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We study the existence of positive solutions to the system of nonlinear first-order periodic
boundary value problems on time scales xΔ(t) + P(t)x(σ(t)) = F(t, x(σ(t))), t ∈ [0, T]T, x(0) =
x(σ(T)), by using a well-known fixed point theorem in cones. Moreover, we characterize the
eigenvalue intervals for xΔ(t) + P(t)x(σ(t)) = λH(t)G(x(σ(t))), t ∈ [0, T]T, x(0) = x(σ(T)).

1. Introduction

On the one hand, periodic boundary value problems (PBVPs for short) for differential
equations and difference equations have received much attention in the literature. See, for
example, [1–17] and references therein. On the other hand, recently, the study of dynamic
equations on time scales has became a new important branch (see, e.g., [18–22]). Naturally,
some authors have focused their attention on the BVPs or PBVPs for dynamic equations on
time scales [23–32], in which the works in [25, 27] concerned the singular problems on time
scales (concerned the study, theory, and applications of boundary value problems involving
singularities of differential equations, please see [33]). In particular, for the first-order PBVP
of dynamic equations on time scales

xΔ(t) + p(t)x(σ(t)) = f(t, x(σ(t))), t ∈ [0, T]T,

x(0) = x(σ(T)),
(1.1)

the works in [24, 30] obtained the existence of at least one solution. The methods involved
novel inequalities and the well-known Schaefer fixed point theorem [34].
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In [31], Sun and Li obtained the some existence and multiplicity criteria of positive
solutions to the following first-order PBVP on time scales

xΔ(t) + p(t)x(σ(t)) = f(x(t)), t ∈ [0, T]T,

x(0) = x(σ(T))
(1.2)

by using Guo-Krasnoselskii fixed point theorem [35], Schauder fixed point theorem [35], and
Leggett-Williams fixed point theorem [36].

Very recently, Sun and Li [32] considered the following first-order PBVP on time scales

xΔ(t) + p(t)x(σ(t)) = λf(x(t)), t ∈ [0, T]T,

x(0) = x(σ(T)),
(1.3)

where λ > 0. Some existence, multiplicity, and nonexistence criteria of positive solutions were
established. The main tool used in [32] is the fixed point index theory [37].

However, up to now, there are few works for studying systems of PBVP of dynamic
equations on time scales [29]. In [29], Sun and Li considered the following system of
nonlinear first-order PBVP on time scales

uΔi (t) + gi(t, u1(σ(t)), u2(σ(t)), . . . , un(σ(t))) = 0, t = [0, T]T,

ui(0) = ui(σ(T)), i = 1, 2, . . . , n.
(1.4)

By using a fixed point theorem for completely continuous operators [35], they obtained some
existence criteria of one positive solution to the system.

In this paper, we study the existence of positive solutions for the following system of
first-order PBVP on time scale

xΔ(t) + P(t)x(σ(t)) = F(t, x(σ(t))), t ∈ [0, T]T,

x(0) = x(σ(T)),
(1.5)

where T is a time scale, [0, T]T means [0, T] ∩ T (here T > 0 and 0, T ∈ T), x =
(x1, x2, . . . , xn)

T(T stands for the transpose), P(t) = diag[p1(t), p2(t), . . . , pn(t)], and F =
(f1, f2, . . . , fn)

T. For i ∈ {1, 2, . . . , n}, pi : [0, T]T → (0,∞) is right-dense continuous and
fi : [0, T]T × [0,∞)n → [0,∞) is continuous.

The main results in this paper are proved by a fixed point theorem (see [37]) for
compact maps on conical shells which are different from those used in [24, 29–32]. To do
this, we extend the ideas introduced by Lan and Webb in [38] (see also [39]) to the general
time scales. This approach was used in [5] for the continuous case and in [6] for the discrete
case.

