
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2010, Article ID 368379, 19 pages
doi:10.1155/2010/368379

Research Article
Boundedness and Stability for Discrete-Time
Delayed Neural Network with Complex-Valued
Linear Threshold Neurons

Chengjun Duan1, 2 and Qiankun Song1

1 Department of Mathematics, Chongqing Jiaotong University, Chongqing 400074, China
2 College of Information Science and Engineering, Chongqing Jiaotong University,
Chongqing 400074, China

Correspondence should be addressed to Qiankun Song, qiankunsong@163.com

Received 21 April 2010; Accepted 30 June 2010

Academic Editor: Josef Diblik

Copyright q 2010 C. Duan and Q. Song. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

The discrete-time delayed neural network with complex-valued linear threshold neurons is
considered. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear
matrix inequality technique and analysis method, several new delay-dependent criteria for
checking the boundedness and global exponential stability are established. Illustrated examples
are also given to show the effectiveness and less conservatism of the proposed criteria.

1. Introduction

In the past decade, neural networks have received increasing interest owing to their
applications in many areas such as signal processing, pattern recognition, associative
memories, parallel computation, and optimization solvers [1]. In such applications, the
qualitative analysis of the dynamical behaviors is a necessary step for the practical design
of neural networks [2].

On the other hand, artificial neural networks are usually implemented by integrated
circuits. In the implementation of artificial neural networks, time delay is produced by finite
switching and finite propagation speed of electronic signals. During the implementation
on very large-scale integrated chips, transmitting time delays will destroy the dynamical
behaviors of neural networks. Hence it is a worthy work to consider the dynamical
behaviors of neural networks with delays [3]. In recent years, some important results on
the boundedness, convergence, global exponential stability, synchronization, state estimation,
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and passivity analysis have been reported for delayed neural networks; see [1–9] and the
references theorems for some recent publications.

It should be pointed out that all of the above-mentioned literatures on the dynamical
behaviors of delayed neural networks are concerned with continuous-time case. However,
when implementing the continuous-time delayed neural network for computer simulation,
it becomes essential to formulate a discrete-time system that is an analogue of the continuous-
time delayed neural network. To some extent, the discrete-time analogue inherits the
dynamical characteristics of the continuous-time delayed neural network under mild or no
restriction on the discretization step-size, and also remains some functional similarity [10].
Unfortunately, as pointed out in [11], the discretization cannot preserve the dynamics of the
continuous-time counterpart even for a small sampling period, and therefore there is a crucial
need to study the dynamics of discrete-time neural networks. Recently, the dynamics analysis
problem for discrete-time delayed neural networks and discrete-time systems with delay has
been extensively studied; see [10–19] and references therein.

It is known that complex number calculus has been found useful in such areas as
electrical engineering, informatics, control engineering, bioengineering, and other related
fields. It is therefore not surprising to see that complex-valued neural networks which deal
with complex-valued data, complex-valued weights and neuron activation functions have
also been widely studied in recent years [20, 21]. Very recent, authors considered a class
of discrete time recurrent neural networks with complex-valued weights and activation
function [22, 23]. In [22], authors discussed the convergency for discrete-time recurrent
neural networks with multivalued neurons, which have complex-valued weights and an
activation function defined as a function of the argument of a weighted sum. In [23], the
boundedness, global attractivity, and complete stability were investigated for discrete-time
recurrent neural networks with complex-valued linear threshold neurons. However, the
delay is not considered in [22, 23], and the given criteria for checking the boundedness, global
attractivity, and complete stability are conservatism to some extent. Therefore, it is important
and necessary to further improve the results reported in [23].

Motivated by the above discussions, the objective of this paper is to study the problem
on boundedness and stability of discrete-time delayed neural network with complex-valued
linear threshold neurons.

