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We consider the higher-order nonlinear difference equation xn+1 = (p+qxn−k)/(1+xn + rxn−k), n =
0, 1, . . . with the parameters, and the initial conditions x−k, . . . , x0 are nonnegative real numbers.
We investigate the periodic character, invariant intervals, and the global asymptotic stability of
all positive solutions of the above-mentioned equation. In particular, our results solve the open
problem introduced by Kulenović and Ladas in their monograph (see Kulenović and Ladas, 2002).

1. Introduction and Preliminaries

Our aim in this paper is to investigate the global behavior of solutions of the following
nonlinear difference equation:

xn+1 =
p + qxn−k

1 + xn + rxn−k
, n = 0, 1, . . . , (1.1)

where the parameters p, q, r and the initial conditions x−k, . . . , x0 are nonnegative real
numbers, k ∈ {1, 2, . . .}.

In 2002, Kulenović and Ladas [1] proposed the following open problem.

Open Problem 1. Assume that p, q, r ∈ [0,∞) and k ∈ {2, 3, . . .}. Investigate the global behavior
of all positive solutions of (1.1).
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Consider the difference equation

xn+1 =
α + γxn−1

A + Bxn + Cxn−1
, n = 0, 1, . . . (1.2)

with α, γ,A, B, C ∈ (0,∞), and the initial conditions x−1, x0 are nonnegative real numbers.
Note that, the authors [1, 2] investigated this equation and studied (1.2).

In this paper, we will consider the above open problem. Actually, we will investigate
the global asymptotic stability and the invariant interval for all positive solutions of (1.1).

For the global behavior of solutions of some related equations, see [3–9]. Other related
results can be found in [10–19]. For the sake of convenience, we recall some definitions and
theorems which will be useful in the sequel.

Definition 1.1. Let I be some interval of real numbers and let

f : Im+1 −→ I (1.3)

be a continuously differential function. Then for every set of initial conditions y−k, . . . , y−1,
y0 ∈ I, the difference equation

yn+1 = f
(
yn, yn−1, . . . , yn−k

)
, n = 0, 1, . . . , (1.4)

has a unique solution {yn}∞n=−k.
A point y is called an equilibrium point of (1.4) if

y = f
(
y, y, . . . , y

)
, (1.5)

that is,

yn = y for n ≥ 0 (1.6)

is a solution of (1.4), or equivalently y is a fixed point of f .

Definition 1.2. Let y be an equilibrium point of (1.4).

(i) The equilibrium y is called locally stable (or stable) if for every ε > 0, there exists
δ > 0 such that for all y−k, . . . , y−1, y0 ∈ I with

∑i=0
i=−k |yi −y| < δ, we have |yn −y| < ε

for all n ≥ k.

(ii) The equilibrium y of (1.4) is called locally asymptotically stable (asymptotic stable)
if it is locally stable, and if there exists γ > 0 such that for all y−k, . . . , y−1, y0 ∈ I with∑i=0

i=−k |yi − y| < γ , we have limn→∞yn = y.

(iii) The equilibrium y of (1.4) is called a global attractor if for every y−k, . . . , y−1, y0 ∈ I,
we have limn→∞yn = y.

(iv) The equilibrium y of (1.4) is globally asymptotically stable if it is locally stable and
is a global attractor.
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(v) The equilibrium y of (1.4) is called unstable if it is not stable.

(vi) The equilibrium y of (1.4) is called a source, or a repeller, if there exists r > 0 such
that for all y−k, . . . , y−1, y0 ∈ I with

∑i=0
i=−k |yi − y| < γ , there exists N ≥ 1 such that

|yN − y| ≥ r.

An interval J ⊆ I is called an invariant interval for (1.4) if

y−k, . . . , y0 ∈ J =⇒ yn ∈ J ∀n > 0. (1.7)

That is, every solution of (1.4)with initial conditions in J remains in J .
The linearized equation associated with (1.4) about the equilibrium y is

yn+1 =
k∑

i=o

∂f

∂ui

(
y, . . . , y

)
yn−i, n = 0, 1, . . . . (1.8)

Its characteristic equation is

λk+1 =
k∑

i=o

∂f

∂ui

(
y, . . . , y

)
λk−i. (1.9)

Theorem 1.3 (see [20]). Assume that f is a C1 function and let y be an equilibrium of (1.4). Then
the following statements are true:

(i) If all the roots of (1.9) lie in the open unit disk |λ| < 1, then the equilibrium y of (1.4) is
asymptotically stable.

