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We consider the existence, multiplicity, and nonexistence of positive T -periodic solutions for the
difference equationsΔx(n)=a(n)g(x(n))x(n)−λb(n)f(x(n−τ(n))), andΔx(n)+a(n)g(x(n))x(n) =
λb(n)f(x(n − τ(n))), where a, b : � → [0,∞) are T -periodic, τ : � → � is T -periodic.

1. Introduction

In the recent years, there has been considerable interest in the existence of periodic solutions
of the following equation:

x′(t) = ã(t)g̃(x(t))x(t) − λ˜b(t) ˜f(x(t − τ(t))), (1.1)

where ã, ˜b ∈ C(�, [0,∞)) are ω-periodic functions,
∫ω

0 ã(t)dt > 0,
∫ω

0
˜b(t)dt > 0, τ is a con-

tinuous ω-periodic function. Equation (1.1) has been proposed as a model for a variety of
physiological processes and conditions including production of blood cells, respiration, and
cardiac arrhythmias. See, for example, [1–13] and the references therein.

Let � be the set of all integers. In the present paper, we study the existence of positive
T-periodic solutions of discrete analogues to (1.1) of the form

Δx(n) = a(n)g(x(n))x(n) − λb(n)f(x(n − τ(n))), n ∈ �, (1.2)

and the difference equation

Δx(n) + a(n)g(x(n))x(n) = λb(n)f(x(n − τ(n))), n ∈ �, (1.3)
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where � is the set of integer numbers, T ∈ � is a fixed integer, a, b : � → [0,+∞) are
T-periodic, a(n)/≡ 0, b(n)/≡ 0 on [0, T − 1] =: {0, 1, . . . , T − 1}, τ : � → � is T-periodic, and
f, g ∈ C([0,+∞), [0,+∞)), λ > 0 is a parameter.

So far, relatively little is known about the existence of positive periodic solutions of
(1.2) and (1.3). To our best knowledge, only Raffoul [14] dealt with the special equations of
(1.2) and (1.3) of the form

Δx(n) = α(n)x(n) − λb(n)f(x(n − τ(n))), (1.4)

with α(n) = a(n) − 1 > 0, and

Δx(n) + α(n)x(n) = λb(n)f(x(n − τ(n))), (1.5)

with α(n) = 1−a(n) > 0, and determining values of λ, for which there exist positive T-periodic
solutions of (1.4) and (1.5), respectively.

It is the purpose of this paper to study more general equations (1.2) and (1.3) and
generalize the main results of Raffoul [14]. We establish some existence, multiplicity, and
nonexistence results of positive periodic solutions for (1.2) and (1.3), respectively. The main
tools we will use are fixed point theorem in cones and fixed point index theory [15, 16].
Throughout this paper, we denote the product of y(n) from n = a to n = b by

∏b
n=ay(n) with

the understanding that
∏b

n=ay(n) = 1 for all a > b.
The rest of the paper is arranged as follows: in Section 2, we give some preliminary

results. Section 3 is devoted to generalize the main results of Raffoul [14]. Finally, in Section 4,
we state and prove some existence, multiplicity, and nonexistence results of positive periodic
solutions for (1.2) and (1.3). For related results on the associated differential equations, see
Wang [11].

2. Preliminaries

In this paper, we make the following assumptions.

(H1) a, b : � → [0,+∞) are T-periodic, and a(n)/≡ 0, b(n)/≡ 0 on n ∈ [0, T − 1], τ : � → �

is T-periodic.

(H2) f, g : [0,+∞) → [0,+∞) are continuous, 0 < l ≤ g(x) ≤ L < ∞ with l, L are positive
constants, and f(x) > 0, for x > 0. Also,

σl =
T−1
∏

s=0

(1 + a(s)l), σL =
T−1
∏

s=0

(1 + a(s)L), (2.1)

it is clear that 1 < σl ≤ σL. Let

M(r) = max
{

f(x) | 0 ≤ x ≤ r
}

, m(r) = min
{

f(x) | σl − 1
(σL − 1)σL

· r ≤ x ≤ r

}

. (2.2)

The following well-known result of fixed point index is crucial to our arguments.
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Lemma 2.1 (see [15, 16]). Let E be a Banach space, and let K be a cone in E. For r > 0, define
Kr = {u ∈ K : ‖u‖ < r}. Assume that T : Kr → K is completely continuous such that Tu/= u for
u ∈ ∂Kr = {u ∈ K : ‖u‖ = r}.

