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This paper presents a novel optimization model called hierarchical swarm optimization (HSO),
which simulates the natural hierarchical complex system from where more complex intelligence
can emerge for complex problems solving. This proposed model is intended to suggest ways that
the performance of HSO-based algorithms on complex optimization problems can be significantly
improved. This performance improvement is obtained by constructing the HSO hierarchies, which
means that an agent in a higher level swarm can be composed of swarms of other agents from
lower level and different swarms of different levels evolve on different spatiotemporal scale.
A novel optimization algorithm (named PS2O), based on the HSO model, is instantiated and
tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of
17 benchmark optimization problems including both continuous and discrete cases. The results
demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions
when compared to several successful swarm intelligence and evolutionary algorithms.

1. Introduction
Swarm intelligence (SI), which is inspired by the “swarm behaviors” of social animals [1],
is an innovative artificial intelligence technique for solving hard optimization problems. In
SI system, there are many simple individuals who can interact locally with one another and
with their environments. Although such systems are decentralized, local interactions between
individuals lead to the emergence of global behaviors or global properties. For instance, flock
of birds and school of fish emerge spatial self-organized patterns through social foraging [2].
Similar phenomena can also be observed in colonies of single-cell bacteria, social insects like
ants and bees, as well as multicellular vertebrates, which all display collective intelligence [3].

As a problem-solving technique, many algorithmic methods of SI were designed to
deal with practical problems. In 1991, Dorigo proposed ant colony optimization (ACO) [4, 5]
based on foraging behaviors of ant colonies. ACO has been successfully used to solve discrete
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optimization problems, like traveling salesman problems (TSP) [6]. After that, another SI
algorithm, namely, particle swarm optimization (PSO), was proposed by Kennedy and
Eberhart [7], which gleaned ideas from the social behavior of bird flocking and fish schooling
[8–10]. PSO is primarily concerned with continuous optimization problems. In 2001, Passino
proposed a technique known as bacterial foraging optimization (BFO) that inspired by the
pattern exhibited by bacterial foraging behaviors [11]. Other swarm optimization methods
have been developed like artificial immune systems (AIS) [12], which are based on the
metaphor of the immune system as a collective intelligence process [13]. Recently, Karaboga
has described a bee swarm algorithm called artificial bee colony (ABC) algorithm [14], and
Basturk and Karaboga compared the performance of ABC algorithm with the performance of
genetic algorithm (GA) in [15]. These SI paradigms have already come to be widely used in
many areas [8, 16–22].

In current artificial SI systems, however, researchers only take into account the
collective behaviors of one level of individuals, and ignored the hierarchical nature [23] of
the real world systems and animal society. In fact, for most social insects and animals, their
organizational structures are not flat. They can form complex hierarchical (or multilevel)
system structures by self-organization and division of labor features [24]. In other words, in
a hierarchical system, a swarm of lower level individuals can be the infrastructure of a single
individual at the higher level [25, 26]. Here the term “swarm” is used in a general sense to
refer to any collection of interacting agents. In most of natural hierarchically complex systems,
swarms of lower level agents interact with each other to constitute more complex high-level
swarms’ constituent agents, repeatedly, until very complex structures with greatly enhanced
macroscopical intelligence emerge. Such phenomenon is so common in the natural world,
this guides us to design a multilevel algorithmic model to mimic hierarchical emergence of
nature society.

First, this paper extends the traditional SI framework from flat (one level) to
hierarchical (multiple level) by proposing a novel optimization model called hierarchical
swarm optimization (HSO). In HSO model, collective behaviors of multiple levels are taken
into account to solve complex problems. Then some initial insights into this method are
provided by designing a two-level HSO algorithm (named PS2O) based on canonical PSO
model. Four versions of PS2O are realized according to different structures of cooperation and
interaction types in each level. In order to evaluate the performance of PS2O, extensive studies
based on a set of 17 benchmark functions (including both continuous and discrete cases) have
been carried out. For comparison purposes, we also implemented the genetic algorithm (GA),
covariance matrix adaptation evolution strategy (CMA-ES), artificial bee colony algorithm
(ABC), and four state-of-the-art PSO variants on these functions. The experimental results
are encouraging; the PS2O algorithm achieved remarkable search performance in terms of
accuracy, robustness, and convergence speed on all benchmark functions.

The rest of the paper is organized as follows. Section 2 describes the proposed
hierarchical swarm optimization model. In Section 3, a novel HSO-based optimization
algorithm, namely, PS2O, is given. Section 4 tests the algorithm on the benchmarks and
illustrates the results. Finally, Section 5 outlines the conclusions.

2. Hierarchical Swarm Optimization

2.1. From Flat Swarm to Hierarchical Swarm

In [3], Bonabeau et al. define swarm intelligence as “the emergent collective intelligence of
groups of simple agents”. In such a perspective, the artificial SI systems, which are designed
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Figure 1: Two types of systems.

for complex problem solving, maintain a swarm made up of many isomorphic and relatively
simple individuals that often share the same states and behaviors set. In such a swarm, all
individuals have absolutely equal status in the whole life cycle. The interaction relations
between these individuals are symmetrical and operate on the same spatiotemporal scale.
One individual can be substituted by another one, while the function of the swarm remains
steady. That is, the architecture and functionality of classical SI are flat (Figure 1(a)).