2. Model Description and Preliminaries

In this paper, we consider the following discrete-time complex-valued neural network with
time-delay:

z(k + 1) = Aσ(z(k)) + Bσ(z(k − τ)) +H. (2.1)

Here k is a nonnegative integer and z(k) is a vector defined as z(k) = (z1(k), z2(k),
. . . , zN(k))T , where zi(k) denotes the activity of the ith neuron. Further, σ is a complex-valued
function defined as

σ(z) = max{0,Re(z)} + i ·max{0, Im(z)} (2.2)
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and σ(z(k)) = (σ(z1(k)), σ(z2(k)), . . . , σ(zN(k)))T . In (2.1),H,A, andB are stated as the input
vector (h1, h2, . . . , hN)T , the connection weight matrix (aij)N×N and the delayed connection
weight matrix (bij)N×N , respectively, and τ denotes time-delay, which is a positive integer.
The initial condition associated with model (2.1) is given by

z(s) = ϕ(s), s ∈ N[−τ, 0]. (2.3)

Remark 2.1. When B = 0, model (2.1) turns into the following model [22, 23]

z(k + 1) =Wσ(z(k)) +H. (2.4)

Hence, the model in [22, 23] is a special cases of the model in this paper.

Definition 2.2. A vector z∗ is called an equilibrium point of neural network (2.1), if it satisfies

z∗ = Aσ(z∗) + Bσ(z∗) +H. (2.5)

Definition 2.3. The neural network (2.1) is called to be bounded if each of its trajectories is
bounded.

Definition 2.4. The equilibrium point z∗ of the model (2.1) with the initial condition (2.3)
is said to be globally exponentially stable if there exist two positive constants M > 0 and
0 < ε < 1 such that

‖z(k) − z∗‖ ≤Mεk sup
s∈N[−τ,0]

∥
∥ϕ(s) − z∗∥∥. (2.6)

Throughout this paper, for any constant c ∈ C, we denote Re+(c) = max{0,Re(c)},
Re−(c) = min{0,Re(c)}, Im+(c) = max{0, Im(c)}, and Im−(c) = min{0, Im(c)}. Now we give
an assumption on connection weights.

(H) For each i = 1, 2, . . . ,N, there exist positive real numbers αi satisfying

max
1≤i≤N

⎧

⎨

⎩

1
αi

N∑

j=1

αj
[

Re+
(

aij
)

+
∣
∣Im
(

aij
)∣
∣
]

⎫

⎬

⎭
+ max

1≤i≤N

⎧

⎨

⎩

1
αi

N∑

j=1

αj
[

Re+
(

bij
)

+
∣
∣Im
(

bij
)∣
∣
]

⎫

⎬

⎭
< 1. (2.7)

For presentation convenience, in the following, we denote

γ = max
1≤i≤N

⎧

⎨

⎩

1
αi

N∑

j=1

αj
[

Re+
(

aij
)

+
∣
∣Im
(

aij
)∣
∣
]

⎫

⎬

⎭
,

μ = max
1≤i≤N

⎧

⎨

⎩

1
αi

N∑

j=1

αj
[

Re+
(

bij
)

+
∣
∣Im
(

bij
)∣
∣
]

⎫

⎬

⎭
.

(2.8)
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Let us define

vi(k) =
1
αi
[Re(σ(zi(k))) + Im(σ(zi(k)))], V (k) = max

1≤i≤N
{vi(k)}. (2.9)

Let {A(n)} be the sequence defined by

A(n) =

⎧

⎨

⎩

V (n), n = −τ,−τ + 1, . . . , 0,

γA(n − 1) + μA(n − 1 − τ) + β, n = 1, 2, . . . ,
(2.10)

where β = max1≤i≤N{(1/αi)(Re+(hi) + Im+(hi))}.
To prove our results, the following lemma that can be found in [24] is necessary in this

paper.

