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A time-delayed model of speculative asset markets is investigated to discuss the effect of time
delay and market fraction of the fundamentalists on the dynamics of asset prices. It proves that
a sequence of Hopf bifurcations occurs at the positive equilibrium v, the fundamental price of
the asset, as the parameters vary. The direction of the Hopf bifurcations and the stability of the
bifurcating periodic solutions are determined using normal form method and center manifold
theory. Global existence of periodic solutions is established combining a global Hopf bifurcation
theorem with a Bendixson’s criterion for higher-dimensional ordinary differential equations.

1. Introduction

Efficient Market Hypothesis (EMH) is a standard theory of financial market dynamics.
According to the theory, asset prices follow a geometric Brownian motion representing the
fundamental value of the asset, and hence asset prices cannot deviate from their fundamental
values. The EMH theory, however, cannot explain excess volatility of financial markets such
as speculative booms followed by severe crashes. Recently, models have been developed
to explain fluctuations in financial markets (see [1–9] and the references therein). In such
models, asset prices follow deterministic paths that can deviate from fundamental values
generating what is called a speculative bubble in asset markets. In speculative markets
modeling, almost all the previous models have utilized either differential or difference
equations methodology.

Dibeh [4] presents a delay-differential equation to describe the dynamics of asset
prices. The author divides market participants into chartists and fundamentalists. The
fundamentalists follow the EMH theory and base their demand formation on the difference
between the actual price of the asset p and the fundamental price of the asset v. The chartists,
on the other hand, base their decisions of market participation on the price trend of the asset.
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They attempt to exploit the information of past prices to make their decisions of purchasing
or selling the asset. In [4], the model describing the time evolution of the asset price is given
by

dp
dt

(t) = (1 −m)tanh
(
p(t) − p(t − τ)

)
p(t) −m

(
p(t) − v

)
p(t), (P)

where m ∈ (0, 1] is the market fraction of the fundamentalists. A time delay is introduced for
chartists since they base their estimation of the slope of the asset price trend on an adaptive
process that takes into account past values of the slope of the price trend.

In [4], it is shown by simulation that there may exist limit cycles for (P), explaining
the persistence of deviations from fundamental values in speculative markets. The aim of
the present paper is to provide a detailed theoretical analysis of this phenomenon from
the bifurcation point of view. Applying the local Hopf bifurcation theory (see [10]), we
investigate the existence of periodic oscillations for (P), which depends both on time delay τ
and the market fraction of the fundamentalists m. Using the normal form theory and center
manifold theorem [11, 12], we derive sufficient conditions for determining the direction of
Hopf bifurcation and the stability of the bifurcating periodic solutions. Furthermore, taking
τ as a parameter, we establish the existence of periodic solutions for τ far away from the
Hopf bifurcation values using a global Hopf bifurcation result of Wu (see [13] and also [14–
18]). A key step in establishing the global extension of the local Hopf branch at the first
critical value τ = τ0 is to verify that (P) has no nonconstant periodic solutions of period 4τ .
This is accomplished by applying a higher-dimensional Bendixson’s criterion for ordinary
differential equations given by Li and Muldowney [19].

The rest of this paper is organized as follows: in Section 2, our main results are stated
and some numerical simulations are carried out to illustrate the analytic results. In Section 3,
results on stability and bifurcations at positive equilibrium are proved, taking m and τ
as parameters, respectively. In Section 4, a theorem on the direction and stability of Hopf
bifurcation is provided. Finally, a global Hopf bifurcation theorem is proved.

2. Main Results

Given the nonnegative initial condition

p(t) = ϕ ≥ 0, ϕ(0) > 0, t ∈ [−τ, 0], (2.1)

Equation (P) admits a unique solution (Hale and Lunel [10]). Any solution p(t, ϕ) of (P) is
nonnegative if and only if ϕ(0) > 0, following the fact that

p(t) = ϕ(0)e
∫ t

0[(1−m)tanh(p(s)−p(s−τ))−m(p(s)−v)]ds. (2.2)

Note that

dp
dt

(t) ≤
(
1 −m +mv −mp(t)

)
p(t). (2.3)
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We conclude that, for any sufficiently small ε > 0,

p(t) <
1 −m
m

+ v + ε (2.4)

holds for all large t > 0. This establishes the ultimate uniform boundedness of solutions for
(P).