(ii) If at least one root of (1.9) has absolute value greater than one, then the equilibrium y of
(1.4) is unstable.

Theorem 1.4 (see [20]). Assume that P,Q ∈ R and k ∈ {1, 2, . . .}. Then

|P | + |Q| < 1 (1.10)

is a sufficient condition for the asymptotic stability of the difference equation

yn+1 = Pyn +Qyn−k, n = 0, 1, . . . . (1.11)

Lemma 1.5 (see [4]). Let p ≥ 2 be a positive integer and assume that every positive solution of
equation

xn+1 =
α + βxn + γxn−k
A + Bxn + Cnn−k

, n = 0, 1, . . . (1.12)

is periodic with period p. If C > 0, then A = B = 0.
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Lemma 1.6 (see [21]). Consider the difference equation

yn+1 = f
(
yn, yn−k

)
, n = 0, 1, . . . , (1.13)

where k ∈ {1, 2, . . .}. Let I = [a, b] be some interval of real numbers and assume that

f : [a, b] × [a, b] −→ [a, b] (1.14)

is a continuous function satisfying the following properties:

(a) f(u, v) is nonincreasing in u and nondecreasing in v,

(b) if (m,M) ∈ [a, b] × [a, b] is a solution of the system

m = f(M,m), M = f(m,M), (1.15)

thenm = M.

Then (1.13) has a unique equilibrium y ∈ [a, b], and every solution of (1.13) converges to y.

Lemma 1.7 (see [21]). Consider the difference equation

yn+1 = f
(
yn, yn−k

)
, n = 0, 1, . . . , (1.16)

where k ∈ {1, 2, . . .}. Let I = [a, b] be some interval of real numbers, and assume that

f : [a, b] × [a, b] −→ [a, b] (1.17)

is a continuous function satisfying the following properties:

(a) f(u, v) is nonincreasing in each of its arguments,

(b) if (m,M) ∈ [a, b] × [a, b] is a solution of the system

m = f(M,M), M = f(m,m), (1.18)

thenm = M.

Then (1.16) has a unique equilibrium y ∈ [a, b], and every solution of (1.16) converges to y.
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2. The Special Case pqr = 0

If the parameters pqr = 0, then (1.1) contains the following several equations.We now assume
that all their parameters are positive

xn+1 =
qxn−k

1 + xn + rxn−k
, n = 0, 1, . . . , (2.1)

xn+1 =
p

1 + xn + rxn−k
, n = 0, 1, . . . , (2.2)

xn+1 = 0, n = 0, 1, . . . , (2.3)

xn+1 =
p

1 + xn
, n = 0, 1, . . . , (2.4)

xn+1 =
qxn−k
1 + xn

, n = 0, 1, . . . , (2.5)

xn+1 =
p + qxn−k
1 + xn

, n = 0, 1, . . . . (2.6)

Equation (2.2) was studied in [19], where it is shown that the unique positive
equilibrium is a global attractor. Equation (2.3) is trivial. Equation (2.4) is the Riccati equation
[1]. Equation (2.5) can be reduces to (2.6), which was discussed in [22], and they showed that
the unique positive equilibrium of (2.6) is globally asymptotically stable when q < 1. So, here
we only consider (2.1).

Clearly, x = 0 is always an equilibrium of (2.1) and when q > 1, (2.1) also possesses
the unique positive equilibrium x = (q − 1)/(1 + r).

The linearized equation associated with (2.1) about the zero equilibrium is

zn+1 − qzn−k = 0. (2.7)

The linearized equation associated with (2.1) about the positive equilibrium is

zn+1 +
x

1 + x + rx
zn −

q − rx

1 + x + rx
zn−k = 0. (2.8)

From this and by Theorem 1.4, we have the following result.

