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We investigate the infinite boundary value problems for second-order impulsive differential
equations with supremum by establishing a new comparison result and using the lower and upper
solution method, and obtain the existence results for their maximal and minimal solutions.

1. Introduction

Differential equations with supremum are used modelling different real processes, and
have been receiving much attention in recent years (see [1, 2]). In the theory of automatic
regulation, for example, they are used in describing the system for regulation of the voltage
of generator with constant current: T0u′(t) + u(t) + qmaxs∈[t−h,t]u(s) = f(t) (see [1]). If the
equation is impulsive, periodic boundary value problem for first-order differential equation
with supremum on finite domain was studied in [2], and on infinite domain, infinite
boundary value problem for the same equation was investigated in [3]. Such equations with
supremum are about first-order in the previous literature [1–3], but little is about second-
order. Motivated by [2–5], we discuss in this paper the existence of maximal and minimal
solutions of the system (IBVP):

x′′(t) = f

(
t, x(t), x′(t), sup

s∈[t−h,t]
x′(s)

)
, t /= tk, t ∈ J, k = 1, 2, . . . ,

Δx|t=tk = akx
′(tk), k = 1, 2, . . . ,

Δx′∣∣
t=tk

= Ĩk
(
x(tk), x′(tk)

)
, k = 1, 2, . . . ,

x(0) = x0, x′(0) = x′(∞), x′(t) = x′(0), t ∈ [−h, 0],

(1.1)
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where J = [0,+∞); f ∈ C[J × R × R × R,R]; ak, h ∈ R+, Ĩk ∈ C[R × R,R], 0 < t1 < t2 <
· · · < tk < · · · < +∞, and tk → +∞ as k → +∞, k = 1, 2, . . . ;x0 ∈ R and

∑∞
k=1 ak is convergent,

x′(∞) = limt→+∞x′(t);Δx|t=tk = x(t+
k
)−x(t−

k
) denotes the jump of x(t) at t = tk, where x(t+

k
) and

x(t−k) resent the right-hand and left-hand limit of x(t) at t = tk, respectively.Δx′|t=tk has similar
meaning for x′(t). Denote J0 = [0, t1], J1 = (t1, t2], . . . , Jk = (tk, tk+1] . . . , J ′ = J\{t1, t2, . . . , tk . . .},
Jh = [−h,+∞).

Let PC[Jh, R] = {x : Jh → R | x(t) = x(0), for t ∈ [−h, 0]; x(t) is continuous at t ∈ J ′,
left continuous at t = tk, and each x(t+

k
) exists, for k = 1, 2, . . .}, PC1[Jh, R] = {x : Jh → R |

x′(t) = x′(0), for t ∈ [−h, 0]; x′(t) is continuous at t /= tk, x(t−k), x(t
+
k), x

′(t+k) and x′(t−k) exist, and
x(t−

k
) = x(tk), k = 1, 2, . . .}, BPC[Jh, R] = {x ∈ PC[Jh, R]|supt∈J‖x(t)‖ < +∞}, TPC[Jh, R] =

{x ∈ BPC[Jh, R] | limt→+∞x(t) = x(∞) exists}, BPC1[Jh, R] = {x ∈ PC1[Jh, R]|supt∈J‖x′(t)‖ <

+∞}, and TPC1[Jh, R] = {x ∈ BPC1[Jh, R] | limt→+∞x′(t) = x′(∞) exists}.
We get from [4] that x′−(tk) = x′(t−k). In the following, x′(tk) is understood as x′−(tk).

Evidently, BPC[Jh, R] equipped with the norm ‖x‖B = supt∈J‖x(t)‖ is a Banach space and
TPC[Jh, R] ⊂ BPC[Jh, R].

We say x ∈ TPC1[Jh, R] ∩ C2[J ′, R] is a solution of IBVP(1.1), if it is satisfies (1.1).
In Section 2, we prove the existence result of minimal and maximal solutions for

first-order impulsive differential equations which nonlinearly involve the operator B, that
is, Theorem 2.5. In special case of IBVP(2.1) where f = f(t, u(t), sups∈[t−h,t]u(s)) and

Ĩk = Ĩk(u(tk)), the infinite boundary value problems for first-order impulsive differential
equations were studied in [3]. In Section 3, by applying Theorem 2.5, the main result
(Theorem 3.1) of this paper is obtained, that is the existence theorem of minimal andmaximal
solutions of IBVP(1.1).

