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Robust nonlinear control of flexible-joint robots requires that the link position, velocity,
acceleration, and jerk be available. In this paper, we derive the dynamic model of a nonlinear
flexible-joint robot based on the governing Euler-Lagrange equations and propose extended and
unscented Kalman filters to estimate the link acceleration and jerk from position and velocity
measurements. Both observers are designed for the same model and run with the same covariance
matrices under the same initial conditions. A five-bar linkage robot with revolute flexible joints is
considered as a case study. Simulation results verify the effectiveness of the proposed filters.

1. Introduction

In recent years, many researchers have investigated the control problem of robots with
flexible joints. However, compared to the large volume of the literature available on control
of rigid robots, relatively little has been published on the control of flexible-joint robots. On
the other hand, for a robot manipulator to carry out demanding tasks with high performance,
such as the space robots performing services in space, joint flexibility due to gear elasticity,
shaft windup and use of harmonic drives, has to be taken into account in both modeling
and control of robot manipulators. As the experimental investigations by Sweet and Good
[1] show, the effects of joint flexibility can limit the robustness and performance of a
given robot controller and can even lead to instability if neglected in the controller design.
Moreover, the joint flexibility can serve as the first approximation of robot link flexibility
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Figure 1: Model of a single-link, flexible-joint manipulator.

[2] and hence the study of joint flexibility can provide another perspective into the study
of flexible link which allows much lighter link weight and thus much faster motion of the
robot. If we assume that the flexibility is modeled as a linear torsional spring, we obtain the
dynamic model of the manipulator with flexible joints. Flexible robotic manipulators have
several advantages over rigidmanipulators depending on specific applications; some of these
advantages are as follows: low actuator drive requirement, high speeds, low weight, small
size, and low cost [3–6].

The robust nonlinear control of these robots based on the state feedback requires the
knowledge of state variables for each joint, which may be either positions or velocities of
the motors and of the links or positions, velocities, accelerations and jerks of the links [5].
Not only is the full state measurement costly, but there are problems with link acceleration
and jerk. Since the former is difficult and the latter impossible to measure, we are forced to
consider an observer which provides estimations for these unmeasurable states from position
and velocity measurements [7].

Within the significant toolbox of mathematical tools that can be used for stochastic
estimation from noisy sensor measurements, one of the most well-known and often used
tools is the Kalman filter. As an extension to the same idea, the extended Kalman filter (EKF)
is used if the dynamic of the system and/or the output dynamic is nonlinear. It is based
on linearization about the current estimation error mean and covariance [8]. Although it is
straightforward and simple, it has drawbacks too [9]. The Unscented Kalman Filter (UKF)
is the newest revision of the Kalman Filter, proposed to overcome these flaws. It does not
need the linearization for a nonlinear function and is more accurate and simpler than the
EKF applied to nonlinear systems [10, 11].

In this paper, we derive the dynamic model of a five-bar linkage robot with flexible
joints and propose a state-space model for the robot. Then, we apply extended and unscented
Kalman filters to estimate the proposed state for the robot. The augmented state is herein
composed of the position, velocity, acceleration and jerk of the links. Computer simulations
are well performed to verify the performances of the proposed filters.

The remainder of this paper is organized as follows. Section 2 presents the dynamic
model of a five-bar linkage robot with flexible joints and derives a state-space model for
the robot as well. In Sections 3 and 4, we describe the algorithmic details of the EKF and
UKF formulations and implement these filters for the five-bar linkage robot. Section 5 shows
the simulation results and discusses their significance. And Section 6 gives the concluding
remarks.
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Figure 2: Five-bar linkage manipulator.
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Figure 3: Planar schematic of 5-bar linkage robot.

2. Dynamic Modeling

Referring to Figure 1, we define q1 = [ql1 , . . . , qln]
T as the vector of link angles and q2 =

[(1/rm1)qm1 , . . . , (1/rmn)qmn]
T as the vector of motor shaft angles (reflected to the link side

of the gears) for the n-link flexible-joint manipulator. The dynamic model can be derived
using the Euler-Lagrange equations [7, 12]

D
(
q1
)
q̈1 + C

(
q1, q̇1

)
q̇1 + g

(
q1
)
+K

(
q1 − q2

)
= 0,

Jq̈2 + Bq̇2 +K
(
q2 − q1

)
= u,

(2.1)

where D(q1) is the inertia matrix (symmetric and positive definite), C(q1, q̇1) is the vector
representing the damping, Coriolis and centrifugal torques, g(q1) is the vector of torques due
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to gravity, K = diag[k1, . . . , kn] is the joint stiffness coefficients modeling the joints elasticity,
J = diag[J1, . . . , Jn] and B = diag[B1, . . . ,Bn] are diagonal matrices representing rotor inertia
and rotor damping, respectively, and u ∈ Rn is the vector of input torques applied to the rotor
[7, 12].