As an application, we study the following eigenvalue problem:

xΔ(t) + P(t)x(σ(t)) = λH(t)G(x(σ(t))), t ∈ [0, T]T,

x(0) = x(σ(T)),
(1.6)
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where H(t) = diag[h1(t), h2(t), . . . , hn(t)], G(x) = [g1(x), g2(x), . . . , gn(x)]T, and λ > 0 is a
positive parameter. We prove that PBVP (1.6) has at least one positive solution for each λ
in an explicit eigenvalue interval. Recently, several eigenvalue characterization for different
kinds of boundary value problems have appeared and we refer the readers to [32, 40–42].

It is noticed that the results obtained in this paper generalize some results in [30–32]
to some degree.

In the remainder of this section, we state a fixed point theorem for compact maps on
conical shell [37].

Now we recall a completely continuous operator which transforms every bounded set
into a relatively compact set. IfD is a subset of X,we writeDK = D ∩K and ∂KD = (∂D)∩K.

Theorem 1.1 (see [37]). Let X be a Banach space with a cone K. Assume that Ω1, Ω2 are open
bounded subsets of X with Ω1

K /=φ, Ω
1
K ⊂ Ω2

K. Let Φ : Ω2
K → K be a continuous and compact

operator such that

(i) ‖Φx‖ ≤ ‖x‖ for x ∈ ∂KΩ1 (or x ∈ ∂KΩ2);

(ii) there exists e ∈ K \ {0} such that x /=Φx + λe for x ∈ ∂KΩ2 (or x ∈ ∂KΩ1) and λ > 0.

Then Φ has a fixed point in (Ω2
K \Ω1

K).

Remark 1.2. In Theorem 1.1, the use of (ii) gives better results than the use of the common
assumption ‖Φx‖ ≥ ‖x‖ for x ∈ ∂KΩ2 (or x ∈ ∂KΩ1).

2. Preliminaries

Let

A = {x | x : [0, T]T −→ R is continuous}. (2.1)

For hi ∈ A,we consider the following linear PBVP:

xΔ
i (t) + pi(t)xi(σ(t)) = hi(t), t ∈ [0, T]T,

xi(0) = xi(σ(T)).
(2.2)

Lemma 2.1 (see [30]). For hi ∈ A, i = 1, 2, . . . , n, the PBVP (2.2) has a unique solution, which can
be written by

xi(t) =
1

epi(t, 0)

[∫ t
0
epi(s, 0)hi(s)Δs +

1
epi(σ(T), 0) − 1

∫σ(T)
0

epi(s, 0)hi(s)Δs

]
, t ∈ [0, σ(T)]T.

(2.3)

Remark 2.2. By Lemma 2.1, for hi ∈ A, i = 1, 2, . . . , n, the PBVP (2.2) has a unique solution:

xi(t) =
∫σ(T)
0

Gi(t, s)hi(s)Δs, t ∈ [0, σ(T)]T, (2.4)
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where

Gi(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
epi(s, t)epi(σ(T), 0)
epi(σ(T), 0) − 1

, 0 ≤ s ≤ t ≤ σ(T),
epi(s, t)

epi(σ(T), 0) − 1
, 0 ≤ t < s ≤ σ(T).

(2.5)

Lemma 2.3. Let Gi(t, s) be defined as Remark 2.2; then

Ai � 1
epi(σ(T), 0) − 1

≤ Gi(t, s) ≤
epi(σ(T), 0)

epi(σ(T), 0) − 1
� Bi, i = 1, 2, . . . , n. (2.6)

Let

B = {x | x : [0, σ(T)]T −→ R is continuous} (2.7)

with the norm |x|0 = maxt∈[0,σ(T)]T |x(t)|, and X = Bn, for any x = (x1, x2, . . . , xn) ∈ X, its norm