2. Result for First-Order Impulsive Differential Equation with
Nonlinear Operator Terms

Consider the existence of solutions for the following first-order impulsive differential
equations:

y′(t) = f

(
t,
(
By

)
(t), y(t), sup

s∈[t−h,t]
y(s)

)
, t ∈ J, t /= tk,

Δy
∣∣
t=tk

= Ĩk
((
By

)
(tk), y(tk)

)
, k = 1, 2, . . . ,

y(0) = y(∞), y(t) = y(0), t ∈ [−h, 0],

(2.1)

where f, Ĩk (k = 1, 2, . . .) are the same as IBVP (1.1), and (By)(t) = x0 +
∫ t
0 y(s)ds +∑

0<tk<t aky(tk).
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Lemma 2.1 (Comparison Result). Let x ∈ TPC[Jh, R]∩C1[J ′, R]. Assume that there exist a, b, c ∈
C[J, R+] ∩ L1(J), ta ∈ L1(J), b /≡ 0, constants Lk ≥ 0, k = 1, 2, . . . , and

∑∞
k=1 Lk < ∞ such that

x′(t) ≥ −a(t)(Dx)(t) − b(t)x(t) − c(t) sup
s∈[t−h,t]

x(s), t ∈ J, t /= tk,

Δx|t=tk ≥ −Lkx(tk), k = 1, 2, . . . ,

x(0) ≥ x(∞), x(t) = x(0), t ∈ [−h, 0].

(2.2)

Then x(t) ≥ 0 for t ∈ Jh provided that

e
∫∞
0 b(τ)dτ

{∫∞

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

∞∑
k=1

Lk

}
≤ 1, (2.3)

where (Dx)(t) =
∫ t
0 x(s)ds +

∑
0<tk<t akx(tk).

Proof. Set m(t) = x(t)e
∫ t
0 b(τ)dτ , then we have from (2.2) that

m′(t) ≥ −a(t)e
∫ t
0 b(τ)dτ

[∫ t

0
m(s)e−

∫s
0 b(τ)dτds +

∑
0<tk<t

akm(tk)e−
∫ tk
0 b(τ)dτ

]

− c(t)e
∫ t
0 b(τ)dτ sup

s∈[t−h,t]
m(s)e−

∫s
0 b(τ)dτ , t ∈ J, t /= tk,

Δm|t=tk ≥ −Lkm(tk), k = 1, 2, . . . ,

m(0) ≥ m(∞)e−
∫∞
0 b(τ)dτ , m(t) = m(0)e

∫ t
0 b(τ)dτ , t ∈ [−h, 0].

(2.4)

We claim that m(t) ≥ 0 for t ∈ J, moreover m(t) ≥ 0 for t ∈ Jh. Otherwise, we will
consider two cases.

Case 1. m(t) ≤ 0 for t ∈ J, and there exists t∗1 ∈ J such that m(t∗1) < 0.

Case 2. there exist t∗1, t
∗
2 ∈ J such that m(t∗1) < 0, m(t∗2) > 0.

In Case 1, we see from (2.4) that m′(t) ≥ 0 for t ∈ J , t /= tk. On the other hand m(t+
k
) =

m(tk) + Δm|t=tk ≥ m(tk), thus m(t) is increasing on J , and m(0) ≤ m(t∗1) < 0, m(0) ≤ m(∞) ≤
m(0)e

∫∞
0 b(τ)dτ .Hence e

∫∞
0 b(τ)dτ ≤ 1, which is a contradiction.

In Case 2, denote supt∈Jm(t) = λ, then λ > 0, and it is clear that supt∈Jhm(t) =
supt∈Jm(t) = λ. Then we have either that (a): there exists some Ji such that m(t∗0) = λ for
some t∗0 ∈ Ji, or m(t+i ) = λ, or that (b) : m(∞) = λ.



4 Discrete Dynamics in Nature and Society

In subcase (a), we only discuss the case of m(t∗0) = λ for t∗0 ∈ Ji, since the discussion of
the case of m(t+i ) = λ is similar.

If there exists some Ji such that m(t∗0) = λ for t∗0 ∈ Ji, then we have from (2.4) that for
t ∈ J , t /= tk,

m′(t) ≥ λe
∫ t
0 b(τ)dτ

[
−c(t) − a(t)

(
t +

∞∑
k=1

ak

)]
. (2.5)

For any integer l ≥ i, the calculus fundamental principle implies that

m(tl+1) −m
(
t∗0
)
=
∫ tl+1

t∗0

m′(t)dt +
l∑

k=i+1

Δm|t=tk

≥ −λ
∫ tl+1

t∗0

e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt − λ

l∑
k=i+1

Lk.