Equation (P) has two equilibria 0 and v. Denote by p∗ any of the equilibria. Then the
linearization of (P) at p∗ is given by

dp
dt

(t) =
[
(1 − 3m)p∗ +mv

]
p(t) − (1 −m)p∗p(t − τ). (2.5)

If p∗ = 0, then it is unstable since (2.5) becomes

dp
dt

(t) = mvp(t). (2.6)

If p∗ = v, then the characteristic equation of (2.5) is

Δ(λ) := λ − (1 − 2m)v + (1 −m)ve−λτ = 0. (2.7)

We investigate the dependence of local dynamics of (P) on parameters m and τ .

Case 1. Choosing m as parameter.
Define

mk = 1 − 1
2 − cosηkτ

, (2.8)

where ηk solves

(
2 − cosητ

)
η − v sinητ = 0, (2.9)

with the assumption of vτ > 1.

Proposition 2.1. Ifm = 1, then p∗ = v is globally stable.

The case of m = 1 represents that asset prices are totally determined by the
fundamentalists. Obviously, asset prices cannot deviate from their fundamental values v
since the fundamentalists obey the EMH theory.

Theorem 2.2. Assume vτ > 1. Then

(i) the positive equilibrium p∗ = v of (P) is asymptotically stable when m ∈ (m0, 1], where
m0 := max{mk};

(ii) (P) undergoes a Hopf bifurcation at v whenm = mk.
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Case 2. Regarding τ as parameter.
Define

τj =
1
ω0

(
arccos

1 − 2m
1 −m + 2jπ

)
, j = 0, 1, 2, . . . (2.10)

with ω0 := v
√
m(2 − 3m).

Theorem 2.3. For (P),

(i) ifm ∈ [2/3, 1], then p∗ = v is asymptotically stable for all τ ∈ R
+;

(ii) ifm ∈ (0, 2/3), then p∗ = v is asymptotically stable when 0 < τ < τ0 and becomes unstable
when τ > τ0; moreover, (P) undergoes a Hopf bifurcation at p∗ = v when τ = τj (j =
0, 1, 2, . . .).

Theorem 2.4 gives the direction of Hopf bifurcation and stability of the bifurcating
periodic solutions. Similar results hold if we choose m as parameter.

Theorem 2.4. Assume m ∈ (0, 2/3). If Re(c1(0)) < 0 (> 0), then the bifurcating periodic solutions
at v are asymptotically stable (unstable) on the center manifold and the direction of bifurcation is
forward (backward). In particular, the bifurcating periodic solution from the first bifurcation value
τ = τ0 is stable (unstable) in the phase space if Re(c1(0)) < 0 (> 0).

Corollary 2.5. When τ = τ0, v is stable (unstable) if Re(c1(0)) < 0 (> 0).

Remark 2.6. See the proof in Section 4 for the explanation of c1(0) which appears in
Theorem 2.4 and Corollary 2.5.

The conclusions above are illustrated in Figure 1, using bifurcation set on the (m, τ)-plane.
Here, τ0(m), τ1(m), τ2(m), . . . , τj(m), . . . are Hopf bifurcation curves. When

(m, τ) ∈ D :=
{
(m, τ) | 0 < m <

2
3
, 0 ≤ τ < τ0(m)

}
∪
{
(m, τ) | 2

3
≤ m < 1

}
, (2.11)

p∗ = v is asymptotically stable, and when

(m, τ) ∈ Dc :=
{
(m, τ) | 0 < m <

2
3
, τ > τ0(m)

}
, (2.12)

p∗ = v is unstable. Denote the curve τ = τ0(m) by l. Clearly, l lies in the boundary of D. The
stability of v when (m, τ) ∈ l is given by Corollary 2.5.

The occurrence of Hopf bifurcation explains the persistent deviation of the asset price
from the fundamental value and it depends both on the time delay and the market fraction
of the fundamentalists. In fact, choosing the same parameters as in [4, Figure 2]:

m = 0.62, v = 5, τ = 2, (2.13)

we compute by (2.10) that τ0 = 1.5304. Therefore, Theorem 2.3 provides insight on the
explanation of existence of a limit cycle in [4, Figure 2].
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Figure 1: Hopf bifurcation set on m − τ plane.