However, swarm intelligence only explains partial mechanisms of collective behavior
of biology. The natural cases could be more complex: except for individual tasks, these units
lie at a hierarchical level between an individual ant and the colony as a whole, and thus
constitute what might be called “intermediate-level parts” [27]. Now consider two basic
types of systems: hierarchical and nonhierarchical (flat). Flat systems can be regarded as
a group of undifferentiated particles, such as traditional SI systems. Hierarchical swarm
systems must have a structure requiring a minimum of two hierarchical levels (Figure 1(b)).
In Figure 1(b), a particle is the minimum unit of the system, while an agent constitutes
the intermediate hierarchical level, which is composed of a number of particles. In this
perspective, it is evident that the complexity of the individual “agents” of SI systems is
dramatically simplified to particles, which are the minimum unit of the systems. Hence, the
hierarchical nature of swarm [23] is ignored in the traditional artificial SI systems, such as
PSO and ACO.

Hierarchy is common in the real world. For examples, immune system antibodies
continuously self-organize and evolve while being a part of the many “organism agents”
of a bird, and that a bird is in turn an agent in the formation of a flock of birds, and the
flock of birds is in turn an agent that is part of a particular ecosystem niche [28]. Genes,
the elementary biochemical coding units are complicated macromolecular strings, as are the
metabolic units, the proteins. Neurons, the basic elements of cognitive networks, themselves
are cells. In any of these examples, it is evident that the interactions of the agents lead to a
coherent structure at a higher level [29]. That is, the emergent characteristics of a particular
lower level system frequently form an individual agent at a higher level of the hierarchical
system. This aspect has been emphasized by many researchers on artificial intelligence and
complex systems [23, 25, 29–32].

Hence, this paper strives to extend the traditional SI framework from flat to
hierarchical, and propose the hierarchical swarm optimization model. By incorporating
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Figure 2: Hierarchical swarm optimization model using a multiagent system in nested hierarchies.

these new degrees of complexity, HSO-based optimization algorithm can accommodate a
considerable potential for solving more complex problems.

2.2. HSO Model Description

HSO model accommodates a hierarchical multiagent system, in which an agent can itself be
a swarm of other agents.

(1) HSO is composed of a number of levels. Each level is a multiagent system
composed of several swarms of agents.

(2) Each swarm of level n − 1 agents is aggregated into a level-n agent.

(3) Level-n behavior emerges from the organization of level 1 to n.

HSO naturally admits of a description in terms of higher level and lower level, where
the lower level is nested within the higher level. Any agent at any level is both a component
of a given swarm in its own level and a subsystem decomposable into a swarm of other
agents at its adjacent lower level of HSO (shown as in Figure 2). Note that the agents in
the lowest level are the particles that are the minimum unit, which are indecomposable of
this hierarchical system. HSO is a heterogeneous system that each swarm in each level is
evolved in its own population and adapts to the environment through the application of any
SI method at hand. The interaction topology of HSO can also be heterogeneous hierarchical
structures. Namely, the evolution rules and the interaction topology of distinct swarms can
be different, and these different SI paradigms hierarchically construct the HSO model and
lead to the hierarchical emergence of intelligence. In mathematical terms, the HSO model can
be defined as in Table 1.

Figure 3 lists a general description of HSO containing four main functional blocks. In
the first block of Figure 3, we show that under the external environment pressure (defined
by the object function), each agent in the HSO model evolves and adapts as a consequence
of internal and external hierarchical interactions. Both in higher level and lower level, the
swarms can be manipulated by different SI algorithms (shown as in blocks 2 and 3 of
Figure 3). In principle, any SI algorithms (such as PSO, ACO, BFO, and ABC) can be used
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Table 1: The structure of HSO model.

HSO = (A,N, P, T,O, S)

A: agents that exist at various hierarchical levels.

N: the number of levels.

P : the populations of each swarm in each level.

T : the hierarchical interaction topology of HSO.

O: the objective optimization goals.

S: Swarm or Evolutionary optimization strategies used for each swarm to search the objective O.

(1)

(2)

(3)

(4)

Environment: defined by
the object function

Higher level evolution: interaction
(symmetrical relation) that occur between
different swarms in higher level

Lower level evolution: interaction
(symmetrical relationships) that occur
within each swarm in lower level

Constraints: influences
(asymmetrical relation) that occur
between lower and higher level elements

Aggregation
Effect

Figure 3: The main functional blocks of the HSO model.

by any swarm at any level, and we have first hand experience constructing HSO paradigms
using PSO and BFO [33–35]. Interactions that occur within one level (each entity of the
interaction is operating on the same spatiotemporal scale) are called symmetrical relations.

On the other hand, asymmetrical relationships occuring between different levels are
called “constraints” [32]. The forth block formed the constraint that higher level affects
elements from lower level. When an agent of higher level transmits the information to its
constituent swarms of other agents of lower level, the effect can be the according evolutional
actions of this agent’s swarm of constituent agents.
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3. Case Study: The PS2O Algorithm

In this section, we implement a simple two-level HSO algorithm, which employs PSO method
in each swarm of each level, and hence named it PS2O. Here the agents (particles) in the
lower level (level-1) are analogous to individuals in a biological population (species) and the
agents in the higher level (level-2) are analogous to species. As the hierarchical interactions
that occur in the real ecosystems, from the macro view, dissimilar species establish symbiotic
relationships to improve their survivability in level-1 of PS2O (i.e., interspecies cooperation);
from the micro view, species’ members (the particles) cooperatively interact with each other
in level-2 of PS2O (i.e., intraspecies cooperation).

3.1. Levels Detail of PS2O

Here the basic goals are to find the minimum of f(−→x), −→x ∈ RD. We create an ecosystem
in level-1 that contains a species set Ω = {S1, S2, . . . , SM}, and each species k possesses
a member set, Sk = {X1k, X2k, . . . , XNk}, in level-2. The ith member of the kth species is
characterized by the vector Xik = (X1

ik, X
2
ik, . . . , X

D
ik). In each generation t, the evolution

process of each level is detailed as follow.