(2.6)

Let l → +∞,we have

m(∞) − λ ≥ −λ
∫∞

t∗0

e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt − λ

∞∑
k=i+1

Lk. (2.7)

This means that

m(∞) ≥ λ

{
1 −

∫∞

t∗0

e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt −

∞∑
k=i+1

Lk

}
. (2.8)

From (2.3), we have m(∞) ≥ 0 and m(0) ≥ m(∞)e−
∫∞
0 b(τ)dτ ≥ 0. Therefore 0 < t∗1 < +∞.

Without loss of generality, we assume that t∗1 ∈ Jj .
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If t∗0 < t∗1, then i ≤ j. Hence using the same method as is used above, we have

−λ > m
(
t∗1
) −m

(
t∗0
) ≥ −λ

{∫ t∗1

t∗0

e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

j∑
k=i+1

Lk

}

≥ −λ
{∫∞

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

∞∑
k=1

Lk

}
,

(2.9)

hence,

∫∞

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

∞∑
k=1

Lk > 1, (2.10)

which is a contradiction to (2.3).
If t∗0 > t∗1, then i ≥ j. Similar argument shows that

−m(0) > m
(
t∗1
) −m(0) ≥ −λ

{∫ t∗1

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

j∑
k=1

Lk

}
, (2.11)

which, noticing m(0) ≥ m(∞)e−
∫∞
0 b(τ)dτ , implies that

−m(∞) > −λe
∫∞
0 b(τ)dτ

{∫ t∗1

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

j∑
k=1

Lk

}
. (2.12)

Adding (2.8) and (2.12), we show that

1 <

∫∞

t∗0

e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt

+
∞∑

k=i+1

Lk + e
∫∞
0 b(τ)dτ

{∫ t∗1

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

j∑
k=1

Lk

}

< e
∫∞
0 b(τ)dτ

{∫∞

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

∞∑
k=1

Lk

}
,

(2.13)

which also contradicts (2.3).
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In subcase (b),m(∞) = λ, then it follows from (2.12) that

−λ > −λe
∫∞
0 b(τ)dτ

{∫∞

0
e
∫ t
0 b(τ)dτ

[
c(t) + a(t)

(
t +

∞∑
k=1

ak

)]
dt +

∞∑
k=1

Lk

}
. (2.14)

This also leads to a contradiction with (2.3).
Therefore, the Case 2 is also impossible. Then, we conclude that m(t) ≥ 0 on Jh, and

hence x(t) ≥ 0 on Jh. The proof is complete.

We first consider the following linear impulsive differential equations:

y′(t) = f

(
t, Bη(t), η(t), sup

s∈[t−h,t]
η(s)

)
− a(t)

((
By

)
(t) − (

Bη
)
(t)

)

− b(t)
(
y(t) − η(t)

) − c(t)

(
sup

s∈[t−h,t]
y(s) − sup

s∈[t−h,t]
η(s)

)
, t ∈ J, t /= tk,

Δy
∣∣
t=tk

= Ĩk
((
Bη

)
(tk), η(tk)

) − Lk

(
y(tk) − η(tk)

)
, k = 1, 2, . . . ,

y(0) = y(∞), y(t) = y(0), t ∈ [−h, 0].

(2.15)

Let us list some conditions for convenience.

(H1) There exist p, q, l ∈ C[J, R+] ∩ L1(J), tp ∈ L1(J), such that

∣∣f(t, u, v,w)
∣∣ ≤ p(t)|u| + q(t)|v| + l(t)|w|, u, v,w ∈ R, t ∈ J. (2.16)

(H2) There exist L̃k ≥ 0, k = 1, 2, . . . , such that
∑∞

k=1 L̃k is convergent and

|Ik(u, v)| ≤ L̃k|v|, u, v ∈ R, ∀t ∈ J, k = 1, 2, . . . . (2.17)

Lemma 2.2. Let a, b, c, ta ∈ C[J, R+] ∩ L1(J), b /≡ 0, Lk ≥ 0, k = 1, 2, . . . , with
∑∞

k=1 Lk <
∞, and assume also that conditions (H1) and (H2) hold. Then for any η ∈ BPC[Jh, R],
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y ∈ TPC[Jh, R] ∩ C1[J ′, R] is a solution of the linear impulsive differential equations (2.15) if and
only if y ∈ BPC[Jh, R] is a solution of the following impulsive integral equation:

y(t) = e−
∫ t
0 b(τ)dτ

×
{(

e
∫∞
0 b(τ)dτ − 1

)−1
[∫∞

0
e
∫ s
0 b(τ)dτ

[
f

(
s, Bη(s), η(s), sup

r∈[s−h,s]
η(r)

