

∫
Ω
uutdx dt

≤
(∫ t

0

∫
Ω
u2dx dt

)1/2(∫ t

0

∫
Ω
u2
t dx dt

)1/2

≤ (2h(t))1/2
(
Cm′(t)

)1/2 = (
2Ch(t)h′′(t)

)1/2
,

(2.16)

by (2.10) we infer that

h′(t) − h′(0) =
∫ t

0
m′(s)ds ≥ 0, (2.17)
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and thus

1
2C

(
h′(t) − h′(0)

)2 ≤ h(t)h′′(t). (2.18)

We are now in a position to state the main result of our paper.

Theorem 2.4. Assume that f : [0,∞) �→ [0,∞) is a function with property (C), and let u be the
solution of the problems (1.1) and (1.2) corresponding to an initial data u0 ∈ C(Ω), u0 not identically
zero. If the energy of u at t = 0 is nonpositive, then u, as a function of t, cannot be in L∞((0, T);L2(Ω))
for all T > 0.

Proof. Suppose, by reduction ad absurdum, that the solution u(x, ·) exists in

L∞
(
(0, T);L2(Ω)

)
(2.19)

for all T > 0. By (2.11),

lim
t→∞

h′(t) = lim
t→∞

m(t) = ∞, (2.20)

which yields, for each β ∈ (0, 1/C), the existence of a number T0 > 0 such that for all t > T0,

βh′(t)2 ≤ 1
C

(
h′(t) − h′(0)

)2
. (2.21)

Now, by (2.12) we obtain

βh′(t)2 ≤ 2h(t)h′′(t). (2.22)

We will show, by considering the function H(t) = h(t)−q, for a suitable q > 0, that the
last inequality leads to a contradiction. In fact,

H ′′(t) = qh(t)−q−2
((

q + 1
)(
h′(t)

)2 − h(t)h′′(t)
)

≤ qh(t)−q−2
(

2
(
q + 1

)
β

− 1

)
h(t)h′′(t),

(2.23)

for all t ≥ T0, so that for β ∈ (0, 1/C) and q ∈ (0, 1/(2C) − 1) with 2(q + 1) < β < 1/C, the
corresponding function H(t) is concave.

By (2.20), limt→∞h(t) = ∞, whence limt→∞H(t) = 0. ThusH provides an example of a
concave and strictly positive function which tends to 0 at infinity, a fact which is not possible.
The proof is done.
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3. Classes of Functions with Property (C)

The aim of this section is to comment on how large is the class of functions which plays
property (C). In this respect we will discuss here several particular classes of functions with
this property.

We start with the class of regularly varying functions, introduced by Karamata in [12].

Definition 3.1. A positive measurable function f defined on interval [a,∞) (with a ≥ 0) is
said to be regularly varying at infinity, of index σ ∈ R (abbreviated, f ∈ RV∞(σ)), provided
that

lim
x→∞

f(tx)
f(x)

= tσ , ∀t > 0. (3.1)

All functions of index σ are of the form

f(x) = xσ exp
(
a(x) +

∫x

0

ε(s)
s

ds

)
, (3.2)

where a(x) and ε(x) are bounded and measurable, a(x) → α ∈ R, and ε(x) → 0 as x → ∞.
In particular, so are

xσ logx, xσ loglogx, xσ exp
(

logx
loglogx

)
, xσ exp

((
logx

)1/3(cos (logx)1/3)).
(3.3)

See [13] for details.
Semilinear problems with nonlinearities in the class of regularly varying functions

have been studied by Cı̂rstea and Rădulescu [14].

Proposition 3.2. If f ∈ RV∞(σ) with σ > 1, then

lim
x→∞

F(x)
xf(x)

=
1

σ + 1
<

1
2
, (3.4)

where

F(x) :=
∫x

0
f(s)ds. (3.5)

Under these assumptions, f satisfies condition (C) (and thus Theorem 2.4 applies to it).