Theorem 2.1. (a) Assume that q < 1. Then x = 0 of (2.1) is locally asymptotically stable.
(b) Assume that q > 1 and r > 1. Then the unique positive equilibrium x = (q − 1)/(1 + r) of

(2.1) is locally asymptotically stable.

Theorem 2.2. Assume that q > 1 and r > 1. Then the unique positive equilibrium x of (2.1) is
globally asymptotically stable.

Proof. By Theorem 2.1, the positive equilibrium of (2.1) is locally asymptotically stable. It
suffices to show that x is a global attractor.
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Let

f
(
x, y

)
=

qy

1 + x + ry
for x, y ∈ (0,∞), (2.9)

then f(x, y) is nonincreasing in x and nondecreasing in y. So

0 ≤ f
(
x, y

) ≤ q

r
for x, y ∈ (0,∞). (2.10)

From

qm

1 +M + rm
= m,

qM

1 +m + rM
= M, (2.11)

we have m = M.
Hence by Lemma 1.6 the proof is complete.

In the following sections we assume that all parameters in (1.1) are positive.

3. Local Stability and Period-Two Solutions

The equilibria of (1.1) are the solutions of the equation

x =
p + qx

1 + x + rx
. (3.1)

So (1.1) possesses the unique positive equilibrium

x =
q − 1 +

√(
q − 1

)2 + 4p(r + 1)

2(r + 1)
. (3.2)

The linearized equation associated with (1.1) about the positive equilibrium is

zn+1 +
x

1 + x + rx
zn −

q − rx

1 + x + rx
zn−k = 0. (3.3)

By Theorem 1.4, it is sufficient to show that in

∣∣∣∣
x

1 + x + rx

∣∣∣∣ +
∣∣∣∣

q − rx

1 + x + rx

∣∣∣∣ < 1. (3.4)

Thus

∣∣q − rx
∣∣ < 1 + rx. (3.5)
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If q − rx < 0, then we have rx − q < 1 + rx, and it clearly holds.

If q − rx ≥ 0, then we have q − rx < 1 + rx, and

q − 1 < 2rx. (3.6)

If q ≤ 1, the inequality (3.6) obviously holds. Suppose q > 1, then we can get

q − 1 < r
√(

q − 1
)2 + 4p(r + 1),

(
q − 1

)2
< r2

(
q − 1

)2 + 4pr2(r + 1),
(3.7)

from which it follows that

(r − 1)
(
q − 1

)2 + 4pr2 > 0. (3.8)

So we have the following result.

Theorem 3.1. Assume that

either q ≤ 1 or q > 1, (r − 1)
(
q − 1

)2 + 4pr2 > 0. (3.9)

Then the positive equilibrium x of (1.1) is locally asymptotically stable.

Theorem 3.2. (a) Assume that k is odd. Then (1.1) has a nonnegative prime period-two solution if
and only if

q > 1, (r − 1)
(
q − 1

)2 + 4pr2 < 0. (3.10)

Further when (3.10) holds, the period-two solution is “unique” and the value of φ1 and φ2 are the
positive roots of the quadratic equation

t2 − q − 1
r

t +
p

1 − r
= 0. (3.11)

(b) Assume that k is even. Equation (1.1) has no nonnegative prime period-two solution.

Proof. (a) Assume that k is odd, then xn+1 = xn−k. Let

. . . , φ1, φ2, φ1, φ2, . . . (3.12)

be a nonnegative prime period-two solution of (1.1). Then φ1, φ2 satisfy the following system:

φ1 =
p + qφ1

1 + φ2 + rφ1
, φ2 =

p + qφ2

1 + φ1 + rφ2
. (3.13)
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Substituting the above two equations, we obtain

(
φ1 − φ2

)
(
φ1 + φ2 −

q − 1
r

)
= 0. (3.14)

Thus

φ1 + φ2 =
q − 1
r

. (3.15)

Adding them and using the above equations, we can get

φ1φ2 =
p

1 − r
. (3.16)

Clearly, in this case the discriminant of (3.11) is positive, that is

Δ =
(r − 1)