‖x‖ = max{|x1|0, |x2|0, . . . , |xn|0}, (2.8)

and then X is a Banach space.
Let

K = {x = (x1, x2, . . . , xn) ∈ X : xi(t) ≥ 0, t ∈ [0, σ(T)]T, xi(t) ≥ δi|xi|0, ∀i = 1, 2, . . . , n}, (2.9)

where δi = Ai/Bi = epi(0, σ(T)) ∈ (0, 1). It is not difficult to verify that K is a cone in X.
We define an operator Φ : K → X as follows:

(Φx) = (Φ1x,Φ2x, . . . ,Φnx)T, (2.10)

where

(Φix)(t) =
∫σ(T)
0

Gi(t, s)fi(s, x(σ(s)))Δs, t ∈ [0, σ(T)]T. (2.11)

By Lemma 2.1 and Remark 2.2, it is easy to see that fixed points of Φ are the solutions
to the PBVP (1.5).

Lemma 2.4. Φ : K → K is completely continuous.
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Proof. First, we assert that Φ : K → X is completely continuous.
The proof is divided into three steps.

Step 1. Let {xn}∞n=1 be a sequence such that limn→∞xn = x in K. Then for all i ∈ {1, 2, . . . , n},
we have

|(Φixn)(t) − (Φix)(t)| =
∣∣∣∣∣
∫σ(T)
0

Gi(t, s)
[
fi(s, xn(σ(s))) − fi(s, x(σ(s)))

]
Δs

∣∣∣∣∣
≤ Bi

∫σ(T)
0

∣∣fi(s, xn(σ(s))) − fi(s, x(σ(s)))∣∣Δs.
(2.12)

Since fi(t, x) is continuous in x, we have |(Φixn)(t) − (Φix)(t)| → 0, which leads to
|Φixn −Φix|0 → 0 (n → ∞), so we get ‖Φxn − Φx‖ → 0 (n → ∞). That is, Φ : K → X is
continuous.

Step 2. To show that Φ maps bounded sets into bounded sets in X,let B ⊂ K be a bounded
set. Then, for t ∈ [0, σ(T)]T and any x ∈ B,we have

|(Φix)(t)| =
∣∣∣∣∣
∫σ(T)
0

Gi(t, s)fi(s, x(σ(s)))Δs

∣∣∣∣∣
≤ Bi

∫σ(T)
0

∣∣fi(s, x(σ(s)))∣∣Δs.
(2.13)

In virtue of the continuity of fi(t, x), we can conclude that Φix is bounded uniformly for all
i ∈ {1, 2, . . . , n}, which leads to Φx being bounded uniformly, and so Φ(B) is a bounded set.

Step 3. To show that Φ maps bounded sets into equicontinuous sets of X,let t1, t2 ∈
[0, σ(T)]T, x ∈ B, and then for all i ∈ {1, 2, . . . , n}

|(Φix)(t1) − (Φix)(t2)| ≤
∫σ(T)
0

|Gi(t1, s) −Gi(t2, s)|
∣∣fi(s, x(σ(s)))∣∣Δs. (2.14)

The right-hand side tends to uniformly zero as |t1 − t2| → 0, which imply Φ maps
bounded sets into equicontinuous sets of X.

Consequently, Steps 1–3 together with the Arzela-Ascoli Theorem show that Φ : K →
X is completely continuous.

Next, to show that Φ maps K into K, let x ∈ K, by Lemma 2.3; we have

(Φix)(t) ≥ 0, i = 1, 2, . . . , n,

(Φix)(t) ≤ Bi
∫σ(T)
0

fi(s, x(σ(s)))Δs,
(2.15)
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and this implies that

|Φix|0 = max
t∈[0,σ(T)]T

|(Φix)(t)| ≤ Bi
∫σ(T)
0

fi(s, x(σ(s)))Δs. (2.16)

On the other hand, from Lemma 2.3 we have

(Φix)(t) ≥ Ai

∫σ(T)
0

fi(s, x(σ(s)))Δs. (2.17)

Therefore,

(Φix)(t) ≥ Ai

∫σ(T)
0

fi(s, x(σ(s)))Δs

= δiBi

∫σ(T)
0

fi(s, x(σ(s)))Δs

≥ δi|Φix|0.