Proof. To prove this, consider the change of variable s = tx,which yields

F(x) =
∫x

0
f(s)ds =

∫1

0
xf(tx)dt. (3.6)
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The continuity of f and the fact that f ∈ RV∞(σ) assure the existence of a δ > 0 such
that for every x > δ we have

f(tx)
f(x)

≤ tσ + 1, (3.7)

whence the integrability of the function t → f(tx)
f(x)

on [0, 1]. Then

lim
x→∞

F(x)
xf(x)

= lim
x→∞

∫1

0

f(tx)
f(x)

dt

=
∫1

0
lim
x→∞

f(tx)
f(x)

dt =
∫1

0
tσdt =

1
σ + 1

,

(3.8)

where the commutation of the limit with the integral is motivated by the Lebesgue dominated
convergence theorem.

An important class of nonlinearities which appeared in connection with the study of
boundary blow-up problems for elliptic equations is that of functions satisfying the Keller-
Osserman condition. See the papers by Rădulescu [15] and Dumont et al. [16].

Definition 3.3. A nonnegative and nondecreasing function f ∈ C1([0,∞)) with f(0) = 0
satisfies the generalized Keller-Osserman condition of order p > 1 if

∫∞

1

1

(F(t))1/p
dt < ∞, (3.9)

where F is the primitive of f given by formula (3.5).

If f ∈ RV∞(σ + 1) with σ + 2 > p > 1 a nondecreasing and continuous function,
then F ∈ RV∞(σ + 2) and F−1/p ∈ RV∞((−σ − 2)/p). Since (−σ − 2)/p < −1, we infer that
F−1/p ∈ L1([1,∞)) and thus f satisfies the generalized Keller-Osserman condition.

It is worth to notice that the function exp(t) is not regularly varying at infinity
though satisfies the generalized Keller-Osserman condition and also the hypothesis of
Proposition 3.4.

Necessarily, if a function f satisfies the generalized Keller-Osserman condition of order
p > 1, then

lim
t→∞

F(t)
tp

= ∞, (3.10)

while F(t)/tp may be (or may be not) a monotonic function.
As noticed in the Introduction, property (C) is intimately related to the monotonicity

of F(t)/tp in the following way.

Proposition 3.4. If F(t)/tp is nondecreasing for some p > 2, then the function f satisfies condition
(C) with C = 1/p (and thus Theorem 2.4 applies to it).
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According to Proposition 3.4, the function f(t) = ptp−1 log(t+1)+(tp/(t+1)) satisfies for
p > 2 condition (C) but not the generalized Keller-Osserman condition of order p. Indeed, f
admits the primitive F(t) = tp log(t + 1).

We end our paper by discussing the connection of property (C) with a class of
functions due to Orlicz.

Definition 3.5. AnN-function is any function M : [0,∞) → R of the form

M(x) =
∫x

0
p(t)dt, (3.11)

where p is nondecreasing and right continuous, p(0) = 0, p(t) > 0 for t > 0, and limt→∞p(t) =
∞.

An N-function M satisfies the Δ2-condition if there exist constants k > 0 and x0 ≥ 0
such that

M(2x) ≤ kM(x), ∀x ≥ x0. (3.12)

AnyN-function M is convex and plays the following properties:

(N1) M(0) = 0 and M(x) > 0 for x > 0;

(N2) M(x)/x → 0 as x → 0 andM(x)/x → ∞ as x → ∞.

Two examples of N-functions which satisfy the Δ2-condition are xp/p (for p ≥ 1) and
t(log t)+.

The N-functions which satisfy the Δ2-condition are instrumental in the theory of
Orlicz spaces (which extend the Lp(μ) spaces). Their theory is available in many books, such
as [17, 18], and has important applications to interpolation theory [19] and Fourier analysis
[20].

According to [18, page 23], the constant k which appears in the formulation of Δ2-
condition is always greater than or equal to 2.

Proposition 3.6. Every N-function M : [0,∞) → R which satisfies the Δ2-condition has property
(C) (and thus Theorem 2.4 applies to it).

Proof. Since M is nondecreasing,

M(tx) = M
(
2log2tx

)
≤ M

(
2[log2t]+1x

)
, (3.13)

and taking into account the Δ2-condition we infer that

M(tx) ≤ M(x)k[log2t]+1 ≤ M(x)klog2t+1 ≤ M(x)t2log2k, (3.14)
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for all x big enough and t ≥ 2. Hence,

∫ t

0
M(x)dx =

∫1

0
tM(ts)ds

≤
∫1

0
tM(t)s2log2kds =

1
2log2k + 1

tM(t)

≤ 1
3
tM(t),

(3.15)

and the proof is done.
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