(i) If ‖Tu‖ ≥ ‖u‖ for u ∈ ∂Kr , then

i(T,Kr,K) = 0. (2.3)

(ii) If ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kr , then

i(T,Kr,K) = 1. (2.4)

LetX be the set of all real T-periodic sequences. This set, endowed with the maximum
norm ‖x‖ = maxn∈[0,T−1]|x(n)|, is a Banach space. The next lemma is essential in obtaining our
results.

Lemma 2.2. Assume that (H1)-(H2) hold. Then, x ∈ X is a solution of (1.2) if and only if

x(n) = λ
n+T−1
∑

u=n
Gx(n, u)b(u)f(x(u − τ(u))), n ∈ �, (2.5)

where

Gx(n, u) =
∏n+T−1

s=u+1
(

1 + a(s)g(x(s))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

, u ∈ [n, n + T − 1]. (2.6)

Proof. If x ∈ X and satisfies (2.5), then

x(n + 1) = λ
n+T
∑

u=n+1

Gx(n + 1, u)b(u)f(x(u − τ(u)))

= λ
n+T−1
∑

u=n+1

Gx(n + 1, u)b(u)f(x(u − τ(u)))

+ λGx(n + 1, n + T)b(n + T)f(x(n + T − τ(n + T)))

= λ
n+T−1
∑

u=n+1

Gx(n + 1, u)b(u)f(x(u − τ(u)))

+ λGx(n + 1, n + T)b(n)f(x(n − τ(n))),
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[

1 + a(n)g(x(n))
]

x(n) = λ
n+T−1
∑

u=n+1

[

1 + a(n)g(x(n))
]

Gx(n, u)b(u)f(x(u − τ(u)))

+ λ
[

1 + a(n)g(x(n))
]

Gx(n, n)b(n)f(x(n − τ(n))).

(2.7)

From (2.2), we know that

Gx(n + 1, n + T) =
∏n+T

s=n+T+1
(

1 + a(s)g(x(s))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

=
1

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

,

[

1 + a(n)g(x(n))
]

Gx(n, n) =
∏n+T−1

s=n
(

1 + a(s)g(x(s))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

=
∏T−1

s=0
(

1 + a(s)g(x(s))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

,

Gx(n + 1, u) =
∏n+T

s=u+1
(

1 + a(s)g(x(s))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

=
∏n+T−1

s=u+1
(

1 + a(s)g(x(s))
)(

1 + a(n + T)g(x(n + T))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

=
[

1 + a(n)g(x(n))
]

Gx(n, u).

(2.8)

So, by (2.7)-(2.8), we can conclude that

x(n + 1) − [

1 + a(n)g(x(n))
]

x(n) = −λb(n)f(x(n − τ(n))), (2.9)

thus, x is a T-periodic solutions of (1.2). On the other hand, if x ∈ X and satisfies (1.2), then
(1.2) is equivalent to

Δ

[

n−1
∏

s=−∞

(

1 + a(s)g(x(s))
)−1

x(n)

]

= −λb(n)f(x(n − τ(n)))
n

∏

s=−∞

[

1 + a(s)g(x(s))
]−1

, (2.10)

by summing the above equation from u = n to u = n + T − 1, we obtain (2.5).

Note that since a(n)/≡ 0 for n ∈ [0, T − 1] and 0 < l ≤ g(x) ≤ L < ∞, we have

1
σL − 1

≤ Gx(n, u) ≤ σL

σl − 1
, n ≤ u ≤ n + T − 1, (2.11)

and 0 < (σl − 1)/(σL − 1)σL < 1.
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Define K as a cone in X by

K =
{

x ∈ X : x(n) ≥ 0, n ∈ �, x(n) ≥ σl − 1
(σL − 1)σL

‖x‖
}

. (2.12)

Also, define, for r a positive number, Ωr by

Ωr = {x ∈ K : ‖x‖ < r}, (2.13)

note that ∂Ωr = {x ∈ K : ‖x‖ = r}.
Define Tλ : X → X by

Tλx(n) = λ
n+T−1
∑

u=n
Gx(n, u)b(u)f(x(u − τ(u))), n ∈ �, (2.14)

where Gx(n, u) is given by (2.6).