(2.18)

That is Φ(K) ⊂ K.

3. Existence of Positive Solutions for the PBVP (1.5)

In this section, we establish the existence of positive solutions for the PBVP (1.5). First we
extend the ideas introduced by Lan and Webb in [38, 39] to the general time scale.

For r > 0, we define the open sets

Ωr =
{
x ∈ X | min

t∈[0,σ(T)]T
xi(t) < δir ∀i = 1, 2, . . . , n

}
,

Br = {x ∈ X | ‖x‖ < r}.
(3.1)

Lemma 3.1. Ωr , Br defined above have the following properties.

(a) Ωr
K and BrK are open relative to K.

(b) BδrK ⊂ Ωr
K ⊂ BrK, here δ = min{δi, i = 1, 2, . . . , n}.

(c) x ∈ ∂KΩr if and only if x ∈ K andmint∈[0,σ(T)]T xj(t) = δjr for some j ∈ {1, 2, . . . , n} and
mint∈[0,σ(T)]T xi(t) ≤ δir for each i ∈ {1, 2, . . . , n}.

(d) If x ∈ ∂KΩr , then δjr ≤ xj(t) ≤ r, t ∈ [0, σ(T)]T for some j ∈ {1, 2, . . . , n} and 0 ≤
xi(t) ≤ r, t ∈ [0, σ(T)]T for each i ∈ {1, 2, . . . , n}.Moreover, |xi|0 ≤ r.

(e) For each ρ > r, the following relations hold:

Ωr
K = (Ωr ∩ Bρ)K, Ωr

K = (Ωr ∩ Bρ)K. (3.2)
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Proof. (a) and (c) are obvious. So, we only prove that (b), (d), and (e) hold.
First we assert (b). Let x ∈ BδrK ; then for each i ∈ {1, 2, . . . , n}, we have |xi|0 < δr,

so mint∈[0,σ(T)]Txi(t) < δr ≤ δir, and x ∈ Ωr
K. On the other hand, if x ∈ Ωr

K, then for each
i ∈ {1, 2, . . . , n}, we have mint∈[0,σ(T)]T xi(t) < δir and xi(t) ≥ δi|xi|0 for t ∈ [0, σ(T)]T. So
|xi|0 < r, that is, Ωr

K ⊂ BrK.Hence (b) holds.
Next, we assert (d). Let x ∈ ∂KΩr ; so we have from (c) that there exists j ∈ {1, 2, . . . , n}

such that

δj
∣∣xj∣∣0 ≤ min

t∈[0,σ(T)]T
xj(t) = δjr. (3.3)

Thus |xj |0 ≤ r and δjr ≤ xj(t) ≤ r, t ∈ [0, σ(T)]T. Furthermore notice for each i ∈
{1, 2, . . . , n} that δi|xi|0 ≤ mint∈[0,σ(T)]Txi(t) ≤ δir, so |xi|0 ≤ r and 0 ≤ xi(t) ≤ r for t ∈ [0, σ(T)]T;
that is, (d) holds.

Finally we assert (e). From (b), the first equality is obvious. Now we prove the second
equality.

Let x ∈ Ωr
K; then from (c), we have that

δi|xi|0 ≤ min
t∈[0,σ(T)]T

xi(t) ≤ δir < δiρ, i = 1, 2, . . . , n. (3.4)

So |xi|0 < ρ, i = 1, 2, . . . , n, and this implies that x ∈ (Ωr ∩ Bρ) ∩K. Since Ωr and Bρ are
open sets, we have Ωr ∩ Bρ ⊂ Ωr ∩ Bρ. Thus x ∈ (Ωr ∩ Bρ)K, that is, Ωr

K ⊆ (Ωr ∩ Bρ)K. The
reverse inclusion is trivial.