Figure 2 shows the five-bar linkage manipulator with flexible joints built in robotics
research lab in our department. Also, Figure 3 depicts the 5-bar linkage manipulator
schematic where the links form a parallelogram [13]. It is clear from this figure that even
though there are four links being moved, there are in fact only two degrees of freedom,
identified as ql1 and ql2 [12].

We adopt a similar approach, that is, successive differentiation of the link position with
respect to time, introduced by [7] to derive a state-space model for the 5-bar linkage robot.
So the state vector is defined as

�x =
(
q1 q2 q̇1 q̇2 q̈1

...
q 1

)T
, (2.2)

where

q1 =
[
ql1 ql2

]T
, q2 =

[
1
rm1

qm1

1
rm2

qm2

]T
. (2.3)

Then following the discussion in [12], we set

m3l2lc3 = m4l1lc4 , (2.4)

which subsequently makes d12 and d21 be zero, that is, the inertia matrix becomes diagonal
and constant. Therefore using (2.1)–(2.4), the rather complex-lookingmanipulator in Figure 2
can be expressed by the following decoupled set of equations:

ẋ1 = x5,

ẋ2 = x6,

ẋ3 = x7,

ẋ4 = x8,

ẋ5 =
1
d11

{−g cosx1(m1lc1 +m3lc3 +m4l1) − k1(x1 − x3)
}
,

ẋ6 =
1
d22

{−g cosx2(m2lc2 −m4lc4 +m3l2) − k1(x2 − x4)
}
,

ẋ7 =
1
J1
{u1 − B1x7 − k1(x3 − x1)},

ẋ8 =
1
J2
{u2 − B2x8 − k2(x4 − x2)},
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ẋ9 =
1
d11

{
gx5 sinx1(m1lc1 +m3lc3 +m4l1) − k1(x5 − x7)

}
,

ẋ10 =
1
d22

{
gx6 sinx2(m2lc2 −m4lc4 +m3l2) − k2(x6 − x8)

}
,

ẋ11 =
1
d11

{
gẋ5 sinx1(m1lc1 +m3lc3 +m4l1) + gx2

5 cosx1

×(m1lc1 +m3lc3 +m4l1) − k1(ẋ5 − ẋ7)
}
,

ẋ12 =
1
d22

{
gẋ6 sinx2(m2lc2 −m4lc4 +m3l2) + gx2

6 cosx2

×(m2lc2 −m4lc4 +m3l2) − k2(ẋ6 − ẋ8)
}
. (2.5)

This special feature helps to explain the popularity of the parallelogram configuration
in industrial robots; since one can adjust the two set of angles (ql1 , qm1) and (ql2 , qm2)
independently, without worrying about interactions between them.

3. Extended Kalman Filter

The Kalman filter addresses the general problem of trying to estimate the state x ∈ Rn of a
discrete-time controlled process that is governed by a linear stochastic difference equation.
As an extension to the same idea, the extended Kalman filter (EKF) is used if the dynamic of
the system and/or the output dynamic is nonlinear. EKF is based on linearization about the
current estimation error mean and covariance [8].

3.1. Definitions

Let us assume that the process has a state vector x ∈ Rn and a control vector u and is governed
by the nonlinear stochastic difference equation

xk = f(xk−1,uk,wk−1), (3.1)

with a measurement z ∈ Rm that is

zk = h(xk, vk), (3.2)

the random variables wk and vk represent the process and measurement noise, respectively.
They are assumed to be independent of each other, white, and with normal probability
distributions with covariance matrices Q and R. It can be shown that the time update
equations of EKF is

x̂−
k = f

(
x̂−
k−1,uk, 0

)
,

P−
k = AkPk−1AT

k +WkQk−1WT
k ,

(3.3)



6 Discrete Dynamics in Nature and Society

0 20 40 60 80 100
−5

−4

−3

−2

−1

0

1

2

3

Time (s)

Po
si
ti
on

q l
1
(r
ad

)

True state
EKF estimate
UKF estimate

Figure 4: The estimated position ql1 .

where x̂−
k is the a priori state estimate [8]. These time update equations project the state and

covariance estimate (Pk) from the previous time step k−1 to the current time step k. And the
measurement update equations of the EKF are

Kk = P−
k H

T
k

(
HkP

−
k H

T
k + VkRkV

T
k

)−1
,

x̂k = x̂−
k +Kk

(
zk − h

(
x̂−
k , 0

))
,

Pk = (I − KkHk)P−
k ,

(3.4)

whereA, W, H and V are Jacobian matrices andK is the correction gain vector. These mea-
surement update equations correct the state and covariance estimate with the measurement
zk [8]. The design process of this filter is explained next.