Finally, a natural question is that if the bifurcating periodic solutions of (P) exist when
τ is far away from critical values? In the following theorem, we obtain the global continuation
of periodic solutions bifurcating from the points (v, τj) (j = 0, 1, 2, . . .), using a global Hopf
bifurcation theorem given by Wu [13].

Theorem 2.7. If m ∈ (0, 2/3), then for τ > τj(j ≥ 1), (P) has at least one periodic solution.
Furthermore, if m ∈ ((3 +

√
2)/7, 2/3), then (P) has at least one periodic solution for τ > τj (j ≥ 0)

and at least two periodic solutions for τ > τj (j ≥ 1). Here, τj (j = 0, 1, 2, . . .) is defined in (2.10).

Figures 2 and 3 describe the phenomena stated in Theorem 2.7, where m = 0.65 ∈
((3 +

√
2)/7, 2/3) and v = 5. It is shown that the time delay plays an important role in the

dynamics of the nonlinear model. To be concrete, the longer the time delays used by the
chartists in estimating the asset price trend, the more likely the market will exhibit persistent
deviation of the asset price from the fundamental value by a limit cycle, and the greater the
period of a limit cycle becomes. In fact, τ0 = 2.885 and c1(0) = −0.856 under these parameters.
Therefore, combining Theorem 2.7 with the two figures, we know that there exists at least one
stable periodic solution of (P) with period T(τ) ≥ 2π/ω = 6.9706 when τ > 2.885. We would
like to mention that the graphs in Figure 2 are prepared by using DDE-BIFTOOL developed
by Engelborghs et al. [20, 21].

3. Proof of the Results in Cases 1 and 2

Case 1. Choosing m as parameter.
When m = 1, (P) is a scalar ordinary differential equation and therefore it has no

nonconstant periodic solutions. Additionally, the only root of (2.7) is λ = −v < 0. These
complete the proof of Proposition 2.1.

When m < 1, iη (η > 0) is a root of (2.7) if and only if η satisfies

sinητ =
η

(1 −m)v
, cosητ =

1 − 2m
1 −m . (3.1)

It follows that

(
2 − cosητ

)
η − v sinητ = 0,

m = 1 − 1
2 − cosητ

.
(3.2)
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Figure 2: Hopf bifurcation branches through the centers (v, τj , 2π/ω0). (a) on the (τ, d)-plane, where d =
max p(t) −min p(t); (b) on the (τ, T(τ))-plane, where T(τ) is the period of periodic solution bifurcated at
v.

Denote G(η) def= (2 − cosητ)η − v sinητ . Then G(0) = 0, G(∞) =∞, and

G′
(
η
)
= ητ sinητ + 2 − (1 + vτ) cosητ. (3.3)

Therefore, there exists at least one zero ηk of G(η) if vτ > 1.
Define mk as in (2.8), then mk ∈ (0, 2/3) and ±iηk is a pair of purely imaginary roots

of (2.7) with m = mk. Let λ(m) be the root of (2.7) satisfying λ(mk) = iηk. Substituting λ(m)
into (2.7), it follows that

(
dλ
dm

)
=

ve−λτ − 2v
1 − τ(1 −m)ve−λτ

. (3.4)

Thus, we have the transversal condition

Sign
(

Re
dλ
dm

)
|
m=mk

= Sign
{

cosηkτ − 2 − τv(1 −mk)
(
1 − 2 cos ηkτ

)}

= Sign

{
3τv(1 −mk)2 − 2τv(1 −mk) − 1

1 −mk

}

,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

+1, mk ∈
(

0,
1
3

(

2 −
√

1 +
3
τv

))

,

−1, mk ∈
(

1
3

(

2 −
√

1 +
3
τv

)

,
2
3

)

,

(3.5)

where cosηkτ = 2− (1/1−mk) is used. Accordingly, a Hopf bifurcation at p∗ = v occurs when
m = mk.
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Figure 3: Stable periodic solution of (P), where (a) with τ = 2.9 > τ0 = 2.885, (b) with τ = 10, (c) with
τ = 20, and (d) with τ = 50.