(
q − 1

)2 + 4pr2

r2(r − 1)
> 0, (3.17)

and so φ1, φ2 are the positive roots of (3.11).
(b) Assume that k is even, then xn = xn−k. If there exist distinctive nonnegative real

number φ1 and φ2, such that

. . . , φ1, φ2, φ1, φ2, . . . (3.18)

is a prime period-two solution of (1.1) and φ1, φ2 satisfy the following system:

φ1 =
p + qφ2

1 + φ2 + rφ2
, φ2 =

p + qφ1

1 + φ1 + rφ1
, (3.19)

which is equivalent to

φ1 + φ1φ2 + rφ1φ2 = p + qφ2, φ2 + φ1φ2 + rφ1φ2 = p + qφ1. (3.20)

Subtracting these two equation, we can get

(
φ1 − φ2

)(
q + 1

)
= 0. (3.21)

Then φ1 = φ2. This contradicts the hypothesis that φ1 /=φ2.
The proof is complete.

Further, applying Lemma 1.5, we have the following result about the period solutions.

Theorem 3.3. There is no integer p ≥ 2 such that every positive solution of (1.1) is periodic with
period p.
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4. Boundedness and Invariant Interval

In this section, we will investigate the boundedness and invariant interval of (1.1).

Theorem 4.1. Every solution of (1.1) is bounded from above and from below by positive constants.

Proof. Let {xn}∞n=−k be a solution of (1.1). Clearly, if the solution is bounded from above by a
constant M, then

xn+1 ≥
p

1 + (r + 1)M
∀n ≥ −k, (4.1)

and so it is also bounded from below. Now for the sake of contradiction assume that the
solution is not bounded from above. Then there exists a subsequences {xnm+1}∞m=0 such that

lim
m→∞

nm = ∞, lim
m→∞

xnm+1 = ∞, (4.2)

and also

xnm+1 = max{xn : n ≤ nm} for m ≥ 0. (4.3)

From (1.1)we see that

xn+1 < p + qxn−k for n ≥ 0, (4.4)

and so

lim
m→∞

xnm+1 = lim
m→∞

xnm−k = ∞. (4.5)

Hence, for sufficiently large m,

0 ≤ xnm+1 − xnm−k =
p + qxnm−k

1 + xnm + rxnm−k
− xnm−k =

p +
[(
q − 1

) − xnm − rxnm−k
]
xnm−k

1 + xnm + rxnm−k
< 0,

(4.6)

which is a contradiction. The proof is complete.

Let

f(u, v) =
p + qv

1 + u + rv
. (4.7)

Then the following statements are true.

Lemma 4.2. (a) Assume that pr ≤ q. Then f(u, v) is decreasing in u for each v and increasing in v
for each u.
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(b) Assume that pr > q. Then f(u, v) is decreasing in u for each v and decreasing in v for
u ∈ [0, (pr − q)/q], and increasing in v for u ∈ [(pr − q)/q,∞).

Proof. The proofs of (a) and (b) are simple and will be omitted.

Lemma 4.3. Equation (1.1) possesses the following invariant intervals:

(a) [0, q/r], when pr ≤ q;

(b) [(pr − q)/q, q/r], when q < pr < q + q2/r;

(c) [0, p], when pr = q + q2/r;

(d) [q/r, (pr − q)/q], when q + q2/r < pr < pq + q;

(e) [q/r, p], when pr ≥ pq + q.

Proof. (a) Set g(x) = (p + qx)/(1 + rx), so g(x) is increasing for x and g(q/r) ≤ q/r. Using
(1.1) we see that when x−k, . . . , x−1, x0 ∈ [0, q/r], then

x1 =
p + qx−k

1 + x0 + rx−k
≤ p + qx−k

1 + rx−k
≤ g

(
q

r

)
≤ q

r
. (4.8)

The proof follows by induction.
(b) Using the monotonic character of the function f(u, v) which is described by

Lemma 4.2(b) and the condition that q < pr < q + q2/r, when x−k, . . . , x−1, x0 ∈ [(pr −
q)/q, q/r], we can get

pr − q

q
≤ f

(
q

r
,
pr − q

q

)
≤ x1 =

p + qx−k
1 + x0 + rx−k

= f(xo, x−k) ≤ f

(
pr − q

q
,
q

r

)
=

q

r
. (4.9)

The proof follows by induction.
(c) Set h(x) = (p+ qx)/(1+p+ rx), g(x) = (p+ qx)/(1+ rx), then h(x) is increasing for

x and g(x) is decreasing for x when pr = q + q2/r, we see that when x−k, . . . , x−1, x0 ∈ [0, p],
then

x1 =
p + qx−k

1 + x0 + rx−k
≥ p + qx−k

1 + p + rx−k
≥ h(0) =

p

1 + p
> 0,

x1 =
p + qx−k

1 + x0 + rx−k
≤ p + qx−k

1 + rx−k
≤ g(0) = p.