Lemma 2.3. Assume that (H1)-(H2) hold. Then, Tλ(K) ⊂ K and Tλ : K → K is compact and
continuous.

Proof. In the view of the definition of K, for x ∈ K, we have

(Tλx)(n + T) = λ
n+2T−1
∑

u=n+T

Gx(n + T, u)b(u)f(x(u − τ(u)))

= λ
n+T−1
∑

s=n
Gx(n + T, s + T)b(s + T)f(x(s + T − τ(s + T)))

= λ
n+T−1
∑

u=n
Gx(n + T, u + T)b(u)f(x(u − τ(u)))

= (Tλx)(n).

(2.15)

In fact,

Gx(n + T, u + T) =
∏n+2T−1

s=u+T+1
(

1 + a(s)g(x(s))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

=
∏n+T−1

s=u+1
(

1 + a(s)g(x(s))
)

∏T−1
s=0

(

1 + a(s)g(x(s))
) − 1

= Gx(n, u).

(2.16)
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So, Tλx ∈ X. One can show that for x ∈ K and n ∈ [0, T − 1],

(Tλx)(n) ≥ λ

σL − 1

n+T−1
∑

u=n
b(u)f(x(u − τ(u)))

=
σl − 1

(σL − 1)σL
· σL

σl − 1
· λ

n+T−1
∑

u=n
b(u)f(x(u − τ(u)))

≥ σl − 1
(σL − 1)σL

‖Tλx‖.

(2.17)

Thus, Tλ(K) ⊂ K, and it is easy to show that Tλ : K → K is compact and continuous.

Consequently, x ∈ K is a solution of (1.2) if and only if x is a fixed point of Tλ in K.

Lemma 2.4. Assume that (H1)-(H2) hold. Let η > 0, if x ∈ K and f(x(n)) ≥ x(n)η for n ∈ [0, T−1],
then

‖Tλx‖ ≥ λ
η(σl − 1)

(σL − 1)2σL

·
T−1
∑

u=0

b(u) · ‖x‖. (2.18)

Proof. Since x ∈ K and f(x(n)) ≥ x(n)η for n ∈ [0, T − 1], we have

(Tλx)(n) ≥ λ

σL − 1

n+T−1
∑

u=n
b(u)f(x(u − τ(u)))

=
λη

σL − 1
· σl − 1
(σL − 1)σL

T−1
∑

u=0

b(u) · ‖x‖

= λ
η(σl − 1)

(σL − 1)2σL

·
T−1
∑

u=0

b(u) · ‖x‖.

(2.19)

Thus,

‖Tλx‖ ≥ λ
η(σl − 1)

(σL − 1)2σL

·
T−1
∑

u=0

b(u) · ‖x‖. (2.20)

Lemma 2.5. Assume that (H1)-(H2) hold. Let r > 0, if x ∈ ∂Ωr , and there exists an ε > 0 such that
f(x(n)) ≤ x(n)ε for n ∈ [0, T − 1], then

‖Tλx‖ ≤ λε
σL

σl − 1
·
T−1
∑

u=0

b(u) · ‖x‖. (2.21)
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Proof. From the definition of Tλ, for x ∈ ∂Ωr , we have

‖Tλx‖ ≤ λ
σL

σl − 1
·
T−1
∑

u=0

b(u)f(x(u − τ(u)))

≤ λε
σL

σl − 1
·
T−1
∑

u=0

b(u) · ‖x‖.
(2.22)

The following two lemmas are weak forms of Lemmas 2.4 and 2.5.