Lemma 2.5 (see [24]). Let p be a nonzero number. Then hn = pn is a solution of the homogeneous
recurrence relation

hn − a1hn−1 − a2hn−2 − · · · − akhn−k = 0 (ak /= 0, n > k) (2.11)

with constant coefficients if and only if p is a root of the polynomial equation

xk − a1xk−1 − a2xk−2 − · · · − ak = 0. (2.12)

If the polynomial equation has k distinct roots p1, p2, . . . , pk, then

hn = c1pn1 + c2p
n
2 + · · · + ckpnk (2.13)

is the general solution of (2.11) in the following sense: no matter what initial values for h1, h2, . . . , hk
are given, there are constants c1, c2, . . . , ck so that (2.13) is the unique sequence which satisfies both
the recurrence relation (2.11) and the initial condition.

The polynomial equation (2.12) is called the characteristic equation of the recurrence
relation (2.11) and its k roots are the characteristic roots.

3. The Main Results and Their Proofs

Theorem 3.1. If the assumption (H) holds and μ > 0, the network (2.1) is bounded.

Proof. Let R
+ = [0,+∞). It is noted that the restriction σ(z)|R is nonnegative and

nondecreasing and the restriction σ(z)|R+ = z if z ∈ R
+. Consequently, we have

σ(z) ≥ z, ∀z ∈ R. (3.1)
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Moreover, it is easy to prove that

σ(Re(z)) = Re(σ(z)), σ(Im(z)) = Im(σ(z)), ∀z ∈ C. (3.2)

From (2.1), we get that

Re(zi(k + 1)) ≤
N∑

j=1

[

Re+
(

aij
)

Re
(

σ
(

zj(k)
)) − Im−(aij

)

Im
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re+
(

bij
)

Re
(

σ
(

zj(k − τ))) − Im−(bij
)

Im
(

σ
(

zj(k − τ)))] + Re+(hi),

Im(zi(k + 1)) ≤
N∑

j=1

[

Re+
(

aij
)

Im
(

σ
(

zj(k)
))

+ Im+(aij
)

Re
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re+
(

bij
)

Im
(

σ
(

zj(k − τ))) + Im+(bij
)

Re
(

σ
(

zj(k − τ)))] + Im+(hi)

(3.3)

for k ≥ 0. Note that Re+(aij) ≥ 0, Re(σ(zj(k))) ≥ 0, −Im−(aij) ≥ 0, Im(σ(zj(k))) ≥ 0, Re+(bij) ≥
0, Re(σ(zj(k − τ))) ≥ 0, −Im−(bij) ≥ 0, −Im−(σ(zj(k − τ))) ≥ 0, and Re+(hi) ≥ 0. Hence, based
on monotonicity of σ(z)|R, we have

σ(Re(zi(k + 1))) ≤ σ
⎛

⎝

N∑

j=1

[

Re+
(

aij
)

Re
(

σ
(

zj(k)
)) − Im−(aij

)

Im
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re+
(

bij
)

Re
(

σ
(

zj(k − τ))) − Im−(bij
)

Im
(

σ
(

zj(k − τ)))]

+Re+(hi)

⎞

⎠

=
N∑

j=1

[

Re+
(

aij
)

Re
(

σ
(

zj(k)
)) − Im−(aij

)

Im
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re+
(

bij
)

Re
(

σ
(

zj(k − τ))) − Im−(bij
)

Im
(

σ
(

zj(k − τ)))] + Re+(hi)

≤
N∑

j=1

[

Re+
(

aij
)

Re
(

σ
(

zj(k)
))

+
∣
∣Im
(

aij
)∣
∣Im
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re+
(

bij
)

Re
(

σ
(

zj(k − τ))) + ∣∣Im(bij
)∣
∣Im
(

σ
(

zj(k − τ)))]+ Re+(hi).

(3.4)
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Similarly, we have

σ(Im(zi(k + 1))) ≤
N∑

j=1

[

Re+
(

aij
)

Im
(

σ
(

zj(k)
))

+
∣
∣Im
(

aij
)∣
∣Re
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re+
(

bij
)

Im
(

σ
(

zj(k − τ))) + ∣∣Im(bij
)∣
∣Re
(

σ
(

zj(k − τ)))] + Im+(hi).