(4.10)

The proof follows by induction.
(d) Using the monotonic character of the function f(u, v) which is described by

Lemma 4.2(b) and the condition q+q2/r < pr < pq+q, when x−k, . . . , x−1, x0 ∈ [q/r, (pr−q)/q],
we obtain

q

r
= f

(
pr − q

q
,
pr − q

q

)
≤ x1 =

p + qx−k
1 + x0 + rx−k

= f(xo, x−k) ≤ f

(
q

r
,
q

r

)
=

pr + q2

r + (r + 1)q
<

pr − q

q
.

(4.11)

The proof follows by induction.
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(e) In view of the condition pr ≥ pq + q, we can get (pr − q)/q > p > q/r. By using
the monotonic character of the function f(u, v) which is described by Lemma 4.2(b) and the
condition pr ≥ pq + q, when x−k, . . . , x−1, x0 ∈ [q/r, p], we have

q

r
≤ p + qp

1 + p + pr
= f

(
p, p

) ≤ x1 =
p + qx−k

1 + x0 + rx−k
= f(xo, x−k) ≤ f

(
q

r
,
q

r

)
=

pr + q2

r + q + qr
< p.

(4.12)

The proof follows by induction.
The proof is complete.

5. Semicycles Analysis

Let {xn}∞n=−k be a positive solution of (1.1). Then we have the following equations:

xn+1 −
q

r
=

q

r

(
pr − q

)
/q − xn

1 + xn + rxn−k
, for n ≥ 0, (5.1)

xn+1 − p = −pxn +
(
pr − q

)
xn−k

1 + xn + rxn−k
, for n ≥ 0, (5.2)

xn+1 −
pr − q

q

=

(
1/q

)(
q + q2/r − pr

)
+
((
pr − q

)
/q

)(
q/r − xn

)
+
(
r/q

)(
q + q2/r − pr

)
xn−k

1 + xn + rxn−k
, for n≥0,

(5.3)

xn+1 − x =
r
(
x − q/r

)
(x − xn−k) + x(x − xn)

1 + xn + rxn−k
, for n ≥ 0, (5.4)

xn+2 − xn

=
rxn+1−k

(
q/r − xn

)
(rxn−k + xn + 1) +

(
q + r

)
xn−k

(
pr/

(
q + r

) − xn

)
+
(
p − xn − x2

n

)

(1 + xn + rxn−k)(1 + rxn+1−k) + p + qxn−k
,

for n ≥ 0.
(5.5)

If pr = q + q2/r, then the unique positive equilibrium is x = q/r, and (5.1) and (5.5)
change into

xn+1 −
q

r
=

q

r

q/r − xn

1 + xn + rxn−k
, for n ≥ 0, (5.6)

xn+2 − xn

=

(
q/r−xn

)(
r2xn+1−kxn−k+rxnxn+1−k+rxn+1−k+

(
pr2/q

)
xn−k+xn + q/r + 1

)

(1 + xn + rxn−k)(1 + rxn+1−k) + p + qxn−k
, for n ≥ 0.

(5.7)
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The following lemma is straightforward consequences of identities (5.1)–(5.7).

Lemma 5.1. Assume that pr ≤ q and let {xn}∞n=−k be a solution of (1.1). Then the following
statements are true:

(i) xn ≤ q/r for all n ≥ 1;

(ii) if for some N ≥ 0, xN−k ≤ x and xN ≥ x, then xN+1 ≤ x;

(iii) if for some N ≥ 0, xN−k > x and xN < x, then xN+1 > x;

(iv) 0 ≤ x ≤ q/r.