Lemma 2.6. Assume that (H1)-(H2) hold. If x ∈ ∂Ωr , r > 0, then

‖Tλx‖ ≥ λ

∑T−1
u=0 b(u)
σL − 1

·m(r). (2.23)

Proof. Since f(x(n)) ≥ m(r) for n ∈ [0, T − 1], it is easy to see that this lemma can be achieved
in a similar manner as in Lemma 2.4.

Lemma 2.7. Assume that (H1)-(H2) hold. If x ∈ ∂Ωr , r > 0, then

‖Tλx‖ ≤ λ
σLM(r)
σl − 1

·
T−1
∑

u=0

b(u). (2.24)

Proof. Since f(x(n)) ≤ M(r) for n ∈ [0, T − 1], it is easy to see that this lemma can be obtained
in a similar manner as in Lemma 2.5.

3. Generalization of the Main Results in [14]

Let

f0 = lim
x→ 0+

f(x)
x

, f∞ = lim
x→∞

f(x)
x

. (3.1)

In this Section, we make the following assumptions.

(L1) f0 = ∞.

(L2) f∞ = ∞.

(L3) f0 = 0.

(L4) f∞ = 0.

(L5) f0 = mwith 0 < m < ∞.
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(L6) f0 = M with 0 < M < ∞. And let

A = max
0≤n≤T−1

T−1
∑

u=0

Gx(n, u)b(u),

B = min
0≤n≤T−1

T−1
∑

u=0

Gx(n, u)b(u).

(3.2)

Theorem 3.1. Assume that (H1), (H2), (L5), and (L6) hold. Then, for each λ satisfying

σL(σL − 1)
σl − 1

· 1
BM

< λ <
1

Am
, (3.3)

or

σL(σL − 1)
σl − 1

· 1
Bm

< λ <
1

AM
, (3.4)

equation (1.2) has at least one positive T-periodic solutions.

Proof. Using the same method to prove[14, Theorem 2.3]with obvious changes, we can prove
Theorem 3.1. The process of the proof is omitted.

Theorem 3.2. Assume that (H1) and (H2) hold. If (L1) and (L4) hold, or (L2) and (L3) hold, then
(1.2) has at least one positive T-periodic solution for any λ > 0.

Proof. The proof is similar to arguments to prove [14, Theorem 2.4].

The next two corollaries are consequences of the previous two theorems.

Corollary 3.3. Assume that (H1) and (H2) hold. If (L1) and (L6) hold, or (L2) and (L5) hold, then
(1.2) has at least one positive T-periodic solution if λ satisfies either 0 < λ < 1/ AM or 0 < λ <
1/Am.

Corollary 3.4. Assume that (H1) and (H2) hold. Also, if (L3) and (L6) hold, or (L4) and (L5) hold,
then (1.2) has at least one positive T-periodic solution if λ satisfies either σL(σL − 1)/(σl − 1) ·
(1/BM) < λ < ∞ or σL(σL − 1)/(σl − 1) · (1/Bm) < λ < ∞.

4. Existence, Multiplicity, and Nonexistence Results of
Positive Periodic Solution(s) for (1.2) and (1.3)

In this section, we use the notations

i0 = number of zeros in the set
{

f0, f∞
}

,

i∞ = number of infinities in the set
{

f0, f∞
}

.
(4.1)
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It is clear that i0, i∞ = 0, 1 or 2. Then, we will show that (1.2) has i0 or i∞ positive T-periodic
solution(s) for sufficiently large or small λ.

Theorem 4.1. Assume that (H1)-(H2) hold.

(a) If i0 = 1 or 2, then (1.2) has i0 positive T-periodic solutions for λ > (σL − 1)/
m(1)

∑T−1
u=0 b(u) > 0.

(b) If i∞ = 1 or 2, then (1.2) has i∞ positive T-periodic solutions for 0 < λ < (σl − 1)/
σLM(1)

∑T−1
u=0 b(u).

(c) If i0 = 0 or i∞ = 0, then (1.2) has no positive T-periodic solution for sufficiently large or
small λ > 0, respectively.