In summary, if vτ > 1, then there exists at least one value of m defined by (2.8) such
that all the roots of (2.7) have negative real parts when m ∈ (m0, 1), in addition, a pair of
purely imaginary roots when m = mk. This implies Theorem 2.2.

Case 2. Regarding τ as a parameter.
First of all, we know that the root of (2.7) with τ = 0 satisfies that λ = −mv < 0.

Therefore, p∗ = v is globally asymptotically stable when τ = 0.
Let iω(ω > 0) be a root of (2.7). Then

sinωτ =
ω

(1 −m)v
> 0, cosωτ =

1 − 2m
1 −m . (3.6)

This leads to ω2 = mv2(2 − 3m). ω0 = v
√
m(2 − 3m) makes sense when m ∈ (0, 2/3). Define

τj as in (2.10); then iω0 is a pure imaginary root of (2.7) with τ = τj , j = 0, 1, 2, . . ..
Similarly, let λ(τ) = α(τ) + i
(τ) be the root of (2.7), satisfying

α
(
τj
)
= 0, 


(
τj
)
= ω0. (3.7)
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Differentiating both sides of (2.7) gives

(
dλ
dτ

)−1

=
eλτ

λv(1 −m)
− τ
λ
. (3.8)

Therefore,

Re
(

dλ
dτ

)−1

|
τ=τj

=
sinω0τj

ω0v(1 −m)
> 0. (3.9)

This implies that α′(τj) > 0, j = 0, 1, 2, . . ..

Note that λ = 0 is not a root of (2.7) when m = 2/3. Therefore, we obtain the following
spectral properties of (2.7):

(i) if m ∈ [2/3, 1), then all roots of (2.7) have negative real parts;

(ii) if m ∈ (0, 2/3), then there exist a sequence values of τ defined by (2.10) such that
(2.7) has a pair of purely imaginary roots ±iω0 when τ = τj . Additionally, all roots
of (2.7) have negative real parts when τ ∈ [0, τ0), all roots of (2.7), except ±iω0, have
negative real parts when τ = τ0, and (2.7) has at least a pair of roots with positive
real parts when τ > τ0.

These spectral properties immediately lead to the dynamics near the positive
equilibrium v described in Theorem 2.3.

4. Proof of Theorem 2.4

We use the center manifold and normal form theories presented in Hassard et al. [12] to
establish the proof of Theorem 2.4. Normalizing the delay τ by the time scaling t 
→ (t/τ) and
using the change of variables p(t) = p(tτ), we transform (P) into

dp
dt

(t) = (1 −m)τ tanh
(
p(t) − p(t − 1)

)
p(t) −mτ

(
p(t) − v

)
p(t), (P0)

whose characteristic equation at p = v is

Δ1(z) := z − (1 − 2m)τv + (1 −m)τve−z = 0. (4.1)

Comparing (4.1) with (2.7), we see z = λτ for τ /= 0. Therefore, we obtain the following
Lemma.

Lemma 4.1. Assumem ∈ (0, 2/3).

(i) If τ = τj (j = 0, 1, 2, . . .), then (4.1) has a pair of purely imaginary roots ±iω0τj , where τj
and ω0 are defined as before.
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(ii) Let z(τ) = γ(τ) + iζ(τ) be the root of (4.1), satisfying

γ
(
τj
)
= 0 and ζ

(
τj
)
= ω0τj , (4.2)

then

γ ′
(
τj
)
= τjα′

(
τj
)
> 0, j = 0, 1, 2, . . . . (4.3)

(iii) All roots of (4.1) have negative real parts when τ ∈ [0, τ0), all roots of (4.1), except ±iω0τ0,
have negative real parts when τ = τ0, and (4.1) has at least a pair of roots with positive real
parts when τ > τ0.