3.1.1. Level 1

Level-1 agents are clustered into M swarms, each of which possesses N agents. Each swarm
constitutes an agent of level-2. Each swarm of level-1 evolves within its own separate
population via separate PSO algorithm. That is, there are M parallel PSO paradigms evolving
separately in level-1. This process addresses the cooperation between individuals of the same
species: within the species k, one or more members in the neighborhood ofXik contribute their
experiments to Xik, and Xik also share its knowledge with its neighbors. Then Xik accelerate
towards its personal best position and the best position found by its species members in
neighborhood:

αt+1
ik = c1r1

(
pbesttik −X

t
ik

)
+ c2r2

(
sbesttk −Xt

ik

)
, (3.1)

where αik is the social acceleration vector of Xik, pbestik is the personal best position found
so far by Xik, sbestk is the best position found so far by its neighbors within species k, c1 are
individual learning rate, c2 are social learning rate, and r1, r2 ∈ Rd are two random vectors
uniformly distributed in [0, 1].

3.1.2. Level 2

All level-2 agents aggregate into a single swarm. This swarm of distinct symbiotic species
coevolves via the social only version of the PSO [36] as the cognitive processes have
already taken care of by the level-1 swarms. From the coevolution perspective, the species
k accelerates towards the best position that the symbiotic partners of species k have found:

βt+1
k = c3r3

(
cbestt − Stk

)
, (3.2)
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where βk is the symbiotic acceleration vector of Sk, cbest is the best position found so far by
the symbiotic partners of the kth species, c3 is the “symbiotic learning rate”, and r3 ∈ Rd is a
uniform random sequence in the range [0, 1].

3.1.3. Constraints

When species k in level-2 accelerates towards the best position, cbest, found by its more
successful symbiotic partners, the according evolutional action of this agent’s swarm of
constituent agents from level-1 is that all the members of species k accelerate to cbest too

βt+1
ik = c3r3

(
cbestt −Xt

ik

)
, (3.3)

where βik is the symbiotic acceleration vector of Xik.
Then the velocity Vik and position Xik of each member of species k are updated

according to

V t+1
ik = χ

(
V t
ik + α

t+1
ik + βt+1

ik

)
,

Xt+1
ik = Xt

ik + V
t+1
ik ,

(3.4)

where χ is known as the constriction coefficient [37].

3.2. Hierarchical Interaction Topologies

Systems of interacting agents—like many natural and social systems—are typically depicted
by scientists as the graphs or networks, in which Individuals can be connected to one another
according to a great number of schemes [38]. In PSO, since the original particle swarm model
is a simulation of the social environment, a neighborhood that structured as the interaction
topological graph is defined for an individual particle as the subset of particles it is able to
communicate with. Four classical interaction topologies have been shown as in Figure 4.

Most particle swarm implementations use one of two simple interaction topologies.
The first, namely, the fully-connected topology (see Figure 4(a)), conceptually connects all
members of the population to one another. The effect of this topology is that each particle
is influenced by the very best performance of any member of the entire population. This
means faster convergence, which implies a higher risk to converge to a local minimum.
Experiments show that the fully-connected topology is faster than the other neighborhoods,
but it meets the optimal fewer times than any other one. The second, called ring topology
(see Figure 4(b)), creates a neighborhood for each individual comprising itself and its two
nearest neighbors in the population. The ring neighborhood is more robust if the maximum
number of iterations was increased but much slower. However, experiments show that the
ring neighborhood cannot meet the required precision for many complex problems. That is,
it promotes the exploration, but unfortunately fails to provide the exploitation.

In our model, the interaction of agents occurred in a two-level hierarchical topology. By
employing two simple topologies—the ring and the fully-connected topologies—for swarms
in different levels, four hierarchically nested interaction topologies have been obtained.
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(a) (b)
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Figure 4: Four interaction topologies for PSO: (a) fully-connected, (b) ring, (c) star, (d) grid.

Shown as in Figure 5, each hierarchical topology is comprised of 4 warms in level-2 and
each swarm possesses 4 agents from level-1. The first two topologies have a homogeneous
hierarchical structure (employ the ring or fully-connected topology in both levels) and
the other two have the heterogeneous hierarchical structures (employ the ring and fully-
connected topologies in different levels, resp.). Four variant versions of the PS2O algorithms
are studied, respectively, in this paper according to these four interaction topologies.

(i) PS2O-S: in level-1, agents interact with each other in each swarm. In level-2, each
agent is influenced by the performance of all the other agents. That is, swarms of
both levels are configured into the fully-connected topology (Figure 5(a)).

(ii) PS2O-R: in level-1, agents interact with 2 immediate agents in its neighborhood. In
level-2, each agent is influenced by the performance of its two symbiotic partners
only. That is, both levels are configured into the ring topology (Figure 5(b)).

(iii) PS2O-SR: In level-1, agents interact with each other in each swarm. In level-2, each
agent is influenced by the performance of its two symbiotic partners only. That is,
the level-2 is configured into the fully-connected topology while the each swarm of
level-1 is configured into the ring topology (Figure 5(c)).

(iv) PS2O-RS: In level-1, each agent interacts with 2 immediate agents in its neighbor-
hood. In level-2, each agent is influenced by the performance of all the other agents.
That is, each swarm of the level-1 is configured into the ring topology while the
level-2 is configured into the fully-connected topology (Figure 5(d)).
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Figure 5: Four hierarchical interaction topologies for PS2O.