)

− a(s)
((
By

)
(s) − (

Bη
)
(s)

)
+ b(s)η(s)

− c(s)

(
sup

r∈[s−h,s]
y(r) − sup

r∈[s−h,s]
η(r)

)]
ds

+
∞∑
k=1

e
∫ tk
0 b(τ)dτ

[
Ĩk
((
Bη

)
(tk), η(tk)

) − Lk

(
y(tk) − η(tk)

)]]

+
∫ t

0
e
∫s
0 b(τ)dτ

[
f

(
s, Bη(s), η(s), sup

r∈[s−h,s]
η(r)

)
− a(s)

((
By

)
(r) − (

Bη
)
(r)

)

+b(s)η(s) − c(s)

(
sup

r∈[s−h,s]
y(r) − sup

r∈[s−h,s]
η(r)

)]
ds

}

+
∑

0<tk<t

e
∫ tk
t b(τ)dτ

[
Ĩk
((
Bη

)
(tk), η(tk)

) − Lk

(
y(tk) − η(tk)

)]
, ∀t ∈ J,

(2.18)

with the initial condition y(t) = y(0), for t ∈ [−h, 0].

Proof. By the definition of B, we have |Bη(s)| ≤ |x0| + (s +
∑∞

k=1 ak)‖η‖B. Together with (H1),
(H2), we have

∣∣∣∣∣f
(
s, Bη(s), η(s), sup

r∈[s−h,s]
η(r)

)
− a(s)

((
By

)
(s) − (

Bη
)
(s)

)

+ b(s)η(s) − c(s)

(
sup

r∈[s−h,s]
y(r) − sup

r∈[s−h,s]
η(r)

)∣∣∣∣∣
≤
[
p(s)

(
s +

∞∑
k=1

ak

)
+ q(s) + l(s) + a(s)

(
s +

∞∑
k=1

ak

)
+ b(s) + c(s)

]∥∥η∥∥B

+

[
c(s) + a(s)

(
s +

∞∑
k=1

ak

)]∥∥y∥∥B +
(
p(s) + 2a(s)

)|x0| =: M(s),

∣∣∣Ĩk((Bη)(tk), η(tk)) − Lk

(
y(tk) − η(tk)

)∣∣∣ ≤ (
L̃k + Lk

)∥∥η∥∥B + Lk

∥∥y∥∥B =: Nk,

(2.19)
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which, noticing M(s) ∈ L1(J) and
∑∞

k=1 Nk < ∞, implies that the right hand of (2.18) is
well defined. Moreover, we show by direct computation that y ∈ TPC[Jh, R] ∩ C1[J ′, R] is a
solution of (2.15).

We next prove the uniqueness of solution. Let y1, y2 be any two solutions of (2.15), and
y = y1 − y2, then we have

y′(t) = y′
1(t) − y′

2(t) = −a(t)(Dy
)
(t) − b(t)y(t) − c(t) sup

s∈[t−h,t]
y(s), t ∈ J, t /= tk,

Δy
∣∣
t=tk

= −Lky(tk), k = 1, 2, . . . ,

y(0) = y(∞), y(t) = y(0), t ∈ [−h, 0].

(2.20)

Hence Lemma 2.1 implies that y ≥ 0, that is, y1 ≥ y2. Similar argument shows that y1 ≤ y2.
Therefore y1 = y2.We complete the proof.

Lemma 2.3. Let (H1) and (H2) be satisfied. Assume further that

g =
1

e
∫∞
0 b(τ)dτ − 1

[(
2e

∫∞
0 b(τ)dτ − 1

)∫∞

0

[
c(s) + a(s)

(
s +

∞∑
k=1

ak

)]
ds

+
∞∑
k=1

Lk

(
e
∫∞
0 b(τ)dτ + e

∫ tk
0 b(τ)dτ − 1

)]
< 1,

(2.21)

then the integral equation (2.18) possesses a unique solution y ∈ BPC[Jh, R].