Without loss of generality, we denote the critical value τ∗ at which (P0) undergoes a
Hopf bifurcation at v. Let τ = τ∗ + μ, then μ = 0 is the Hopf bifurcation value of (P0). Let
p1(t) = p(t) − v and still denote p1(t) by p(t), so that (P0) can be written as

dp
dt

(t) = v
(
τ∗ + μ

)[
(1 − 2m)p(t) − (1 −m)p(t − 1)

]

+
(
τ∗ + μ

)[
(1 − 2m)p2(t) − (1 −m)p(t)p(t − 1)

]

− 1
3
v
(
τ∗ + μ

)
(1 −m)

[
p3(t) − 3p2(t)p(t − 1) + 3p(t)p2(t − 1) − p3(t − 1)

]
+O(4).

(4.4)

For φ ∈ C([−1, 0],R), define

Lμ
(
φ
)
= v

(
τ∗ + μ

)[
(1 − 2m)φ(0) − (1 −m)φ(−1)

]
. (4.5)

By the Riesz representation theorem, there exists a bounded variation function η(θ, μ)(θ ∈
[−1, 0]) such that

Lμ
(
φ
)
=
∫0

−1

[
dη

(
θ, μ

)]
φ(θ), for φ ∈ C([−1, 0],R). (4.6)

In fact, we can choose

η
(
θ, μ

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v
(
τ∗ + μ

)
(1 − 2m), θ = 0,

0, θ ∈ (−1, 0),

v
(
τ∗ + μ

)
(1 −m), θ = −1.

(4.7)
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Define

A
(
μ
)
φ(θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dφ(θ)
dθ

, θ ∈ [−1, 0),

∫0

−1

[
dη

(
ξ, μ

)]
φ(ξ), θ = 0,

h
(
μ, φ

)
=
(
τ∗ + μ

)[
(1 − 2m)φ2(0) − (1 −m)φ(0)φ(−1)

]

− 1
3
v
(
τ∗ + μ

)
(1 −m)

[
φ3(0) − 3φ2(0)φ(−1) + 3φ(0)φ2(−1) − φ3(−1)

]
+O(4).

(4.8)

Furthermore, define the operator R(μ) as

R
(
μ
)
φ(θ) =

⎧
⎨

⎩

0, θ ∈ [−1, 0),

h
(
μ, φ

)
, θ = 0;

(4.9)

then (4.4) is equivalent to the following operator equation:

ẋt = A
(
μ
)
xt + R

(
μ
)
xt, (4.10)

where xt = x(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1],R), define an operator

A∗ψ(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
dψ(s)

ds
, s ∈ (0, 1],

∫0

−1
ψ(−ξ)dη(ξ, 0), s = 0

(4.11)

and a bilinear form

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

−1

∫θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ, (4.12)

where η(θ) = η(θ, 0), then A(0) and A∗ are adjoint operators.
From the preceding discussions, we know that ±iω0τ

∗ are eigenvalues of A(0) and
therefore they are also eigenvalues of A∗. It is not difficult to verify that the vectors q(θ) =
eiω0τ

∗θ(θ ∈ [−1, 0]) and q∗(s) = leiω0τ
∗s(s ∈ [0, 1]) are the eigenvectors of A(0) and A∗

corresponding to the eigenvalues iω0τ
∗ and −iω0τ

∗, respectively, where

l =
(

1 − vτ∗(1 −m)e−iω0τ
∗
)−1

. (4.13)
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Following the algorithms stated in Hassard et al. [12], we obtain the coefficients which
will be used in determining the important quantities:

g20 = 2lτ∗
[
(1 − 2m) − (1 −m)e−iω0τ

∗
]
,

g11 = lτ∗
[
2(1 − 2m) − (1 −m)

(
eiω0τ

∗
+ e−iω0τ

∗
)]

,

g02 = 2lτ∗
[
(1 − 2m) − (1 −m)eiω0τ

∗
]
,

g21 = 2lτ∗(1 − 2m)[2W11(0) +W20(0)]

− lτ∗(1 −m)
[
2W11(−1) +W20(−1) +W20(0)eiω0τ

∗
+ 2W11(0)e−iω0τ

∗
]

− 2lτ∗v(1 −m)
[
3 − 3e−iω0τ

∗ − eiω0τ
∗
+ e−2iω0τ

∗
]
,

(4.14)

where for θ ∈ [−1, 0],

W20(θ) =
ig20

ω0τ∗
q(θ) +

ig02

3ω0τ∗
q(θ) + E1e

2iω0τ
∗θ,

W11(θ) = −
ig11

ω0τ∗
q(θ) +

ig11

ω0τ∗
q(θ) + E2,

E1 =
2
[
(1 − 2m) − (1 −m)e−iω0τ

∗]

2iω0 − v[(1 − 2m) − (1 −m)e−2iω0τ∗]
,

E2 =
2(1 − 2m) − (1 −m)

(
eiω0τ

∗
+ e−iω0τ

∗)

mv
.