3.3. Matrix Representation

A multidimensional array representation of the PS2O algorithm is proposed in this section.
The PS2O randomly initializes a number of M species with each possesses a number of N
members to represent the biological community in the natural ecosystems. Then the positions
X, velocities V , and personal best locations P of the biological community are all specified
as the three-dimensional (3D) matrixes (showed as in Figures 6(a)–6(c)), where the first
matrix dimension—Species number—is the number of species in level-2, the second matrix
dimension—Swarm size—is the number of agents of each swarm in level-1, and the third
matrix dimension—Dimension—is the number of dimensions of the object problem.

In PS2O model, in order to update the velocity and position matrixes, every agent in
level-1 must accelerate to three factors: the previous best position of the agent itself (this factor
is called “personal best”), the previous best position of other members in its neighborhood
(we named this factor “species best”), and the previous best position found by other species
(agents from level-2) that have the cooperative symbiotic relation to the species that this agent
belongs to (we named this factor “community best”). The species best is represented by a 2D
matrix S, which showed as in Figure 6(d) left, and the community best is referred to as a 1D
matrix C, which showed as in Figure 6(d) right.



10 Discrete Dynamics in Nature and Society

x111 x121 · · · x1D1

x211 x221 · · · x2D1
...

xN11 xN21 · · · xND1

X =

Sw
ar

m
si

ze

Dimension

Species number

xN2k · · · xNDk

x21k x22k · · · x2Dk

x11k x12k · · · ˙ x1Dk

x21M x22M · · · x2DM

x11M x12M · · · x1DM

xN2M · · · xNDM

(a)

v111 v121 · · · v1D1

v211 v221 · · · v2D1
...

vN11 vN21 · · · vND1

V =

Sw
ar

m
si

ze

Dimension

Species number

vN2k · · · vNDk

v21k v22k · · · v2Dk

v11k v12k · · · v1Dk

v21M v22M · · · v2DM

v11M v12M · · · v1DM

vN2M · · · vNDM

(b)

p111 p121 · · · p1D1

p211 p221 · · · p2D1
...

pN11 pN21 · · · pND1

P =

Sw
ar

m
si

ze

Dimension

Species number

pN2k · · · pNDk

p21k p22k · · · p2Dk

p11k p12k · · · p1Dk

p21M p22M · · · p2DM

p11M p12M · · · p1DM

pN2M · · · pNDM

(c)

s11 s12 · · · s1D

s21 s22 · · · s2D
...

sM1 sM2 · · · sMD

S =

Sp
ec

ie
s

nu
m

be
r

Dimension

Dimension
C =

[c1 c2 · · · cD]

(d)

Figure 6: Matrix representation of the PS2O algorithm.

X,V, P, S, and C matrixes together record all of the update information required by
the PS2O algorithm. These 3D matrixes are elegantly updated in successive iteration to
numerically model the hierarchical emergence. The velocity and position matrixes must be
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updated element by element in each generation as:

V t+1
ijk = χ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
V t
ijk + ϕ1r1

(
Ptijk −X

t
ijk

)
+ ϕ2r2

(
Stjk −X

t
ijk

)
︸ ︷︷ ︸

lower level evolution

+ ϕ3r3

(
Ct
j −X

t
ijk

)

︸ ︷︷ ︸
higher level evolution

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Xt+1
ijk = Xt

ijk + V
t+1
ijk

(3.5)

to obtain the intended behaviors. Note that these equations are exactly described in the
previous section: the term ϕ1r1(Ptijk − X

t
ijk
) associates with each individual’s own cognition,

the term ϕ2r2(Stjk −X
t
ijk
) associates with cooperative coevolution within each swarm in level-

1, and the term ϕ3r3(Ct
j − X

t
ijk) associates with the symbiotic coevolution between dissimilar

species in level-2.
The main difference between PS2O and PSO is the matrix implementation and the

modified velocity updating equation, that is, the complexity of this new HSO algorithm is
similar to the original PSO. The flowchart of the PS2O algorithm is presented in Figure 7, and
according variables used in PS2O are summarized in Table 2.

4. Experimental Result and Discussion

In experimental studies, according to the no free lunch (NFL) theorem [39], a set of 17
benchmark functions (with continuous and discrete characters), which are listed in the
appendix, was employed to fully evaluate the performance of the PS2O algorithm without
a biased conclusion towards some chosen problems.

4.1. Experimental Setting

Experiments were conducted with four variations of PS2O (PS2Os) according to the four
hierarchical interaction topologies. To fully evaluate the performance of the proposed PS2O,
seven successful EA and SI algorithms were used for comparisons:

(i) canonical PSO with constriction factor (PSO) [37],

(ii) fully informed particle swarm (FIPS) [40],

(iii) unified particle swarm (UPSO) [41],

(iv) fitness-Distance-Ratio-based PSO (FDR-PSO) [42],

(v) standard genetic algorithm (GA) [43],

(vi) covariance matrix adaptation evolution strategy (CMA-ES) [44],

(vii) artificial bee colony algorithm (ABC) [15].

Among these optimization tools, GA is the classical search technique that enables the
fittest candidate among discrete strings to survive and reproduce based on random infor-
mation search and exchange imitating the natural biological selection; the underlying idea of
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Table 2: Parameters of the PS2O.