Proof. (a) Choose r1 = 1. By Lemma 2.6, we infer that there exists a λ0 = (σL − 1)/
m(r1)

∑T−1
u=0 b(u) > 0, such that

‖Tλx‖ > ‖x‖ for x ∈ ∂Ωr1 , λ > λ0. (4.2)

If f0 = 0, we can choose 0 < r2 < r1 so that f(x) ≤ εx for 0 ≤ x ≤ r2, where the constant
ε > 0 satisfies

λε
σL

∑T−1
u=0 b(u)

σl − 1
< 1. (4.3)

Thus, f(x(n)) ≤ εx(n) for x ∈ ∂Ωr2 and n ∈ [0, T − 1]. We have by Lemma 2.5 that

‖Tλx‖ ≤ λε
σL

∑T−1
u=0 b(u)

σl − 1
‖x‖ < ‖x‖ for x ∈ ∂Ωr2 . (4.4)

It follows from Lemma 2.1 that

i(Tλ,Ωr1 , K) = 0, i(Tλ,Ωr2 , K) = 1. (4.5)

Thus, i(Tλ,Ωr1\Ωr2 , K) = −1 and Tλ has a fixed point inΩr1\Ωr2 , which is a positive T-periodic
solution of (1.2) for λ > λ0.

If f∞ = 0, there is an ̂H > 0 such that f(x) ≤ εx for x ≥ ̂H, where ε > 0 satisfies (4.3). Let
r3 = max{2r1,̂H/((σl−1)/σL(σL−1))}, and it follows that x(n) ≥ ((σl−1)/σL(σL−1))‖x‖ ≥ ̂H
for x ∈ ∂Ωr3 and n ∈ [0, T − 1]. Thus, f(x(n)) ≤ εx(n) for x ∈ ∂Ωr3 and n ∈ [0, T − 1]. In view
of Lemma 2.5, we have

‖Tλx‖ ≤ λε
σL

∑T−1
u=0 b(u)

σl − 1
‖x‖ < ‖x‖ for x ∈ ∂Ωr3 . (4.6)

Again, it follows from Lemma 2.1 that

i(Tλ,Ωr1 , K) = 0, i(Tλ,Ωr3 , K) = 1. (4.7)
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Thus, i(Tλ,Ωr3 \Ωr1 , K) = 1 and (1.2) has a positive T-periodic solution for λ > λ0.
If f0 = f∞ = 0, it is easy to see from the above proof that Tλ has a fixed point x1 in

Ωr1 \Ωr2 and a fixed point x2 in Ωr3 \Ωr1 such that

r2 < ‖x1‖ < r1 < ‖x2‖ < r3. (4.8)

Consequently, (1.2) has two positive T-periodic solutions for λ > λ0 if f0 = f∞ = 0.
(b) Choose r1 = 1. By Lemma 2.7, we infer that there exists

λ0 =
σl − 1

σLM(r1)
∑T−1

u=0 b(u)
> 0, (4.9)

such that

‖Tλx‖ < ‖x‖ for x ∈ ∂Ωr1 , 0 < λ < λ0. (4.10)

If f0 = ∞, there is a positive number r2 < r1 such that f(x) ≥ ηx for 0 ≤ x ≤ r2, where η > 0 is
chosen so that

λ
η(σl − 1)

(σL − 1)2σL

T−1
∑

u=0

b(u) > 1. (4.11)

Then,

f(x(n)) ≥ ηx(n) for x ∈ ∂Ωr2 , n ∈ [0, T − 1]. (4.12)

By Lemma 2.4, we have that

‖Tλx‖ ≥ λη
(σl − 1)

(σL − 1)2σL

T−1
∑

u=0

b(u) · ‖x‖ > ‖x‖ for x ∈ ∂Ωr2 . (4.13)

It follows from Lemma 2.1 that

i(Tλ,Ωr1 , K) = 1, i(Tλ,Ωr2 , K) = 0. (4.14)

Thus, i(Tλ,Ωr1 \ Ωr2 , K) = 1 and Tλ has a fixed point in Ωr1 \ Ωr2 for 0 < λ < λ0, which is a
positive T-periodic solution of (1.2).