Proof. For any η ∈ BPC[Jh, R], we define the operator T by (Ty)(t) being the right hand
of (2.18) and (Ty)(0) = (Ty)(t), t ∈ [−h, 0]. By virtue of (H1), (H2), it is obvious that T :
BPC[Jh, R] → BPC[Jh, R]. Then for any y1, y2 ∈ BPC[Jh, R], we have

∣∣(By2
)
(s) − (

By1
)
(s)

∣∣ ≤
(
s +

∞∑
k=1

ak

)∥∥y1 − y2
∥∥
B. (2.22)
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Moreover,

∣∣(Ty1
)
(t) − (

Ty2
)
(t)

∣∣
≤ 1

e
∫∞
0 b(τ)dτ − 1

[∣∣∣∣∣
∫∞

0
e
∫s
0 b(τ)dτ

[
a(s)

(
By2(s) − By1(s)

)
+ c(s) sup

r∈[s−h,s]

(
y2(r) − y1(r)

)]
ds

∣∣∣∣∣
+

∞∑
k=1

e
∫ tk
0 b(τ)dτLk

∣∣y2(tk) − y1(tk)
∣∣]

+

∣∣∣∣∣
∫ t

0
e−

∫ t
s b(τ)dτ

[
a(s)

((
By2

)
(s) − (

By1
)
(s)

)
+ c(s) sup

r∈[s−h,s]

(
y2(r) − y1(r)

)]
ds

∣∣∣∣∣
+

∑
0<tk<t

e
− ∫ t

tk
b(τ)dτ

Lk

∣∣y2(tk) − y1(tk)
∣∣

≤ e
∫∞
0 b(τ)dτ

e
∫∞
0 b(τ)dτ − 1

∫∞

0

[
a(s)

∣∣(By2
)
(s) − (

By1
)
(s)

∣∣ + c(s) sup
r∈[s−h,s]

∣∣y2(r) − y1(r)
∣∣]ds

+
1

e
∫∞
0 b(τ)dτ − 1

∞∑
k=1

e
∫ tk
0 b(τ)dτLk

∣∣y2(tk) − y1(tk)
∣∣

+
∫∞

0

[
a(s)

∣∣(By2
)
(s) − (

By1
)
(s)

∣∣ + c(s) sup
r∈[s−h,s]

∣∣y2(r) − y1(r)
∣∣]ds

+
∞∑
k=1

Lk

∣∣y2(tk) − y1(tk)
∣∣

≤ 1

e
∫∞
0 b(τ)dτ − 1

[(
2e

∫∞
0 b(τ)dτ − 1

)∫∞

0

[
c(s) + a(s)

(
s +

∞∑
k=1

ak

)]
ds

+
∞∑
k=1

Lk

(
e
∫∞
0 b(τ)dτ + e

∫ tk
0 b(τ)dτ − 1

)]∥∥y1 − y2
∥∥
B.

(2.23)

Thus, ‖Ty1 − Ty2‖B ≤ g‖y1 − y2‖B. Hence, Banach’s fixed point theorem implies that T has a
unique fixed point, that is, a unique solution of (2.18).

For any η ∈ BPC[Jh, R], define an operator A by A : (Aη)(t) = the right hand of (2.18)
on J , and (Aη)(t) = (Aη)(0) for t ∈ [−h, 0].

Lemmas 2.2 and 2.3 immediately yield the following result.

Lemma 2.4. y ∈ TPC[Jh, R] ∩ C1[J ′, R] is a solution of (2.1) if and only if y ∈ BPC[Jh, R] is a
fixed point of A.

Let us list some conditions for convenience.
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(H3) There exist the upper and lower solutions of (2.1), that is, u0, v0 ∈ TPC[Jh, R] ∩
C1[J ′, R], satisfying u0(t) ≤ v0(t),

u′
0(t) ≤ f

(
t, (Bu0)(t), u0(t), sup

s∈[t−h,t]
u0(s)

)
, t ∈ J, t /= tk,

Δu0|t=tk ≤ Ĩk((Bu0)(tk), u0(tk)), k = 1, 2, . . . ,

u0(0) ≤ u0(∞), u0(t) = u0(0), t ∈ [−h, 0],

(2.24)

and v0(t) satisfies inverse inequalities above.
Define the sets [u0, v0] = {u ∈ PC[Jh, R] : u0(t) ≤ u(t) ≤ v0(t), t ∈ Jh}, Ω =

{(t, x, y, z) : t ∈ J, (Bu0)(t) ≤ x(t) ≤ (Bv0)(t), u0(t) ≤ y(t) ≤ v0(t), sups∈[t−h,t]u0(s) ≤ z(t) ≤
sups∈[t−h,t]v0(s)}.