Remark 3.2. It is clear that the sets Ωr are unbounded sets for each r > 0; so we cannot use
Theorem 1.1 with Ωr directly. However we will be able to apply Theorem 1.1 with Ωr

K since
(e) holds.

Theorem 3.3. Suppose the following.

(H1) For each i = 1, 2, . . . , n, there exist a constant α > 0 and a continuous function ψi :
[0, T]T → (0,∞) such that

fi(t, x) ≥ δiαψi(t), ∀t ∈ [0, T]T, 0 ≤ xl ≤ α (l ∈ {1, 2, . . . , n} \ {i}), δiα ≤ xi ≤ α,

min
t∈[0,σ(T)]T

∫σ(T)
0

Gi(t, s)ψi(s)Δs ≥ 1.
(3.5)

(H2) For each i = 1, 2, . . . , n, there exist a constant β > 0 and a continuous function χi :
[0, T]T → (0,∞) such that

fi(t, x) ≤ βχi(t), ∀t ∈ [0, T]T, 0 ≤ xi ≤ β,

max
t∈[0,σ(T)]T

∫σ(T)
0

Gi(t, s)χi(s)Δs ≤ 1.
(3.6)

Then, the following results hold:
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(a) if β < δα, then the PBVP (1.5) has at least one positive solution x satisfying

β ≤ ‖x‖ ≤ α; (3.7)

(b) if β > α, then the PBVP (1.5) has at least one positive solution x satisfying

δα ≤ ‖x‖ ≤ β. (3.8)

Proof. Now we assert that the conditions of Theorem 1.1 are satisfied.
First, we assert that ‖Φx‖ ≤ ‖x‖ for x ∈ ∂KBβ.
For any x ∈ ∂KBβ, we have |xi|0 ≤ β for each i ∈ {1, 2, . . . , n}. Fix i ∈ {1, 2, . . . , n}. Then

from (H2)we obtain, for each t ∈ [0, σ(T)]T,

(Φix)(t) =
∫σ(T)
0

Gi(t, s)fi(s, x(σ(s)))Δs

≤ β
∫σ(T)
0

Gi(t, s)χi(s)Δs

≤ β max
t∈[0,σ(T)]T

∫σ(T)
0

Gi(t, s)χi(s)Δs

≤ β.

(3.9)

Hence, |Φix|0 ≤ ‖x‖ for each i ∈ {1, 2, . . . , n}. This implies ‖Φx‖ ≤ ‖x‖ for x ∈ ∂KBβ.
Next, we assert that there exists e ∈ K \ {0} such that x /=Φx + λe, for all x ∈ ∂KΩα and

all λ > 0.
Let e(t) ≡ 1; so e ∈ K \ {0}. Suppose that there exist x ∈ ∂KΩα and λ > 0 such that

x = Φx + λe. Since x ∈ ∂KΩα, then from Lemma 3.1(d) there exists j ∈ {1, 2, . . . , n} with
δjα ≤ xj(t) ≤ α, t ∈ [0, σ(T)]T, and 0 ≤ xi(t) ≤ α for t ∈ [0, σ(T)]T and i ∈ {1, 2, . . . , n} \ {j}.

Hence, from (H1) we have

xj(t) =
(
Φjx
)
(t) + λ

=
∫σ(T)
0

Gj(t, s)fj(s, x(σ(s)))Δs + λ

≥ αδj
∫σ(T)
0

Gj(t, s)ψj(s)Δs + λ

≥ αδj min
t∈[0,σ(T)]T

∫σ(T)
0

Gj(t, s)ψj(s)Δs + λ

≥ αδj + λ.