If f∞ = ∞, there is an ̂H > 0 such that f(x) ≥ ηx for x ≥ ̂H, where η > 0 satisfies (4.11).
Let r3 = max{2r1,̂H/((σl − 1)/σL(σL − 1))}. If x ∈ ∂Ωr3 , then

x(n) ≥ σl − 1
σL(σL − 1)

‖x‖ ≥ ̂H, (4.15)
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and hence,

f(x(n)) ≥ ηx(n) for n ∈ [0, T − 1]. (4.16)

Again, it follows from Lemma 2.4 that

‖Tλx‖ ≥ λ
η(σl − 1)

(σL − 1)2σL

T−1
∑

u=0

b(u)‖x‖ > ‖x‖ for x ∈ ∂Ωr3 . (4.17)

It follows from Lemma 2.1 that

i(Tλ,Ωr1 , K) = 1, i(Tλ,Ωr3 , K) = 0, (4.18)

and hence, i(Tλ,Ωr3 \Ωr1 , K) = −1. Thus, Tλ has a fixed point in Ωr3\Ωr1 for 0 < λ < λ0, which
is a positive T-periodic solution of (1.2).

If f0 = f∞ = ∞, it is easy to see from the above proof that Tλ has a fixed point x1 in
Ωr1\Ωr2 and a fixed point x2 in Ωr3\Ωr1 such that

r2 < ‖x1‖ < r1 < ‖x2‖ < r3. (4.19)

Consequently, (1.2) has two positive T-periodic solutions for 0 < λ < λ0 if f0 = f∞ = ∞.
(c) If i0 = 0, then f0 > 0 and f∞ > 0. It follows that there exist positive numbers η1, η2,

r1 and r2, such that r1 < r2 and

f(x) ≥ η1x for x ∈ [0, r1],

f(x) ≥ η2x for x ∈ [r2,∞).
(4.20)

Let c1 = min{η1, η2,minr1≤x≤r2{f(x)/x}} > 0. Thus, we have

f(x) ≥ c1x for x ∈ [0,∞). (4.21)

Assume v is a positive T-periodic solution of (1.2). We will show that this leads to a
contradiction for λ > λ0, where λ0 = (σL − 1)2σL/c1(σl − 1)

∑T−1
u=0 b(u). Since Tλv(n) = v(n)

for n ∈ [0, T − 1], it follows from Lemma 2.4 that for λ > λ0,

‖v‖ = ‖Tλv‖ ≥ λ
(σl − 1)

∑T−1
u=0 b(u)

(σL − 1)2σL

c1‖v‖ > ‖v‖, (4.22)

which is a contradiction.



12 Discrete Dynamics in Nature and Society

If i∞ = 0, then f0 < ∞ and f∞ < ∞. It follows that there exist positive numbers ε1, ε2, r1
and r2 such that r1 < r2,

f(x) ≤ ε1x for x ∈ [0, r1],

f(x) ≤ ε2x for x ∈ [r2,∞).
(4.23)

Let c2 = max{ε1, ε2,maxr1≤x≤r2{f(x)/x}} > 0. Thus, we have

f(x) ≤ c2x for x ∈ [0,∞). (4.24)

Assume v is a positive T-periodic solution of (1.2). We will show that this leads to a
contradiction for 0 < λ < λ0, where λ0 = (σl − 1)/c2σL

∑T−1
u=0 b(u). Since Tλv(n) = v(n) for

n ∈ [0, T − 1], it follows from Lemma 2.5 that for 0 < λ < λ0,

‖v‖ = ‖Tλv‖ ≤ λ
σL

∑T−1
u=0 b(u)

σl − 1
c2‖v‖ < ‖v‖, (4.25)

which is a contradiction.

The following result is a direct consequence of Theorem 4.1(c).

Corollary 4.2. Assume that (H1)-(H2) hold.

(a) If there exists a c1 > 0 such that f(x) ≥ c1x for x ∈ [0,∞), then there is a λ0 =
(σL − 1)2σL/c1(σl − 1)

∑T−1
u=0 b(u) such that for all λ > λ0, (1.2) has no positive T-periodic

solutions.

(b) If there exists a c2 > 0 such that f(x) ≤ c2x for x ∈ [0,∞), then there is a λ0 =
(σl − 1)/c2σL

∑T−1
u=0 b(u) such that for all 0 < λ < λ0, (1.2) has no positive T-periodic

solutions.