M The number of agents (species) in level-2

N Population size of each species in level-1

k Species’ ID counter from 1 to M

i Individual’s ID counter from 1 to N

j Dimension counter from 1 to D

t Generation counter from 1 to max-gen

Xijk The ith individual’s (of the kth species) jh dimension’s position value

Vijk The ith individual’s (of the kth species) jh dimension’s velocity value

Pijk The jth dimension value of the ith individual’s (of the kth species) personal best position

Sjk The jth dimension position value of the best position found by the kth level-2 species

Cj The jth dimension value of the community best position

χ The constriction coefficient

c1 The learning rates for individual cognition

c2 The learning rates for intraspecies cooperation

c3 The learning rates for interspecies coevolution

CMA-ES is to gather information about successful search steps, and to use that information to
modify the covariance matrix of the mutation distribution in a goal-directed, derandomized
fashion; ABC is a recently developed SI paradigm simulating foraging behavior of bees;
UPSO combined the global version and local version PSO together to construct a unified
particle swarm optimizer; FIPS used all the neighbors’ knowledge of the particle to update
the velocity; when updating each velocity dimension, the FDR-PSO selects one other particle
nbest, which has a higher fitness value and is nearer to the particle being updated.

In all experiments in this section, the values of the common parameters used in each
algorithm such as population size and total generation number were chosen to be the same.
Population size was 150 and the maximum evaluation number was 10000 for continuous
functions and 1000 for discrete functions.

According to Clerc’s method [37], when constriction factor is implemented as in the
canonical PSO algorithm, χ is calculated from the values of the acceleration coefficients (i.e.,
the learning rate) c1 and c2; importantly, it is the sum of these two coefficients that determines
what χ to use. This fact implies that the particle’s velocity can be adjusted by any number
of terms, as long as the acceleration coefficients sum to an appropriate value. Thus, the
constriction factor χ in velocity formula of PS2O can be calculated by

χ =
2∣∣∣2 − φ −
√
φ2 − 4φ

∣∣∣
, (4.1)

where φ = c1 + c2 + c3, φ > 4. Then the algorithm will behave properly, at least as far as
its convergence and explosion characteristics, whether all of φ is allocated to one term, or it
is divided into thirds, fourths, and so forth. Hence, for each PS2O, except when different
interaction topologies are used, the parameters were set to the values c1 = c2 = c3 =
1.3667 (i.e., φ = c1 + c2 + c3 ≈ 4.1 > 4) and then χ = 0.729, which is calculated by (4.1).
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Initialize M species each possess N individuals. set t = 0

k = 1

i = 1
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V t+1
ijk = χ(V t

ijk + c1(Ptijk −X
t
ijk)

+c2r2(Stjk −X
t
ijk
) + c3r3(Ct

j −X
t
ijk
))

Xt+1
ijk

= Xt
ijk

+ V t+1
ijk
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j < D

No k = k + 1
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Fit (Xik) > Fit (pbestik)
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pbestik = Xik
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k < M

No

t < max gen

Yes

Yes

No

End

Figure 7: Flowchart of the PS2O algorithm.

All the control parameters for the other algorithms were set to be default of their
original literatures. In continuous optimization experiment, for CMA-ES, initialization
conditions are the same as in [44], and the number of offspring candidate solutions generated
per time step is λ = 4μ; for ABC, the limit parameter is set to be SN × D, where D is the
dimension of the problem and SN is the number of employed bees; for canonical PSO and
UPSO, the learning rates c1 and c2 were both 2.05 and the constriction factor χ = 0.729; for
FIPS, the constriction factor χ equals to 0.729 and the U-ring topology that achieved highest
success rate is used; for FDR-PSO, the inertia weight ω started at 0.9 and ended at 0.5 and a
setting of c1 = c2 = 2.0 was adopted.
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Figure 8: PS2O’s results on six test functions with different swarm number M.

Since there are no literatures using CMA-ES, ABC, UPSO, FIPS, and FDR-PSO for
discrete optimization so far, discrete optimization experiment just compares PS2Os with the
binary version of canonical PSO and standard GA in discrete cases. For GA, single-point
crossover operation with the rate of 0.8 was employed and mutation rate was set to be 0.01.
For discrete PSO, the parameters were set to the values c1 = c2 = 2 and χ = 1. For PS2O
variants, the parameters were set to the values c1 = c2 = c3 = 2 and χ = 1. The sigmoid
function S was used as the transfer function to discrete the position X of PSO and PS2O
variants [45]. Then the velocity update equation remains unchanged, while the position
update equation is defined by the following equation (4.2) for discrete problems:

if
(

rand( ) < S
(
V t+1
ijk

))
, Xt+1

ijk = 1, else Xt+1
ijk = 0. (4.2)

The number of agents (species) in level-2 (i.e., swarm number M of the level-2 swarm)
needs be tuned. Six benchmark functions—Sphere 10D, Rosenbrock 10D, Rastrigrin 10D,
Goldberg 120D, Bipolar 60D, and Discrete multimodal problem 100D—are used to investigate
the impact of this parameter. Experiments were executed with PS2O-R on Sphere, PS2O-
SR on Rosenbrock, PS2O-S on Rastrigrin, PS2O-R on Goldberg, PS2O-RS on Bipolar, and
PS2O-S on Discrete multimodal problem by changing the number of swarms and fixing each
swarm size N at 10. The average test results obtained from 30 runs are plot in Figure 8. For
continuous problems, the performance measurement is the average best-so-far fitness value;
while for discrete cases, the performance measurement is the mean iteration to the function
minimum 0. From Figure 8, we can observe that the performance of PS2Os is sensitive to
the number of agents in level-2. When M increased, we obtained faster convergence velocity
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and better results on all test functions. However, it can be observed that the performance
improvement is not evident when M > 15 for most test functions. Thus, in our experiments,
the parameter M of PS2Os is set at 15 for all test functions (i.e., each swarm of level-2
possesses N = 100/10 = 10 agents of level 1).

The experiment runs 30 times, respectively, for each algorithm on each benchmark
function. The numbers of generations for the 10 continuous benchmark functions were set to
be 10000 and for the 7 discrete functions were 1000, respectively.