(3.10)

Thus, mint∈[0,σ(T)]Txj(t) ≥ αδj + λ > αδj , contradicting the statement of Lemma 3.1(c).
That is, there exists e ∈ K \ {0} such that x /=Φx + λe, for all x ∈ ∂KΩα and all λ > 0.
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If β < δα, then from Lemma 3.1 we have that BβK ⊂ BδαK ⊂ Ωα
K, and therefore

it follows from Theorem 1.1 that Φ has at least one fixed point x ∈ Ωα
K \ B

β

K. Hence
‖x‖ ≥ β and mint∈[0,σ(T)]Txi(t) ≤ δiα for each i ∈ {1, 2, . . . , n}. On the other hand, δi|xi|0 ≤
mint∈[0,σ(T)]Txi(t) ≤ δiα and therefore |xi|0 ≤ α for each i ∈ {1, 2, . . . , n}. This implies that
‖x‖ ≤ α.

If β > α, then we have that Ωα
K ⊂ B

β

K, and therefore Theorem 1.1 guarantees the

existence of at least one fixed point x ∈ BβK \Ωα
K of Φ. So, we obtain δα ≤ ‖x‖ ≤ β.

4. Eigenvalue Interval of PBVP (1.6)

In this section, we characterize the eigenvalue intervals of system (1.6) by employing
Theorem 3.3.

First we establish one existence result for the following system:

xΔ(t) + P(t)x(σ(t)) = H(t)G(x(σ(t))), t ∈ [0, T]T,

x(0) = x(σ(T)),
(4.1)

whereH(t) = diag[h1(t), h2(t), . . . , hn(t)], G(x) = [g1(x), g2(x), . . . gn(x)]T.
For each i = 1, 2, . . . , n, we assume the following.

(H3) gi : [0,∞)n → [0,∞) is continuous with gi(x) > 0 for ‖x‖ > 0.

(H4) hi : [0, T]T → [0,∞) is continuous and
∫σ(T)
0 Gi(t, s)hi(s)Δs > 0.

Theorem 4.1. Suppose that conditions (H3) and (H4) hold. Then the PBVP (4.1) has at least one
positive solution x with x not identically vanishing on [0, σ(T)]T if one of the following conditions
holds:

(H5) 0 ≤ gi0 < C
−1
i and D−1

i < gi∞ ≤ ∞, i = 1, 2, . . . , n;

(H6) 0 ≤ gi∞ < C−1
i and D−1

i < gi0 ≤ ∞, i = 1, 2, . . . , n;

where gi0 = limx→ 0+(gi(x)/‖x‖), gi∞ = limx→∞(gi(x)/‖x‖), i = 1, 2, . . . , n, and

Ci = max
t∈[0,σ(T)]T

∫σ(T)
0

Gi(t, s)hi(s)Δs, Di = min
t∈[0,σ(T)]T

∫σ(T)
0

Gi(t, s)hi(s)Δs. (4.2)

Proof. To see this, we will apply Theorem 3.3 with fi(t, x) = hi(t)gi(x), i = 1, 2, . . . , n. Suppose
that (H5) holds; then there exists β > 0 such that gi(x) ≤ C−1

i β for 0 < ‖x‖ ≤ β.
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Choose χi(t) = C−1
i hi(t) for i = 1, 2, . . . , n. Fix i ∈ {1, 2, . . . , n}. Then fi(t, x) =

hi(t)gi(x) ≤ C−1
i βhi(t) = βχi(t) if t ∈ [0, σ(T)]T and 0 < xi ≤ β and

∫σ(T)
0

Gi(t, s)χi(s)Δs = C−1
i

∫σ(T)
0

Gi(t, s)hi(s)Δs

≤ C−1
i max
t∈[0,σ(T)]T

∫σ(T)
0

Gi(t, s)hi(s)Δs

= 1.

(4.3)

Thus hypothesis (H2) holds.
From the second part of (H5), there exists α > 0 such that δiα > β and gi(x) ≥ D−1

i δiα
for xi ≥ δiα, i = 1, 2, . . . , n.