Lemma 5.2. Assume that q < pr < q + q2/r and let {xn}∞n=−k be a solution of (1.1). Then the
following statements are true:

(i) if for some N ≥ 0, xN < q/r, then xN+1 > (pr − q)/q;

(ii) if for some N ≥ 0, xN < (pr − q)/q, then xN+1 > q/r;

(iii) if for some N ≥ 0, xN = (pr − q)/q, then xN+1 = q/r;

(iv) if for some N ≥ 0, xN > (pr − q)/q, then xN+1 < q/r;

(v) if for some N ≥ 0, (pr − q)/q ≤ xN ≤ q/r, then (pr − q)/q ≤ xn ≤ q/r for n ≥ N;

(vi) if for some N ≥ 0, xN−k ≤ x, and xN ≥ x, then xN+1 ≤ x;

(vii) if for some N ≥ 0, xN−k > x, and xN < x, then xN+1 > x;

(viii) if for some N ≥ 0, xN < (pr − q)/q, then xN+2 > xN ;

(ix) if for some N ≥ 0, xN > q/r, then xN+2 < xN ;

(x) (pr − q)/q ≤ x ≤ q/r.

Lemma 5.3. Assume that pr = q + q2/r and let {xn}∞n=−k be a solution of (1.1). Then the following
statements are true:

(i) if for some N ≥ 0, xN > q/r, then xN+1 < q/r;

(ii) if for some N ≥ 0, xN = q/r, then xN+1 = q/r;

(iii) if for some N ≥ 0, xN < q/r, then xN+1 > q/r;

(iv) if for some N ≥ 0, xN ≥ x, then xN+1 ≤ x;

(v) if for some N ≥ 0, xN < x, then xN+1 > x;

(vi) if for some N ≥ 0, xN > q/r, then xN+2 < xN ;

(vii) if for some N ≥ 0, xN < q/r, then xN+2 > xN ;

(viii) x = q/r.

Lemma 5.4. Assume that q + q2/r < pr < pq + q and let {xn}∞n=−k be a solution of (1.1). Then the
following statements are true:

(i) if for some N ≥ 0, xN > q/r, then xN+1 < (pr − q)/q;

(ii) if for some N ≥ 0, xN < (pr − q)/q, then xN+1 > q/r;
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(iii) if for some N ≥ 0, xN = (pr − q)/q, then xN+1 = q/r;

(iv) if for some N ≥ 0, xN > (pr − q)/q, then xN+1 < q/r;

(v) if for some N ≥ 0, q/r ≤ xN ≤ (pr − q)/q, then q/r ≤ xn ≤ (pr − q)/q for n ≥ N;

(vi) if for some N ≥ 0, xN−k ≤ x and xN ≤ x, then xN+1 ≥ x;

(vii) if for some N ≥ 0, xN−k > x and xN > x, then xN+1 < x;

(viii) if for some N ≥ 0, xN < (pr − q)/q, then xN+1 > q/r;

(ix) if for some N ≥ 0, xN < q/r, then xN+2 > xN ;

(x) if for some N ≥ 0, xN > (pr − q)/q, then xN+2 < xN ;

(xi) q/r ≤ x ≤ (pr − q)/q.

Lemma 5.5. Assume that pr ≥ pq + q and let {xn}∞n=−k be a solution of (1.1). Then the following
statements are true:

(i) xn ≤ p for all n ≥ 1;

(ii) if for some N ≥ 0, xN ≤ p, then xN+1 ≥ q/r;

(iii) if for some N ≥ 0, q/r ≤ xN ≤ p, then q/r ≤ xn ≤ p for n ≥ N;

(iv) if for some N ≥ 0, xN−k ≤ x and xN ≤ x, then xN+1 ≥ x;

(v) if for some N ≥ 0, xN−k > x and xN > x, then xN+1 < x;

(vi) if for some N ≥ 0, xN < q/r, then xN+2 > xN ;

(vii) if for some N ≥ 0, xN > p, then xN+2 < xN ;

(viii) q/r ≤ x ≤ p.

The following results are consequences of Lemmas 5.1–5.5.