(4.15)

Consequently, g21 can be expressed explicitly.
Thus, we can compute the following values:

c1(0) =
i

2ω0τ∗

(

g11g20 − 2
∣∣g11

∣∣2 −
∣∣g02

∣∣2

3

)

+
g21

2
,

μ2 = − Re(c1(0))
Re(λ′(τ∗))

,

β2 = 2 Re(c1(0)),

T2 = −
Im(c1(0)) + μ2 Im(λ′(τ∗))

ω0τ∗
,

(4.16)

which determine the properties of bifurcating periodic solutions at the critical value τ∗. More
specifically, μ2 determines the directions of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then
the bifurcating periodic solutions exist for τ > τ∗ (τ < τ∗); β2 determines the stability of
bifurcating periodic solutions: the bifurcating periodic solutions on the center manifold are
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stable (unstable) if β2 < 0 (β2 > 0); T2 determines the period of the bifurcating periodic
solutions: the period increases (decreases) if T2 > 0 (T2 < 0). Thus Theorem 2.4 follows.

In particular, when τ = τ0(m). It is well known that the normal form of the restriction
of (P0) with τ = τ0 on the center manifold is given by

ż(t) = iω0τ0z + c1(0)z2z + · · · . (4.17)

By Liapunov’s second method, the zero solution of (4.17) is stable (unstable) if Re(c1(0)) <
0 (> 0), and so is v.

5. Proof of Theorem 2.7

Assume m ∈ (0, 2/3). It is known that (P) undergoes a local Hopf bifurcation at p∗ = v
when τ = τj(j = 0, 1, . . .). Now we show that each bifurcation branch can be continued with
respect to the parameter τ under the conditions in Theorem 2.7. We introduce the following
notations:

X = C([−τ, 0],R),

Σ = Cl
{(
y, τ, T

)
: y is a T − periodic solution of (P)

}
⊂ X × R+ × R+,

N =
{(
ŷ, τ, T

)
: ŷ = 0 or v

}
.

(5.1)

Let C(v, τj , 2π/ω0) denote the connected component of (v, τj , 2π/ω0) in Σ, and
Projτ(v, τj , 2π/ω0) its projection on τ component, where ω0 = v

√
m(2 − 3m) and thus ±iω0

is a pair of purely imaginary roots of (2.7) with τ = τj . By Theorem 2.3, we know that
C(v, τj , 2π/ω0) is nonempty.

Lemma 5.1. All bifurcating periodic solutions of (P) from Hopf bifurcation at v are positive if τ ∈
Projτ(v, τj , 2π/ω0).

Proof. For each τ ∈ Projτ(v, τj , 2π/ω0), denote by X(t, τ) the corresponding nontrivial
periodic solution, with its minimum value inft∈R+X(t, τ). From the fact that the periodic
solutions bifurcated from the positive equilibrium are continuous with respect to τ and
limτ→ τjX(t, τ) = v uniformly in t ∈ R, we have that inft∈RX(t, τ) is continuous with
respect to τ , and the bifurcating periodic solutions are positive when τ varies in a small
neighborhood of τj . To prove the positivity, it is equivalent to prove inft∈RX(t, τ) > 0
when τ ∈ Projτ(v, τj , 2π/ω0). Otherwise, there exists a τ∗ ∈ Projτ(v, τj , 2π/ω0) such that
inft∈RX(t, τ∗) = 0. Without loss of generality, we assume that τ∗ > τj and inft∈R+X(t, τ) > 0
when τ ∈ (τj , τ∗). By the proof of positivity of solution, we obtain X(t, τ∗) ≡ 0. This implies
that (0, τ∗, 2π/ω) is a center of (P) for someω > 0. This contradiction completes the proof.