Theorem 4.3. Assume that (H1)-(H2) hold and i0 = i∞ = 0. If

(σL − 1)2σL

(σl − 1)
∑T−1

u=0 b(u)
· 1
max

{

f0, f∞
} < λ <

σl − 1

σL
∑T−1

u=0 b(u)
· 1
min

{

f0, f∞
} , (4.26)

then (1.2) has a positive T-periodic solutions.

Proof. If f∞ > f0, then (σL−1)2σL/(σl −1)
∑T−1

u=0 b(u)f∞ < λ < (σl−1)/σL
∑T−1

u=0 b(u)f0. It is easy
to see that there exists ε : 0 < ε < f∞ such that

(σL − 1)2σL

(σl − 1)
∑T−1

u=0 b(u)
(

f∞ − ε
)
< λ <

σl − 1

σL
∑T−1

u=0 b(u)
(

f0 + ε
)
. (4.27)
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Now, turning to f0 and f∞, there is an r1 > 0, such that f(x) ≤ (f0 + ε)x for 0 ≤ x ≤ r1. Thus,
f(x(n)) ≤ (f0 + ε)x(n) for x ∈ ∂Ωr1 and n ∈ [0, T − 1]. We have by Lemma 2.5 that

‖Tλu‖ ≤ λ
(

f0 + ε
)σL

∑T−1
u=0 b(u)

σl − 1
‖x‖ < ‖x‖ for x ∈ ∂Ωr1 . (4.28)

On the other hand, there is an ̂H > r1 such that f(x) ≥ (f∞ − ε)x for x ≥ ̂H. Let r2 =
max{2r1,̂H/((σl − 1)/σL(σL − 1))}, and it follows that x(n) ≥ ((σl − 1)/σL(σL − 1))‖x‖ ≥ ̂H for
x ∈ ∂Ωr2 and n ∈ [0, T − 1]. In view of Lemma 2.4, we have

‖Tλu‖ ≥ λ
(

f∞ − ε
) (σl − 1)

∑T−1
u=0 b(u)

(σL − 1)2σL

‖x‖ > ‖x‖ for x ∈ ∂Ωr2 . (4.29)

It follows from Lemma 2.1 that

i(Tλ,Ωr1 , K) = 1, i(Tλ,Ωr2 , K) = 0. (4.30)

Thus, i(Tλ,Ωr2 \Ωr1 , K) = −1. Hence, Tλ has a fixed point in Ωr2 \Ωr1 . Consequently, (1.2) has
a positive T-periodic solution.

If f∞ < f0, then (σL − 1)2σL/(σl − 1)
∑T−1

u=0 b(u)f0 < λ < (σl − 1)/σL
∑T−1

u=0 b(u)f∞. It is
easy to see that there exists an ε : 0 < ε < f0 such that

(σL − 1)2σL

(σl − 1)
∑T−1

u=0 b(u)
(

f0 − ε
)
< λ <

σl − 1

σL
∑T−1

u=0 b(u)
(

f∞ + ε
)
. (4.31)

Now, turning to f0 and f∞, there is an r1 > 0 such that f(x) ≥ (f0 − ε)x for 0 ≤ x ≤ r1. Thus,
f(x(n)) ≥ (f0 − ε)x(n) for x ∈ ∂Ωr1 and n ∈ [0, T − 1]. We have by Lemma 2.4 that

‖Tλu‖ ≥ λ
(

f0 − ε
)(σl − 1)

∑T−1
u=0 b(u)

(σL − 1)2σL

‖x‖ > ‖x‖ for x ∈ ∂Ωr1 . (4.32)

On the other hand, there is an ̂H > r1 such that f(x) ≤ (f∞ + ε)x for x ≥ ̂H. Let r2 =
max{2r1,̂H/((σl − 1)/σL(σL − 1))}, and it follows that x(n) ≥ ((σl − 1)/σL(σL − 1))‖x‖ ≥ ̂H
for x ∈ ∂Ωr2 and n ∈ [0, T − 1]. Thus, f(x(n)) ≤ (f∞ + ε)x(n) for x ∈ ∂Ωr2 and n ∈ [0, T − 1].
In view of Lemma 2.5, we have