Choose ψi(t) = D−1
i hi(t); then

fi(t, x) = hi(t)gi(x) ≥ D−1
i δiαhi(t) = δiαψi(t), if t ∈ [0, σ(T)]T, xi ≥ δiα (4.4)

(so in particular for δiα ≤ xi ≤ α) and

∫σ(T)
0

Gi(t, s)ψi(s)Δs = D−1
i

∫σ(T)
0

Gi(t, s)hi(s)Δs

≥ D−1
i min
t∈[0,σ(T)]T

∫σ(T)
0

Gi(t, s)hi(s)Δs

= 1.

(4.5)

This implies that hypothesis (H1) holds. The result now follows from Theorem 3.3.
The case when (H6) holds is similar. So we omit here.

Remark 4.2. By the proof of Theorem 4.1, we emphasize that Theorem 3.3 is very easy
to apply; roughly speaking, it only requires an integral representation of the considered
equation and some bounds for the kernel of the equivalent integral equation. So, in this way,
the corresponding existence result, that is, [31, Theorem 4.1], is improved.

Theorem 4.3. Suppose that conditions (H3) and (H4) hold. Then the PBVP (1.6) has at least one
positive solution for each

λ ∈
(

1
Dmini=1,2,...,n

{
gi∞
} , 1
Cmaxi=1,2,...,n

{
gi0
}
)

(4.6)

if 1/Dmini=1,2,...,n{gi∞} < 1/Cmaxi=1,2,...,n{gi0}. The same result remains valid for each

λ ∈
(

1
Dmini=1,2,...,n

{
gi0
} , 1
Cmaxi=1,2,...,n

{
gi∞
}
)

(4.7)
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if 1/Dmini=1,2,...,n{gi0} < 1/Cmaxi=1,2,...,n{gi∞}, where

C = max{Ci, i = 1, 2, . . . , n}, D = min{Di, i = 1, 2, . . . , n}, (4.8)

and one writes 1/giα = 0 if giα = ∞ and 1/giα = ∞ if giα = 0, here α = 0,∞.

Proof. We consider the case (4.6). The case (4.7) is similar.
If (4.6) holds, then

λgi0 ≤ λ max
i=1,2,...,n

{
gi0

}
<

1
C

≤ 1
Ci
, i = 1, 2, . . . , n,

λgi∞ ≥ λ min
i=1,2,...,n

{
gi∞

}
>

1
D

≥ 1
Di
, i = 1, 2, . . . , n.

(4.9)

Thus Theorem 4.1 applies directly.

Remark 4.4. By Theorem 4.3, the corresponding existence results in [32] are improved.

5. Example

For convenience, the example is given here when n = 1.

Example 5.1. Let T = [0, 1] ∪ [2, 3].We consider the following problem:

xΔ(t) + p(t)x(σ(t)) = λh(t)g(x(σ(t))), t ∈ [0, 3]T,

x(0) = x(3),
(5.1)

where p(t) ≡ 1, T = 3, h(t) ≡ 1, and g(x) = x2; it is easy to see that h and g satisfy the
conditions (H3) and (H4).

Then we get

g0 = lim
x→ 0+

g(x)
x

= 0, g∞ = lim
x→∞

g(x)
x

= ∞. (5.2)

By
∫σ(T)
0 G(t, s)h(s)Δs ≡ 1, we have

C = max
t∈[0,σ(T)]T

∫σ(T)
0

G(t, s)h(s)Δs = min
t∈[0,σ(T)]T

∫σ(T)
0

G(t, s)h(s)Δs = D = 1. (5.3)

Then we get g0 = 0 < 1 = C− and D− = 1 < g∞; that is, condition (H5) is satisfied. So, by
Theorem 4.1 the problem (5.1) has at least one positive solution when λ = 1. Furthermore, for
all λ ∈ (0,∞), the problem (5.1) has at least one positive solution from Theorem 4.3.
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