(3.5)

Hence,

vi(k + 1) =
1
αi
[Re(σ(zi(k + 1))) + Im(σ(zi(k + 1)))]

≤ 1
αi

N∑

j=1

[

Re+
(

aij
)

+
∣
∣Im
(

aij
)∣
∣
]

[Re(σ(zi(k))) + Im(σ(zi(k)))]

+
1
αi

N∑

j=1

[

Re+
(

bij
)

+
∣
∣Im
(

bij
)∣
∣
]

[Re(σ(zi(k − τ))) + Im(σ(zi(k − τ)))]

+
1
αi

[

Re+(hi) + Im+(hi)
]

=
1
αi

N∑

j=1

αj
[

Re+
(

aij
)

+
∣
∣Im
(

aij
)∣
∣
]

vj(k)

+
1
αi

N∑

j=1

αj
[

Re+
(

bij
)

+
∣
∣Im
(

bij
)∣
∣
]

vj(k − τ)

+
1
αi

[

Re+(hi) + Im+(hi)
]

≤ γV (k) + μV (k − τ) + β.

(3.6)

Thus,

V (k + 1) ≤ γV (k) + μV (k − τ) + β, k ≥ 0. (3.7)

Now let {B(n)} be a sequence with

B(n) = A(n + 1) −A(n), n ≥ −τ. (3.8)

From the definition of {A(n)}, we have the following two equations:

A(n + 1) = γA(n) + μA(n − τ) + β,
A(n) = γA(n − 1) + μA(n − 1 − τ) + β,

(3.9)
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for n ≥ 1. It follows from (3.9) that

A(n + 1) −A(n) = γ(A(n) −A(n − 1)) + μ(A(n − τ) −A(n − 1 − τ)). (3.10)

That is

B(n) = γB(n − 1) + μB(n − 1 − τ) (3.11)

for n ≥ 1. Then the characteristic equation of the recurrence relation of (3.11) is

xτ+1 − γxτ − μ = 0. (3.12)

In the following, we will prove that (i) the roots of (3.12) are distinct and (ii) |x| < 1 for each
root x of (3.12).

For (i), let f(x) = xτ+1−γxτ −μ. Then f ′(x) = (τ +1)xτ −γτxτ−1. It is clear that f(x) and
f ′(x) are coprime since γ ≥ 0 and μ > 0. Hence f(x) has no multiple divisor, which means
that (3.12) has τ + 1 distinct roots.

For (ii), assume to the contrary that there exists some x0 such that |x0| ≥ 1. Then we
have from (3.12) that

|x0|τ+1 ≤ γ |x0|τ + μ. (3.13)

Multiplying |x0|−τ on both sides of inequality (3.13), we can get

|x0| ≤ γ + μ|x0|−τ . (3.14)

Thus,

1 ≤ |x0| ≤ γ + μ, (3.15)

which is contrary to the assumption (H). Therefore, |x| < 1 for any root x of (3.12).
Let p1, p2, . . . , pτ+1 be the distinct roots of (3.12); then |pi| < 1 (i = 1, 2, . . . , τ + 1). From

Lemma 2.5, we get that

B(n) = c1pn1 + c2p
n
2 + · · · + cτ+1pnτ+1, (3.16)

for n ≥ 1, where c1, c1, . . . , cτ+1 are constants which are uniquely determined by initial
condition: B(0), B(−1), . . . , B(−τ).
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From (3.8), we have

B(k − 1) = A(k) −A(k − 1),

B(k − 2) = A(k − 1) −A(k − 1),

...

B(1) = A(2) −A(1).