Theorem 5.6. Let {xn}∞n=−k be a nontrivial solution of (1.1) and x is the unique positive equilibrium
point of (1.1). Then the following statements are true.

(a) Assume that pr ≤ q. Then except possibly for the first semicycle, every oscillatory solution
of (1.1) has semicycles of length at most k.

(b) Assume that q < pr < q + q2/r. Then, except possibly for the first semicycle, every
oscillatory solution of (1.1) which lies in the invariant interval [(pr − q)/q, q/r] has
semicycles of length at most k.

(c) Assume that pr = q+q2/r. Then after the first semicycle, every oscillatory solution of (1.1)
about the equilibrium point x with semicycle of length one.

(d) Assume that q + q2/r < pr < pq + q. Then, except possibly for the first semicycle, every
oscillatory solution of (1.1) which lies in the invariant interval [q/r, (pr − q)/q] has
semicycles that is either of length at least k − 1, or of length at most k + 1.

(e) Assume that pr ≥ pq + q. Then, except possibly for the first semicycle, every oscillatory
solution of (1.1) which lies in the invariant interval [q/r, p] has semicycles that is either
of length at least k − 1, or of length at most k + 1.
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6. Global Stability

In this section, we will investigate global stability of the positive equilibrium point x of (1.1).

Theorem 6.1. Assume that (3.9) holds and let {xn}∞n=−k be a positive solution of (1.1). Then every
solution of (1.1) eventually enters the invariant interval

(a) [0, q/r] if pr ≤ q;

(b) [(pr − q)/q, q/r] if q < pr < q + q2/r;

(c) [q/r, (pr − q)/q] if q + q2/r < pr < pq + q;

(d) [q/r, p] if pr ≥ pq + q.

Proof. (a) The proof is a direct consequence of Lemma 5.1.
(b) From Lemma 5.2(v)we know that if there exist an integerN such that xN ∈ [(pr −

q)/q, q/r], then xn ∈ [(pr − q)/q, q/r] for n ≥ N and the result follows. Now assume for the
sake of contradiction that all terms of {xn} never enter the invariant interval [(pr − q)/q, q/r]
for n ≥ 0. Notice that Lemma 5.2(ii) implies that xn+1 > q/r for xn < (pr − q)/q. Further using
Lemma 5.2(viii) and (ix), we obtain that the subsequence {x2n}∞n=0 and {x2n+1}∞n=0 are both
monotonous. If one of them is decreasing, then it is bounded above by (pr − q)/q, and if one
of them is decreasing, then it is bounded below by q/r. Thus limn→∞x2n and limn→∞x2n+1

exist. Set

lim
n→∞

x2n = L, lim
n→∞

x2n+1 = M, (6.1)

then L ≤ (pr − q)/q and M ≥ q/r, or vice versa. From which it follows that

. . . , L,M,L,M, . . . (6.2)

is a period-two solution of (1.1), which is a contradiction, since when (2.3) holds, (1.1) has no
period-two solution.

(c) The proof is similar to (b), so will be omitted.
(d) In view of Lemma 5.5(i) and (iii), we know that xn ≤ p for all n ≥ 1 and [q/r, p]

is an invariant interval of (1.1). If there exist an integer N such that xN ∈ [q/r, p], then
xn ∈ [q/r, p] for n ≥ N, from which it follows that the result is true. Now assume for the sake
of contradiction that terms of {xn} never enter the invariant interval [q/r, p], then they all lie
in the interval [0, q/r]. Noticing that x1 ≤ q/r and pr ≥ pq + q hold, we get

x2 − x1 =
p − x1 + rx1−k

(
q/r − x1

) − x2
1

1 + x1 + rx1−k
≥ p − q/r − (

q/r
)2

1 + x1 + rx1−k
> 0, (6.3)

fromwhich it follows by induction that the sequence {xn} is increasing in the interval [0, q/r].
Hence, limn→∞xn exists and limn→∞xn ≤ q/r, which is a contradiction because (1.1) has no
equilibrium point in the interval [0, q/r].

The proof is complete.

Theorem 6.2. Assume that (3.9) holds. Then the positive equilibrium x is a global attractor of (1.1).
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Proof. The proof is finished by considering the following five cases.