4.2. Continuous Unimodal Functions

Unimodal problems have been adopted to assess the convergence rates of optimization
algorithms. We test the four PS2O variants on a set of unimodal functions (f1–f5) in
comparison with CMA-ES, ABC, PSO, FIPS, UPSO, and FDR-PSO algorithms. Table 3 lists
the experimental results (i.e., the mean and standard deviations of the function values found
in 30 runs) for each algorithm on f1–f5. Figure 9 shows the search progress of the average
values found by the eight algorithms over 30 runs for f1–f5.

From Table 3 and Figure 9, the four PS2O variants converged much faster to signif-
icantly better results than all other algorithms. The PS2O-RS, which has the heterogeneous
hierarchical structures, is the fastest one for finding good results within relatively few
generations. All PS2O variants were able to consistently find the minimum to functions f1,
f4, and f5 within 10000 generations.

From the comparisons between PS2O and other algorithms, we can see that,
statistically, PS2O has significantly better performance on continuous unimodal functions
f1–f5. From the rank values presented in Table 2, the search performance of the algorithms
tested here is ordered as PS2O-S > PS2O-R > CMA-ES > PS2O-SR > PS2O-RS > UPSO > FDR-
PSO > ABC > FIPS > PSO.

4.3. Continuous Multimodal Functions

The first four multimodal functions f6–f9 are regarded as the most difficult functions to
optimize since the number of local minima increases exponentially as the function dimension
increases. According to the results reported in [22], the methods CL-PSO, PSO, CMA-ES, G3-
PCX, DE, and the algorithms used for comparison all failed to find the minimum of the six
composition function designed by Liang. Since these mentioned methods have demonstrated
their excellent performance on standard benchmark functions, the six composition functions
are very complex. In this paper, we only test PS2O on the first composition function f10 and
the test on the other five composition functions will be studied in the future works. The mean
and standard deviations of the function values found in 30 runs for each algorithm on each
function are listed in Table 4. Figure 10 shows the search progress of the average values found
by the ten algorithms over 30 runs for functions f6–f10.

From Table 4 and Figure 10, it is clear to see that for most of the tested continuous
benchmark functions, all PS2O algorithms except PS2O-RS markedly outperformed the other
algorithms. For example, PS2O-R and PS2O-SR found the global minimum every time of
run on function f8–f10, and PS2O-R can also consistently found the minimum of f10 within
relatively fewer generations, while the other algorithms generated poorer results on them.
On functions f6 and f7, the four PS2O algorithms yielded similar results to the other
four algorithms. From the rank values presented in Table 4, the search performance of the
algorithms tested here is ordered as PS2O-R > PS2O-SR > ABC > PS2O-S > FIPS CMA-ES >
FDR-PSO > PSO > UPSO > PS2O-RS.
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Figure 9: The median convergence results of 30D unimodal continuous functions. (a) Sphere function. (b)
Rosenbrock’s function. (c) Quadric function. (d) Sum of different powers. (e) Sin function.
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Figure 10: The median convergence results of 30D multimodal continuous functions. (a) Ackley’s function.
(b) Rastrigin’s function. (c) Griewank’s function. (d) Weierstrass function. (e) Composition function 1.
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Figure 11: Continued.



Discrete Dynamics in Nature and Society 21

−3.5

−3

−2.5

−2

−1.5

−1

0.5

0

Fi
tn

es
s
(l

og
)

0 20 40 60 80
Generations

100

PS2O-S
PS2O-R
PS2O-SR

PS2O-RS

PSO
GA

(g)

Figure 11: The median results of discrete functions. (a) Goldberg’s order-3. (b) Bipolar order-6. (c)
Mulenbein’s order-5. (d) Clerc’s Zebra-3. The median convergence results of discrete functions. (e) Clerc’s
order-3 problem 1. (f) Clerc’s order-3 problem 2. (g) Discrete multimodal problem.

It should be mentioned that PS2O were the only ones able to consistently find the
minimum to the composition function f1 that reported in the literatures so far.

4.4. Discrete Functions

In binary optimization, it is very easy to design some algorithms that are extremely good
on some benchmarks (and extremely bad on some others) [46]. In order to fully evaluate
the performance of PS2O on discrete problems, we have employed a carefully chosen set of
discrete benchmark functions f11–f17. The results obtained by the GA, PSO, and four PS2O
algorithms on each discrete benchmark function are listed in Table 5, including the mean
number of iterations required to reach the minimum, mean, and standard deviations of the
function values found in 30 runs. Figure 11 shows the search progress of the average values
found by the five algorithms over 30 runs for functions f11–f17.

From the results, we can observe that PS2O obtain an obviously remarkable
performance. It can be seen from Figure 11 that all PS2O variants converged greatly faster
and to significantly better results than the other two algorithms for all discrete cases. From
the rank values presented in Table 5, the search performance of the algorithms tested here
is ordered as PS2O-R > PS2O-S > PS2O-RS > PS2O-SR > GA > PSO. It is worth mentioning
that the PS2O-R and PS2O-RS were able to consistently find the minimum to all discrete
benchmark functions.

5. Conclusion

This paper first describes the hierarchical swarm intelligence phenomenon: the emergence of
high-level intelligence aggregates properties from low-level. This mechanism is so common
in nature, and provides initial evidence of the potential problem solving capabilities.
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Table 5: Performance of all algorithms on benchmark functions f11–f17. In bold are the best results.