Lemma 5.2. Ifm ∈ (3 +
√

2/7, 2/3), then (P) has no positive periodic solution of period 4τ .

Proof. Suppose that y(t) is a positive periodic solution to (P) of period 4τ . Set

uj(t) = y
(
t −

(
j − 1

)
τ
)
, j = 1, 2, 3, 4. (5.2)
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Then u(t) = (u1(t), u2(t), u3(t), u4(t)) is a periodic solution to the following system of ordinary
differential equations:

u̇1(t) = (1 −m)tanh(u1 − u2)u1 −m(u1 − v)u1,

u̇2(t) = (1 −m)tanh(u2 − u3)u2 −m(u2 − v)u2,

u̇3(t) = (1 −m)tanh(u3 − u4)u3 −m(u3 − v)u3,

u̇4(t) = (1 −m)tanh(u4 − u1)u4 −m(u4 − v)u4,

(5.3)

where · denotes d/dt. Let

G =
{
u ∈ R : uj ∈

(
0,

1 −m
m

+ v
]
, j = 1, 2, 3, 4

}
. (5.4)

For (P), the ultimate uniform boundedness of solutions implies that the periodic solutions of
(P) belong to the region G. To rule out the 4τ-periodic solution to (P), it suffices to prove the
nonexistence of nonconstant periodic solutions of (5.3) in the region G. To do the latter, we
use a general Bendixson’s criterion in higher-dimensions developed by Li and Muldowney
[19]. More specifically, we shall apply [19, Corollary 3.5]. The Jacobian matrix J = J(u) of
(5.3), for u ∈ R

4, is

J(u) =

⎛

⎜⎜⎜⎜⎜
⎝

A1 B1 0 0

0 A2 B2 0

0 0 A3 B3

B4 0 0 A4

⎞

⎟⎟⎟⎟⎟
⎠
. (5.5)

For i = 1, 2, 3, 4,

Ai = (1 −m)
[
uitanh(1)(ui − ui+1) + tanh(ui − ui+1)

]
− 2mui +mv,

Bi = −(1 −m)uitanh(1)(ui − ui+1) < 0,
(5.6)

with u5 = u1. The second additive compound matrix J[2](u) of J(u) is

J[2](u) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 +A2 B2 0 0 0 0

0 A1 +A3 B3 −B1 0 0

0 0 A1 +A4 0 B1 0

0 0 0 A2 +A3 B3 0

−B4 0 0 0 A2 +A4 B2

0 −B4 0 0 0 A3 +A4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.7)
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Choose a vector norm in R
6 as

|(x1, x2, x3, x4, x5, x6)| = max
{√

2|x1|, |x2|,
√

2|x3|,
√

2|x4|, |x5|,
√

2|x6|
}
. (5.8)

Then with respect to this norm, the Lozinskii measure μ(J[2](u)) of the matrix J[2](u) is (see
[22])

μ
(
J[2](u)

)
= max

{

Ai +Aj −
√

2Bi,Ap +Aq −
√

2
2

(
Bp + Bq

)
}

, (5.9)

with (i, j) ∈ {(1, 4), (2, 1), (3, 2), (4, 3)}, and (p, q) ∈ {(1, 3), (2, 4)}. By [19, Corollary 3.5],
system (5.3) has no periodic orbits in the region G if μ(J[2](u)) < 0 for all u ∈ G. In fact,
when m ∈ (3 +

√
2/7, 2/3), one can acquire the inequality as below,

μ
(
J[2](u)

)
< (1 −m +mv)

[

2 +
2(1 − 3m) +

√
2(1 −m)

m

]

< 0. (5.10)

This completes the proof.

Lemma 5.3. Equation (P) has no nonconstant periodic solution of period τ .

Proof. Equation (P) has no nonconstant periodic solution of period τ is equivalent to the fact
that (P) with τ = 0 has no nonconstant periodic solution. It is straightforward that a first
order autonomous ODE has no nonconstant periodic solutions. (P) with τ = 0 is a first-order
autonomous ODE, which proves the lemma.