‖Tλu‖ ≤ λ
(

f∞ + ε
)σL

∑T−1
u=0 b(u)

σl − 1
‖x‖ < ‖x‖ for x ∈ ∂Ωr2 . (4.33)

It follows from Lemma 2.1 that

i(Tλ,Ωr1 , K) = 0, i(Tλ,Ωr2 , K) = 1. (4.34)
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Thus, i(Tλ,Ωr2 \ Ωr1 , K) = 1. Hence, Tλ has a fixed point in Ωr2 \Ωr1 . Consequently, (1.2) has
a positive T-periodic solution.

Next, we pay our attention to (1.3), that is

x(n + 1) =
[

1 − a(n)g(x(n))
]

x(n) + λb(n)f(x(n − τ(n))), n ∈ �, (4.35)

where λ, a, b, f(x), and g(x) satisfy the same assumptions stated for (1.2) except that 0 ≤
la(n) ≤ La(n) < 1 for all n ∈ [0, T − 1]. In view of (1.3), we have that

x(n) = λ
n+T−1
∑

u=n
Kx(n, u)b(u)f(x(u − τ(u))), (4.36)

where

Kx(n, u) =
∏n+T−1

s=u+1
(

1 − a(s)g(x(s))
)

1 −∏T−1
s=0

(

1 − a(s)g(x(s))
)
, u ∈ [n, n + T − 1]. (4.37)

Note that since 0 ≤ la(n) ≤ La(n) < 1 for all n ∈ [0, T − 1], we have

ρL

1 − ρL
≤ Kx(n, u) ≤ 1

1 − ρl
, n ≤ u ≤ n + T − 1, (4.38)

here

ρl =
T−1
∏

s=0
(1 − a(s)l), ρL =

T−1
∏

s=0
(1 − a(s)L), (4.39)

and 0 < ρL(1 − ρl)/(1 − ρL) < 1.
Similarly, we can get the following theorems.

Theorem 4.4. Assume that (H1)-(H2) hold and 0 ≤ la(n) ≤ La(n) < 1 for n ∈ [0, T − 1].

(a) If i0 = 1 or 2, then (1.3) has i0 positive T-periodic solutions for λ > (1 − ρL)/
ρLm(1)

∑T−1
u=0 b(u) > 0.

(b) If i∞ = 1 or 2, then (1.3) has i∞ positive T-periodic solutions for 0 < λ < (1 − ρl)/
M(1)

∑T−1
u=0 b(u).

(c) If i0 = 0 or i∞ = 0, then (1.3) has no positive T-periodic solution for sufficiently large or
small λ > 0, respectively.

The following result is a direct consequence of Theorem 4.4(c).

Corollary 4.5. Assume that (H1)-(H2) hold and 0 ≤ la(n) ≤ La(n) < 1 for n ∈ [0, T − 1].

(a) If there exists a c1 > 0 such that f(x) ≥ c1x for x ∈ [0,∞), then there is a λ0 =
((1 − ρL)/ρL)

2 · (1/c1(1 − ρl)
∑T−1

u=0 b(u)) such that for all λ > λ0 (1.3) has no positive
T-periodic solutions.
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(b) If there exists a c2 > 0 such that f(x) ≤ c2x for x ∈ [0,∞), then there is a λ0 =
(1−ρl)/c2

∑T−1
u=0 b(u) such that for all 0 < λ < λ0 (1.3) has no positive T-periodic solutions.

Theorem 4.6. Assume that (H1)-(H2) hold and i0 = i∞ = 0. Let 0 ≤ la(n) ≤ La(n) < 1 for
n ∈ [0, T − 1]. If

(1 − ρL

ρL

)2

· 1
(

1 − ρl
)∑T−1

u=0 b(u)
· 1
max

{

f0, f∞
} < λ <

1 − ρl
∑T−1

u=0 b(u)
· 1
min

{

f0, f∞
} , (4.40)

then (1.3) has a positive T-periodic solution.
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