Func. PS2O-S PS2O-R PS2O-SR PS2O-RS PSO GA

f11

Mean 0 0 1.67e − 002 0 2.14e + 000 1.26e − 001

Std 0 0 5.31e − 002 0 2.60e − 001 1.41e − 001

Iter. 14 24 335 28 ∞ ∞
Rank 1 2 4 3 6 5

f12

Mean 0 0 3.33e − 002 0 3.19e + 000 2.64e − 001

Std 0 0 1.18e − 001 0 3.81e − 001 1.06e − 001

Iter. 310 69 493 328 ∞ ∞
Rank 2 1 4 3 6 5

f13

Mean 0 0 0 0 3.96e + 000 0

Std 0 0 0 0 1.33e + 000 0

Iter. 134 82 426 275 ∞ 335

Rank 2 1 5 3 6 4

f14

Mean 4.00e − 003 0 6.70e − 003 0 2.94e − 001 2.38e − 001

Std 1.98e − 002 0 2.54e − 002 0 1.33e − 002 8.05e − 002

Iter. 871 367 538 398 ∞ ∞
Rank 4 1 3 2 6 5

f15

Mean 0 0 0 0 0 1.36e − 001

Std 0 0 0 0 0 1.30e − 001

Iter. 17 89 147 107 356 ∞
Rank 1 2 4 3 5 6

f16

Mean 0 0 0 0 2.00e − 003 1.80e − 001

Std 0 0 0 0 1.41e − 002 2.44e − 001

Iter. 203 272 187 151 ∞ ∞
Rank 3 4 2 1 5 6

Mean 0 0 0 0 0 7.44e − 002

f17
Std 0 0 0 0 0 1.83e − 002

Iter. 39 51 39 55 61 ∞
Rank 1 3 1 4 5 6

Aver. Rank 2 2 3.29 2.71 5.57 5.14

Final Rank 1 1 4 3 6 5

Furthermore, this paper presents the hierarchical swarm optimization (HSO) model that
simulates the hierarchical swarm intelligence for function optimization. HSO is an artificial
hierarchical complex system, in which agents are composed of swarms of other agents in
nested hierarchies. That is, HSO is configured into several levels and each level is composed
of a number of independent swarms. Note that any traditional SI methods or evolutionary
algorithms can be used to manipulate any swarm of any level in HSO. HSO can be considered
as not only an extension of the traditional SI model to design novel optimization algorithms,
but also an open framework to hybrid traditional SI or EA algorithms to tackle hard
optimization problems.

HSO model has a considerable potential in optimization domain. This paper provides
some initial insights into this potential by designing a two-level HSO algorithm, namely
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PS2O, which employs PSO method in each swarm of each level. This algorithm is
conceptually simple, has low complexity, and is easy to implement. A set of 17 benchmark
functions (including continuous and discrete cases) have been used to test four PS2O variants
in comparison with GA, CMA-ES, ABC, canonical PSO, FIPS, UPSO, and FDR-PSO. The
simulation results show that, for all the test functions, the PS2Os reach remarkably better
performance in terms of accuracy, convergence rate, and robustness than the other classical
powerful algorithms.

It should be mentioned that the PS2Os were the only ones that are able to consistently
find the minimum of Sphere, Sum of different powers, Griewank, Weierstrass, Composition
function 1 and all discrete test problems. Future research will address designing more robust
and efficient HSO algorithms by integrating other SI algorithms to HSO and applying them
to solve complex optimization problems. We should note that the two-level HSO algorithm is
conceptually simple and easy to implement. However, in our future work, HSO algorithms
with more hierarchical levels could be studied and tested on some complex benchmark
functions and real-world problems.

Appendix

List of Test Functions

These benchmark functions can be grouped as unimodal continuous functions f1–f5,
multimodal continuous functions f6–f10, unimodal discrete functions f11–f16, and multi-
modal discrete function f17. Functions f1–f9 were test widely in evolutionary computation
domain to show solution quality and convergence rate. Function f10 is a novel composition
benchmark function developed by Liang et al. [47]. The discrete functions f11–f17 were used
in Clerc’s literature [46, 48] and can be found at http://clerc.maurice.free.fr/pso/.

(1) Sphere Function

f1(x) =
n∑
i=1

x2
i . (A.1)

(2) Rosenbrock’s Function

f2(x) =
n∑
i=1

100 ×
(
xi+1 − x2

i

)2
+ (1 − xi)2. (A.2)

(3) Quadric Function

f3(x) =
n∑
i=1

⎛
⎝

i∑
j=1

xj

⎞
⎠

2

. (A.3)

(4) Sum of Different Powers

f4(x) =
n∑
i=1

|xi|i+1. (A.4)
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(5) Sin Function

f5(x) =
π

n

{
10 sin2πx1 +

n−1∑
i=1

(xi − 1)2
(

1 + 10 sin2πxi+1

)
+ (xn − 1)2

}
. (A.5)

(6) Ackley’s Function

f6(x) = −20 exp

⎛
⎝−0.2

√√√√ 1
n

n∑
i=1

x2
i

⎞
⎠ − exp

(
1
n

n∑
i=1

cos 2πxi

)
+ 20 + e. (A.6)

(7) Rastrigrin’s Function

f7(x) =
n∑
i=1

(
x2
i − 10 cos(2πxi)

)
+ 10. (A.7)

(8) Griewank’s Function

f8(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos
(
xi√
i

)
+ 1. (A.8)

(9) Weierstrass Function

f9(x) =
n∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk(xi + 0.5)

)])
− n
(

kmax∑
k=0

[
ak cos

(
2πbk · 0.5

)])
, (A.9)

where a = 0.5, b = 3, and kmax = 20.