(H4) There exist a, b, c, ta ∈ C[J, R+] ∩ L1(J)with b /≡ 0, such that

f
(
t, x, y, z

) − f
(
t, x, y, z

) ≥ −a(t)(x − x) − b(t)
(
y − y

) − c(t)(z − z), ∀t ∈ J,

Ĩk
(
x, y

) − Ĩk
(
x, y

) ≥ −Lk

(
y − y

)
, k = 1, 2, . . . ,

(2.25)

where (t, x, y, z), (t, x, y, z) ∈ Ω, x ≤ x, y ≤ y, z ≤ z.

Theorem 2.5. Assume that conditions (H1)–(H4), (2.3), and (2.21) hold. Then (2.1) has minimal
and maximal solutions u∗, v∗ ∈ [u0, v0]; moreover, the iterative sequences {vn(t)} and {un(t)}
converge uniformly on each Jk to v∗(t) and u∗(t), where

un(t) = Aun−1(t), vn(t) = Avn−1(t), ∀t ∈ J,

un(t) = un(0), vn(t) = vn(0), t ∈ [−h, 0], n = 1, 2, . . . .
(2.26)

Proof. Firstly, the proof of Lemma 2.2 implies that the operator A is well defined.

Next, we will show that u0 ≤ Au0, Av0 ≤ v0 and A is nondecreasing in [u0, v0].
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Indeed, for any η ∈ [u0, v0], we have by Lemmas 2.2 and 2.3 that Aη ∈ TPC[Jh, R] ∩
C1[J ′, R] is a unique solution of (2.15), together with (2.26), we deduce that

un(t) = e−
∫ t
0 b(s)ds

{(
e
∫∞
0 b(τ)dτ − 1

)−1

×
[∫∞

0
e
∫s
0 b(τ)dτ

[
f

(
s, (Bun−1)(s), un−1(s), sup

r∈[s−h,s]
un−1(r)

)

− a(s)((Bun)(s) − (Bun−1)(s)) + b(s)un−1(s)

− c(s)

(
sup

r∈[s−h,s]
un(r) − sup

r∈[s−h,s]
un−1(r)

)]
ds

+
∞∑
k=1

e
∫ tk
0 b(τ)dτ

[
Ĩk((Bun−1)(tk), un−1(tk)) − Lk(un(tk) − un−1(tk))

]]

+
∫ t

0
e
∫s
0 b(τ)dτ

[
f

(
s, (Bun−1)(s), un−1(s), sup

r∈[s−h,s]
un−1(r)

)

− a(s)((Bun)(s) − (Bun−1)(s))

+ b(s)un−1(s) − c(s)

(
sup

r∈[s−h,s]
un(r) − sup

r∈[s−h,s]
un−1(r)

)]
ds

}

+
∑

0<tk<t

e
∫ tk
t b(τ)dτ

[
Ĩk((Bun−1)(tk), un−1(tk)) − Lk(un(tk) − un−1(tk))

]
.

(2.27)

Let u1 − u0 = u, then by (H3), (2.15), and the definition of A, we have

u′(t) = u′
1(t) − u′

0(t) ≥ −a(t)(Du)(t) − b(t)u(t)

−c(t) sup
s∈[t−h,t]

u(s), t ∈ J, t /= tk,

Δu|t=tk ≥ −Lku(tk), k = 1, 2, . . . ,

u(0) ≥ u(∞), u(t) = u(0), t ∈ [−h, 0].

(2.28)

This implies by Lemma 2.1 that u(t) ≥ 0, that is, Au0 = u1 ≥ u0. Analogously, we get Av0 ≤
v0. Similar argument by the facts that Aη is a solution of (2.15) and (H4), shows that A is
nondecreasing. Moreover, together with (2.26), we have

u0(t) ≤ u1(t) ≤ · · · ≤ un(t) ≤ · · · ≤ vn(t) ≤ · · · ≤ v1(t) ≤ v0(t), t ∈ Jh. (2.29)



12 Discrete Dynamics in Nature and Society

Therefore it follows from (2.29) that

lim
n→∞

un(t) = u∗(t), t ∈ Jh, (2.30)

and then there exists a constant L∗ > 0, such that ‖un‖B ≤ L∗, n = 1, 2, . . . . Hence, for s ∈ J, by
(H1), (H2), we have

∣∣∣∣∣f
(
s, (Bun−1)(s), un−1(s), sup

r∈[s−h,s]
un−1(r)

)
− a(s)((Bun)(s) − (Bun−1)(s))

+ b(s)un−1(s) − c(s)

(
sup

r∈[s−h,s]
un(r) − sup

r∈[s−h,s]
un−1(r)

)∣∣∣∣∣
≤
[(

p(s) + 2a(s)
)(

s +
∞∑
k=1

ak

)
+ q(s) + l(s) + b(s) + 2c(s)

]
L∗ +

(
2a(s) + p(s)

)|x0|,

∣∣∣Ĩk((Bun−1)(tk), un−1(tk)) − Lk(un(tk) − un−1(tk))
∣∣∣ ≤ L∗

(
L̃k + 2Lk

)
, n, k = 1, 2, . . . .