Case 1 (when pr ≤ q). By Lemma 4.3(a) and Theorem 6.1(a), we know that (1.1) possesses an
invariant interval [0, q/r] and every solution of (1.1) eventually enters the interval [0, q/r].
Further, it is easy to see that f(u, v) decreases in u and increases in v in [0, q/r].

Finally observe that when (3.9) holds, the only solution of the system

p + qm

1 +M + rm
= m,

p + qM

1 +m + rM
= M, (6.4)

is m = M. Further, Lemma 5.1 implies that (1.1) has a unique equilibrium x ∈ [0, q/r].
Thus, in view of Lemma 1.6, every solution of (1.1) converges to x. So the unique positive
equilibrium x is a global attractor of (1.1).

Case 2 (when q < pr < q + q2/r). By Lemma 4.3(b) and Theorem 6.1(b), we know that
(1.1) possesses an invariant interval [(pr − q)/q, q/r] and every solution of (1.1) eventually
enters the interval [(pr − q)/q, q/r]. Further, it is easy to see that f(u, v) decreases in u and
increases in v in [(pr−q)/q, q/r]. Then using the same argument in Case 1, (1.1) has a unique
equilibrium x ∈ [(pr − q)/q, q/r] and every solution of (1.1) converges to x. So the unique
positive equilibrium x is a global attractor of (1.1).

Case 3 (when pr = q + q2/r). In view of part (c) of Theorem 5.6, we know that, after
the first semicycle, the nontrivial solution oscillates about x with semicycles of length one.
Considering the subsequences {x2n}∞n=0 and {x2n+1}∞n=0, we have

x2n >
q

r
, x2n+1 <

q

r
for n ≥ 0, (6.5)

or

x2n <
q

r
, x2n+1 >

q

r
for n ≥ 0. (6.6)

Let us consider Case 1. Case 2 can be handled in a similar way. In view of Theorem 4.1 and
Lemma 5.3, we know that {xn}∞n=−k is bounded and xn+1 = q/r if xn = q/r and

x1 < x3 < x5 < · · · < q

r
< · · · < x4 < x2 < x0. (6.7)

So limn→∞x2n and limn→∞x2n+1 exist.

Let

L = lim
n→∞

x2n, M = lim
n→∞

x2n+1, (6.8)

then L ≥ q/r,M ≤ q/r. If L/=M, then L,M is a period-two solution of (1.1). Furthermore,
the condition (3.9) holds. This contradicts Theorem 3.2. Thus L = M and limn→∞xn = q/r.
So x = q/r is a global attractor of (1.1).
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Case 4 (when q + q2/r < pr < pq + q). By Theorem 6.1(c), we know that every solution
of (1.1) eventually enters the interval [q/r, (pr − q)/q]. Furthermore, it is easy to see that
the function f(u, v) decreases in each of its arguments in the interval [q/r, (pr − q)/q]. Let
m,M ∈ [q/r, (pr − q)/q] is a solution of the system

p + qm

1 +m + rm
= M,

p + qM

1 +M + rM
= m, (6.9)

that is, the solution of the system

p + qm = M +mM + rmM, p + qM = m +mM + rmM. (6.10)

Then (m−M)(q+ 1) = 0, which implies thatm = M. Employing Lemma 1.7, we see that (1.1)
has a unique equilibrium x ∈ [q/r, (pr − q)/q] and every solution of (1.1) converges to x.
Thus the unique positive equilibrium x is a global attractor of (1.1).

Case 5. When pr ≥ pq+q. By Theorem 6.1(d), we know that every solution of (1.1) eventually
enters the interval [q/r, p]. Further, it is clear to see that the function f(u, v) decreases in each
of its arguments in the interval [q/r, p]. Then, using the same argument as in Case 4, (1.1) has
a unique equilibrium x ∈ [q/r, p] and every solution of (1.1) converges to x. Thus the unique
positive equilibrium x is a global attractor of (1.1).

The proof is complete.

In view of Theorems 3.1 and 6.2, we have the following result, which solves Open
Problem 1 when conditions (3.9) holds.

Theorem 6.3. Assumed that (3.9) holds. Then the positive equilibrium of (1.1) is globally
asymptotically stable.
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