(10) Composition Function 1

The composition function 1 is constructed using 10 unimodal sphere functions. This results
in an asymmetrical multimodal function with 1 global optimum and 9 local optima. The
variables of the formulation can be referred to [47]

f10(x) =
n∑
i=1

{
wi ∗

[
fi

(
(x − oi + oiold)

λi
∗Mi

)
+ biasi

]}
+ f bias. (A.10)
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(11) Goldberg’s Order-3

The fitness f of a bit-string is the sum of the result of separately applying the following
function to consecutive groups of three components each:

f11(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.9 if
∣∣y∣∣ = 0,

0.6 if
∣∣y∣∣ = 1,

0.3 if
∣∣y∣∣ = 2,

1.0 if
∣∣y∣∣ = 3.

(A.11)

If the string size (the dimension of the problem) is D, the maximum value is D/3 for
the string 111. . .111. In practice, we will then use as fitness the value D/3 − f so that the
problem is now to find the minimum 0.

(12) Bipolar Order-6

The fitness f is the sum of the result of applying the following function to consecutive groups
of six components each:

f12(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1.0 if
∣∣y∣∣ = 0 or 6,

0.0 if
∣∣y∣∣ = 1 or 5,

0.4 if
∣∣y∣∣ = 2 or 4,

0.8 if
∣∣y∣∣ = 3.

(A.12)

The maximum value is D/6. In practice, we will use as fitness the value D/6 − f so
that the problem is now to find the minimum 0.

(13) Mulenbein’s Order-5

The fitness f is the sum of the result of applying the following function to consecutive groups
of five components each:

f13(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.0 if y = 00000,

3.0 if y = 00001,

2.0 if y = 00011,

1.0 if y = 00111,

3.5 if y = 11111,

0.0 otherwise.

(A.13)
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The maximum value is 3.5D/5. In practice, the value 3.5D/5 − f is used as the fitness
so that the problem is now to find the minimum 0.

(14) Clerc’s Zebra3

The fitness f is the sum of the result of applying the following function to consecutive groups
of three components each, if the rank of the group is even (first rank = 0):

f14(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.9 if
∣∣y∣∣ = 0,

0.6 if
∣∣y∣∣ = 1,

0.3 if
∣∣y∣∣ = 2,

1.0 if
∣∣y∣∣ = 3.

(A.14)

If the rank of the group is odd,

f14(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.9 if
∣∣y∣∣ = 3,

0.6 if
∣∣y∣∣ = 2,

0.3 if
∣∣y∣∣ = 1,

1.0 if
∣∣y∣∣ = 0.

(A.15)

The maximum value is D/3. In practice, we will then use as fitness the value D/3 − f
so that the problem is now to find the minimum 0.

(15) Clerc’s Order-3 Problem 1

The fitness f is the sum of the result of applying the following function to consecutive groups
of three components each:

f15(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9 if y = 000,

0.6 if y = 001,

0.3 if y = 010,

1.0 if y = 011,

0.2 if y = 100,

0.4 if y = 101,

0.6 if y = 110,

0.8 if y = 111.

(A.16)

The maximum value is D/3. In practice, we will then use as fitness the value D/3 − f
so that the problem is now to find the minimum 0.
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Table 6: Parameters of the test functions.

f Dimensions Initial range x∗ f(x∗)

f1 30 [−100, 100]D [0, 0, . . . , 0] 0

f2 30 [−30, 30]D [1, 1, . . . , 1] 0

f3 30 [−65.536, 65.536]D [0, 0, . . . , 0] 0

f4 30 [−1, 1]D [0, 0, . . . , 0] 0

f5 30 [−10, 10]D [0, 0, . . . , 0] 0

f6 30 [−32.768, 32.768]D [0, 0, . . . , 0] 0

f7 30 [−5.12, 5.12]D [0, 0, . . . , 0] 0

f8 30 [−600, 600]D [0, 0, . . . , 0] 0

f9 30 [−0.5, 0.5]D [0, 0, . . . , 0] 0

f10 10 [−5, 5]D Predefined rand number distributed in the search range 0

f11 120 [0, 1] [1, 1, . . . , 1] 0

f12 120 [0, 1] [0, 0, . . . , 0] or [1, 1, . . . , 1] or [. . . , 6 ∗ 0, . . . , 6 ∗ 1, . . .] 0

f13 120 [0, 1] [0, 0, . . . , 0] 0

f14 30 [0, 1] [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, . . .] 0

f15 60 [0, 1] [0, 1, 1, 0, 1, 1, . . .] 0

f16 60 [0, 1] [0, 0, 1, 0, 0, 1, . . .] 0

f17 200 [0, 1] Predefined rand number distributed in the search range 0

(16) Clerc’s Order-3 Problem 2

The fitness f is the sum of the result of applying the following function to consecutive groups
of three components each:

f16(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.2 if y = 000,

1.0 if y = 001,

0.3 if y = 010,

0.8 if y = 011,

0.6 if y = 100,

0.4 if y = 101,

0.6 if y = 110,

0.9 if y = 111.

(A.17)

The maximum value is D/3. In practice, we will then use as fitness the valueD/3−f so
that the problem is now to find the minimum 0.
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// Definition of the fitness landscape.
For (i = 1 to number of peaks p)

For (j = 1 to number of Dimension D)
landscape (i, j) = rand( );

End for
End for
// the fitness f is computed as follows:
f = 0;
For (i = 1 to number of peaks p)

q = 0;
For (j = 1 to number of Dimension D)

If (x(j) = landscape (i, j))
q = q + 1;

End if
End for
If (f < q)
f = q;

End if
End for
f = 1 − f/D.

Algorithm 1

(17) Discrete Multimodal Problem

This problem is defined by Algorithm 1.
The dimensions, initialization ranges, global optima x∗, and the corresponding fitness

value f(x∗) of each function are listed in Table 6.
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