3.2. Implementation

The differential equations are integrated using a fourth-order Runge Kutta method with a
step size of 14msec.

Suppose that the position and velocity of the 5-bar linkage robot are measured as

�zk =

⎡

⎢⎢⎢⎢⎢
⎣

ql1

ql2

q̇l1

q̇l2

⎤

⎥⎥⎥⎥⎥
⎦

k

+ vk, (3.5)

where vk represents the measurement noise.
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Figure 5: The estimated position qm1 .
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Figure 6: The estimated velocity q̇l1 .

Due to the recursive nature of the EKF algorithm, the state vector needs to be initialized
in startup. The initial position and velocity components are taken as the first measured values.
Here, the following initial conditions are selected randomly for the state vector:

�xinitial =
[π
2

π
π

4
π

2
0 0 0 0 0 0 0 0

]T
. (3.6)
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Figure 7: The estimated velocity q̇m1 .

Table 1: 5-Bar linkage manipulator data.

Link Mass (Kg) Length (m) C of g (m)
1 0.288 0.33 0.166
2 0.0324 0.12 0.06
3 0.3702 0.33 0.166
4 0.2981 0.45 0.075

We add uncertainty to the initial condition by selecting

P0 =
[(

3π
180

)2 (
3π
180

)2 (
2π
180

)2 (
2π
180

)2

1 1 1 1 1 1 1 1
]T

, (3.7)

and the process noise and measurement noise are chosen as

Q = diag
[(

3π
180

)2 (
3π
180

)2 (
2π
180

)2 (
2π
180

)2

10 10 20 20 30 30 40 40
]
,

R = diag
[(

5π
180

)2 (
5π
180

)2

4 4
]
.

(3.8)

Thus, we developed all the necessary elements of the EKF. In Section 5 the results of
simulating the filter are presented.
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Figure 8: The estimated acceleration q̈l1 of the first joint.
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Figure 9: The estimated acceleration q̈l2 of the second joint.

4. Unscented Kalman Filter

The basic premise behind the unscented Kalman filter is based on the idea that it is easier to
approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear function.
Instead of linearizing using Jacobian matrices, the UKF uses a deterministic sampling
approach to capture the mean and covariance estimates with a minimal set of sample points,
and it has 3rd-order (Taylor series expansion) accuracy for Gaussian error distribution for
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Figure 10: The estimated jerk
...
q l1 of the first joint.
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Figure 11: The estimated jerk
...
q l2 of the second joint.

Table 2: Simulation data for 5-bar linkage.

Parameters Nominal values (in SI units)
Joint stiffness K1 = 100, K2 = 200
Friction constant B1 = 0.1, B2 = 0.15
Gravity coefficient g = 9.8
Inertia I1 = 1, I2 = 2, I3 = 1, I4 = 2
Motor inertia J1 = 1, J2 = 1.5
Gear ratio rm1 = 50, rm2 = 50
Input torques τ1 = 2, τ2 = 5
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any nonlinear system [11], while EKF uses linearizing Jacobian matrix, which is a first-
order approximation. The UKF is claimed to have obvious advantages over EKF [10]. A brief
overview of the UKF algorithm is presented in the following section.

4.1. Definitions

The unscented transformation (UT) is a method for calculating the statistics of a random
variable which undergoes a nonlinear transformation. The L dimensional random variable x
with mean x and covariance Px is approximated by 2L + 1 weighted points given by

χ0 = x, i = 0,

χi = x +
(√

(L + λ)Px

)

i

, i = 1, . . . , L,

χi = x −
(√

(L + λ)Px

)

i−L
, i = L + 1, . . . , 2L.