Proof of Theorem 2.7. First note that for any τj , the stationary points (v, τj , 2π/ω0) of (P) are
nonsingular and isolated centers (see Wu [13]) under the assumption m ∈ (0, 2/3); then the
hypothesis (H2) in [13] is satisfied. By (3.9), there exist ε > 0, δ > 0 and a smooth curve
λ : (τj − δ, τj + δ) → C, such that

Δ(λ(τ)) = Δ(v,τ,T)(λ(τ)) = 0, |λ(τ) − iω0| < ε, (5.11)

for all τ ∈ [τj − δ, τj + δ], where Δ is defined as (2.7), and

λ
(
τj
)
= iω0,

dRe(λ(τ))
dτ

|
τ=τj

> 0. (5.12)

Denote pj = 2π/ω0 and let

Ωε =
{(

0, q
)

: 0 < u < ε,
∣∣q − pj

∣∣ < ε
}
. (5.13)
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Clearly, if |τ − τj | ≤ δ and (u, q) ∈ Ωε such that Δ(v,τ,T)(u + 2πi/q) = 0, then τ = τj , u = 0, and
q = pj . Moreover, putting

H±
(
v, τj ,

2π
ω0

)
(
u, q

)
= Δ(v,τj±δ,T)

(
u + i

2π
q

)
, (5.14)

we have the crossing number

γ1

(
v, τj ,

2π
ω0

)
= degB

(
H−

(
v, τj ,

2π
ω0

)
,Ωε

)
− degB

(
H+

(
v, τj ,

2π
ω0

)
,Ωε

)
= −1. (5.15)

By the local Hopf bifurcation theorem for FDE [10], we conclude that the connected
component C(v, τj , 2π/ω0) through (v, τj , 2π/ω0) in Σ is nonempty. Meanwhile, we have

∑

(ŷ,τ,T)∈C(v,τj ,2π/ω0)
γ1
(
ŷ, τ, T

)
< 0

(5.16)

and thus C(v, τj , 2π/ω0) is unbounded by the global Hopf bifurcation theorem given by Wu
[13].

Again, the property of ultimate uniform boundedness implies that the projection
of C(v, τj , 2π/ω0) onto the y-space is bounded. Meanwhile, (P) with τ = 0 has no
nonconstant periodic solutions since it is a first-order autonomous ordinary differential
equation. Therefore, Projτ(v, τj , 2π/ω0) is bounded below.

By the definition of τj given in (2.10), we know that, when m ∈ (0, 2/3),

2π < τjω0 < 2
(
j + 1

)
π, j ≥ 1, (5.17)

which implies that

τj

j + 1
<

2π
ω0

< τj . (5.18)

By Lemma 5.3, we have τ/(j + 1) < T < τ if (x, τ, T) ∈ C(v, τj , 2π/ω0) for j ≥ 1. Because
C(v, τj , 2π/ω0) is unbounded, Projτ(v, τj , 2π/ω0) must be unbounded. Consequently,
Projτ(v, τj , 2π/ω0) include [τj ,∞) for j ≥ 1. The former part of the theorem follows.

Moreover, if m ∈ ((3 +
√

2)/7, 2/3), then

π

2
< τ0ω0 < π, (5.19)

where (3.6) is used. This implies that

2τ0 <
2π
ω0

< 4τ0. (5.20)
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Thus, we have by Lemma 5.2 that 2τ < T < 4τ if (x, τ, T) ∈ C(v, τ0, 2π/ω0). Similarly,
this shows that in order for C(v, τ0, 2π/ω0) to be unbounded, Projτ(v, τ0, 2π/ω0) must be
unbounded. This implies that Projτ(v, τ0, 2π/ω0) includes [τ0,∞).

In addition, the first global Hopf branch contains periodic solutions with period
between 2τ and 4τ , which are the slowly oscillating periodic solutions. The jth branches, for
j ≥ 1, since the periods are less than τ , contain fast-oscillating periodic solutions. Therefore,
(P) has at least two periodic solutions for τ > τ0 provided m ∈ ((3 +

√
2)/7, 2/3). The proof

of Theorem 2.7 is complete.
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