(2.31)

Hence it follows from (2.26), (2.31) that {un(t)} is equicontinuous on each Jk. So in view of
(2.30), an application of Arzela-Ascoli′s theorem and diagonal method implies that there
exists a subsequence {uni(t)} ⊂ {un(t)} such that {uni(t)} converges uniformly on each Jk
to u∗(t). Then the whole sequence {un(t)} converges uniformly on each Jk to u∗(t). Thus
u∗(t) ∈ PC[Jh, R], and the fact that ‖un‖B ≤ L∗ implies ‖u∗‖B ≤ L∗. Hence u∗ ∈ BPC[Jh, R]. In
view of (2.30), the continuity of f and Ĩk gives that

f

(
s, (Bun−1)(s), un−1(s), sup

r∈[s−h,s]
un−1(r)

)
− a(s)(un(s) − un−1(s))

+ b(s)un−1(s) − c(s)

(
sup

r∈[s−h,s]
un(r) − sup

r∈[s−h,s]
un−1(r)

)

−→ f

(
s, (Bu∗)(s), u∗(s), sup

r∈[s−h,s]
u∗(r)

)
+ b(s)u∗(s), s ∈ J, n −→ ∞,

Ĩk((Bun−1)(tk), un−1(tk)) − Lk(un(tk) − un−1(tk))

−→ Ĩk((Bu∗)(tk), u∗(tk)), n −→ ∞, k = 1, 2, . . . .

(2.32)
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By the facts that a(s), b(s), c(s), sa(s), p(s), q(s), l(s), sp(s) ∈ L1(J), and
∑∞

k=1 L
∗(L̃k + 2Lk)

is convergent, observing (2.27) and taking limits as n → ∞, the dominated convergence
theorem yields that

u∗(t) =
(
e
∫∞
0 b(τ)dτ − 1

)−1

×
{∫∞

0
e
∫s
t b(τ)dτ

[
f

(
s, (Bu∗)(s), u∗(s), sup

r∈[t−h,t]
u∗(r)

)
+ b(s)u∗(s)

]
ds

+
∞∑
k=1

e
∫ tk
t b(τ)dτ Ĩk((Bu∗)(tk), u∗(tk))

}

+
∫ t

0
e
∫s
t b(τ)dτ

[
f

(
s, (Bu∗)(s), u∗(s), sup

r∈[t−h,t]
u∗(r)

)
+ b(s)u∗(s)

]
ds

+
∑

0<tk<t

e
∫ tk
t b(τ)dτ Ĩk((Bu∗)(tk), u∗(tk)), t ∈ J,

(2.33)

that is, u∗(t) = Au∗(t), u∗(t) is a fixed point of A. It is easy to check that u∗(t) ∈ TPC[Jh, R] ∩
C1[J ′, R]. Therefore we conclude by Lemma 2.4 that u∗(t) is a solution of (2.1).

Similarly, we can show that {vn(t)} converges uniformly on each Jk to v∗(t), and v∗ ∈
TPC[Jh, R] ∩ C1[J ′, R] is also a solution of (2.1).

Clearly, u∗, v∗ ∈ [u0, v0]. Using a standard method, we can show that u∗, v∗ is the
minimal and maximal solutions of (2.1) in [u0, v0].

Remark 2.6. Theorem of [3] is a special case of Theorem 2.5 in this paper, where f and Ĩk did
not involve the operator B. Hence Theorem 2.5 in this paper extends and improves the result
of [3].

Remark 2.7. In system 2.1, if the interval is finite [0, m], then the conditions of (H1), (H2) can
be deleted. Thus Theorem 2.5 in this paper extends and improves the result of [2].