(4.1)

These sigma points are propagated through the nonlinear function

yi = f
(
χi

)
, i = 0, . . . , 2L, (4.2)

from which the mean and covariance of the transformed probability can be approximated,

y ≈
2L∑

i=0

Wm
i yi,

Py ≈
2L∑

i=0

Wc
i

(
yi − y

)(
yi − y

)T
,

(4.3)

with weights Wi given by

Wm
0 =

λ

L + λ
,

Wc
0 =

λ

L + λ
+
(
1 − α2 + β

)
,

Wm
i = Wc

i =
1

2(L + λ)
, i = 1, . . . , 2L,

(4.4)

where λ = α2(L + κ) − L is a scaling parameter. The constant α determines the spread of
the sigma points around x and is usually set to small positive values less than one (typically
in the range 0.001 to 1) whereas κ is the secondary scaling parameter usually set to zero
or 3 − L, and the constant β is used to incorporate prior knowledge of the distribution of x
(for Gaussian distributions, β = 2 is optimal). The scale parameters may be tuned to match
the specific problem; some guidelines to choose them are provided in [10].
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The unscented Kalman filter (UKF) can be implemented using UT by expanding the
state space to include the noise component: xa

k
= [xT

k
,wT

k
, vT

k
]T . The UKF algorithm can be

summarized as follows:

(1) initialization:

x̂a
0 =

[
x̂T
0 0 0

]T
,

Pa
0 =

⎡

⎢
⎢
⎣

P0 0 0

0 Q 0

0 0 R

⎤

⎥
⎥
⎦.

(4.5)

(2) iteration for each time step k(∈ 1, . . . ,∞),

(a) calculate sigma-points:

χa
k−1 =

[
x̂a
k−1 x̂a

k−1 + γ
√
Pa
k−1 x̂a

k−1 − γ
√
Pa
k−1

]
, (4.6)

(b) time update:

χx
k|k−1 = f

(
χx
k−1 , χ

w
k−1 ,uk−1

)
,

x̂−
k =

2L∑

i=0

Wm
i χx

i,k|k−1,

P−
k =

2L∑

i=0

Wc
i

[
χx
i,k|k−1 − x̂−

k

][
χx
i,k|k−1 − x̂−

k

]T
,

Zk|k−1 = h
(
χx
k|k−1 , χ

v
k−1

)
,

ẑ−k =
2L∑

i=0

Wm
i Zi,k|k−1;

(4.7)

(c) measurement update:

Pẑk ẑk =
2L∑

i=0

Wc
i

[Zi,k|k−1 − ẑ−k
][Zi,k|k−1 − ẑ−k

]T
,

Px̂k ẑk =
2L∑

i=0

Wc
i

[
χx
i,k|k−1 − x̂−

k

][Zi,k|k−1 − ẑ−k
]T
,

Kk = Px̂k ẑkP
−1
ẑk ẑk

,

x̂k = x̂−
k +Kk

(
zk − ẑ−k

)
,

Pk = P−
k −Kk Pẑk ẑkK

T
k ,

(4.8)
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where

χa =
[(
χx

)T (
χw

)T (
χv

)T
]T
, γ =

√
L + λ. (4.9)

4.2. Implementation

The differential equations are integrated using a fourth-order Runge Kutta method with a
step size of 14msec. We initialize the filter in the same way as the EKF, using the same values
for the state vector and covariance matrices. We also need to set the tuning parameters α, β
and κ. The optimum values for coefficients α and β are chosen as 0.001 and 2, respectively.
And κ is set to zero. These optimum values are chosen such that they provide the best
estimates for all experiments [11].

5. Simulation Results

This section presents simulation results byMatlab. The simulation data and nominal values of
the five-bar linkage parameters are selected as shown in Tables 1 and 2. Also, the simulation
step time is chosen 14msec. To evaluate the performances of the proposed EKF and UKF for
the five-bar linkage robot, we plotted the estimated states from the available measurements
in Figures 4, 5, 6, and 7. They belong to the the first joint. The results for the second joint are
similar.

Moreover, Figures 8, 9, 10, and 11, depict the estimated accelerations and jerks for both
of the joints.

6. Conclusion

In this paper the extended and unscented Kalman filters are employed for state estimation
of a flexible-joint robot. First, the dynamic model of a five-bar manipulator is derived in
order to apply the proposed filters. Then, simulation results illustrate that both filters can
estimate the link acceleration and provide estimates of the link jerk using the position and
velocity measurements. Knowledge of these states is necessary for application of robust
outer-loop control theory. In the future we will try to utilize these estimations in robust
nonlinear tracking controller design for flexible-joint robots. Furthermore, developing system
identification techniques for the five-bar linkage robot would be another challenging task.
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