3. Main Result for Second-Order Impulsive Differential Equation

Let us list other conditions for convenience.
(H ′

3) There exist y0, z0 ∈ TPC1[Jh, R] ∩ C2[J ′, R], and y0(t) ≤ z0(t), y′
0(t) ≤ z′0(t) such

that

z′′0(t) ≥ f

(
t, z0(t), z′0(t), sup

r∈[t−h,t]
z′0(r)

)
, t ∈ J, t /= tk,

Δz0|t=tk = akz
′
0(tk), k = 1, 2, . . . ,

Δz′0
∣∣
t=tk

≥ Ĩk
(
z0(tk), z′0(tk)

)
, k = 1, 2, . . . ,

z0(0) = x0, z′0(0) ≥ z′0(∞),

z′0(0) = z′0(t), t ∈ [−h, 0],

(3.1)

and y0(t) satisfies inverse inequalities above.
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(H ′
4) There exist a, b, c, ta ∈ C[J, R+] ∩ L1(J)with b /≡ 0, such that

f
(
t, x, y, z

) − f
(
t, x, y, z

) ≥ −a(t)(x − x) − b(t)
(
y − y

) − c(t)(z − z), ∀t ∈ J,

Ĩk
(
x, y

) ≥ Ĩk
(
x, y

)
, k = 1, 2, . . . ,

(3.2)

where (t, x, y, z), (t, x, y, z) ∈ Ω′, x ≤ x, y ≤ y, z ≤ z, Ω′ = {(t, x, y, z) : t ∈ J , y0(t) ≤ x(t) ≤
z0(t), y′

0(s) ≤ y(t) ≤ z′0(s), sups∈[t−h,t]y
′
0(s) ≤ z(t) ≤ sups∈[t−h,t]z

′
0(s)}.

Theorem 3.1. Assume that conditions (H1), (H2), (H ′
3), (H ′

4) and (2.3), (2.21) hold. Then
IBVP(1.1) has minimal and maximal solutions y∗, z∗ ∈ TPC1[Jh, R] ∩ C2[J ′, R].

Proof. Let x′(t) = y(t). Then IBVP(1.1) is equivalent to the following system:

x′(t) = y(t), y′(t) = f

(
t, x(t), y(t), sup

s∈[t−h,t]
y(s)

)
, t ∈ J, t /= tk,

Δx|t=tk = aky(tk), Δy
∣∣
t=tk

= Ĩk
(
x(tk), y(tk)

)
k = 1, 2, . . . ,

x(0) = x0, y(0) = y(∞), y(t) = y(0), t ∈ [−h, 0].

(3.3)

Clearly, the system

x′(t) = y(t), t ∈ J,

Δx|t=tk = aky(tk), k = 1, 2, . . . ,

x(0) = x0,

(3.4)

has a unique solution x ∈ PC[Jh, R] ∩C1[J ′, R] and x(t) = x0 +
∫ t
0 y(s)ds +

∑
0<tk<t aky(tk). Let

(
By

)
(t) = x0 +

∫ t

0
y(s)ds +

∑
0<tk<t

aky(tk), (3.5)

we have x(t) = (By)(t), and then IBVP (1.1) is transformed into first-order impulsive
equations (2.1).

Let y′
0(t) = u0(t), z′0(t) = v0(t), we have u0 ≤ v0. By the condition (H ′

3) and the
definition of B, we get that y0(t) = (Bu0)(t), z0(t) = (Bv0)(t), and u0, v0 satisfy (H3). By
the condition (H ′

4), it is easy to see that (H4) holds. Hence, it follows from Theorem 2.5 that
(2.1) has minimal and maximal solutions u∗, v∗ ∈ TPC[Jh, R] ∩ C1[J ′, R].
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Let y∗(t) = (Bu∗)(t), z∗(t) = (Bv∗)(t), then y∗, z∗ ∈ TPC1[Jh, R]∩C2[J ′, R]. It follows by
simple calculation that

y′
∗(t) = u∗(t), t ∈ J, t /= tk,

Δy∗
∣∣
t=tk

= aku∗(tk), k = 1, 2, . . . ,

y∗(0) = x0,

(3.6)

(z∗)′(t) = v∗(t), t ∈ J, t /= tk,

Δz∗|t=tk = akv
∗(tk), k = 1, 2, . . . ,

z∗(0) = x0.

(3.7)

The facts that u∗, v∗ satisfies (2.1) and y∗, z∗ satisfies (3.7) imply that y∗, z∗ ∈ TPC1[Jh, R] ∩
C2[J ′, R] are solutions of IBVP(1.1).

Finally, it is easy to show that y∗, z∗ are the minimal and maximal solutions of
IBVP(1.1), respectively. We complete the proof.
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