(3.17)

It follows that

A(k) = B(k − 1) + B(k − 2) + · · · + B(1) +A(1)

= c1
p1 − pk1
1 − p1 + c2

p2 − pk2
1 − p2 + · · · + cτ+1

pτ+1 − pkτ+1
1 − pτ+1 +A(1),

(3.18)

for k ≥ 1. From |pi| < 1 (i = 1, 2, . . . , τ + 1), we know that limk→∞pki = 0 (i = 1, 2, . . . , τ + 1), so

lim
k→∞

A(k) = c1
p1

1 − p1 + c2
p2

1 − p2 + · · · + cτ+1
pτ+1

1 − pτ+1 +A(1). (3.19)

Thus, series {A(k)} is bounded, that is, to say there exists a positive constant M ∈ R
+ such

that A(k) ≤M (k = 1, 2, . . .).
By the definition of A(k) and inequality (3.7), we know that V (k) ≤ A(k), for k ≥ −τ .

It follows from the definition of V (k) that

max
1≤i≤N

{vi(k)} = V (k) ≤ A(k) ≤M, k = 1, 2, . . . . (3.20)

By the properties (3.1), (3.2) of function σ and the definition of vi(k), we know

Re(zi(k)) ≤ σ(Re(zi(k))) = Re(σ(zi(k))) ≤ αivi(k) ≤ αiM,

Im(zi(k)) ≤ σ(Im(zi(k))) = Im(σ(zi(k))) ≤ αivi(k) ≤ αiM.
(3.21)
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On the other hand, we can get from (2.1) that

Re(zi(k + 1)) ≥
N∑

j=1

[

Re−
(

aij
)

Re
(

σ
(

zj(k)
)) − Im+(aij

)

Im
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re−
(

bij
)

Re
(

σ
(

zj(k − τ))) − Im+(bij
)

Im
(

σ
(

zj(k − τ)))] + Re−(hi)

=: m1,

Im(zi(k + 1)) ≥
N∑

j=1

[

Re−
(

aij
)

Im
(

σ
(

zj(k)
))

+ Im−(aij
)

Re
(

σ
(

zj(k)
))]

+
N∑

j=1

[

Re−
(

bij
)

Im
(

σ
(

zj(k − τ))) + Im−(bij
)

Re
(

σ
(

zj(k − τ)))] + Im−(hi)

=: m2

(3.22)

for k ≥ 0. It is noted that m1 ≤ 0 and m2 ≤ 0, since Re−(c) ≤ 0, Im+(c) ≥ 0, Im−(c) ≤ 0,
Re(σ(z)) ≥ 0, and Im(σ(z)) ≥ 0. Thus, we have

Re(zi(k + 1)) ≥ m1 +m2

≥
N∑

j=1

αj
(

Re−
(

aij
) − ∣∣Im(aij

)∣
∣
)

V (k)

+
N∑

j=1

αj
(

Re−
(

bij
) − ∣∣Im(bij

)∣
∣
)

V (k − τ)

+ Re−(hi) + Im−(hi)

≥
N∑

j=1

αj
(

Re−
(

aij
) − ∣∣Im(aij

)∣
∣
)

M

+
N∑

j=1

αj
(

Re−
(

bij
) − ∣∣Im(bij

)∣
∣
)

M

+ Re−(hi) + Im−(hi),

(3.23)

where the last inequality is due to 0 ≤ V (k) ≤ A(k) ≤M. Similarly, we can imply that

Im(zi(k + 1)) ≥
N∑

j=1

αj
(

Re−
(

aij
) − ∣∣Im(aij

)∣
∣
)

M

+
N∑

j=1

αj
(

Re−
(

bij
) − ∣∣Im(bij

)∣
∣
)

M

+ Re−(hi) + Im−(hi).

(3.24)
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From (3.21), (3.23), and (3.24), we know that the real part and imaginary part of zi(k) are
both bounded, so each trajectory of network (2.1) is bounded.

Theorem 3.2. If there exist threeN×N symmetric positive definite matrices P ,Q, andR, twoN×N
positive diagonal matrices D and F such that the matrix

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−P +Q +
(

τ − 1
τ

)

R +D
1
τ
R −τA∗R −τB∗R

1
τ
R −Q + F − 1

τ
R 0 0

−τRA 0 A∗(P + τR)A −D A∗(P + τR)B

−τRB 0 B∗(P + τR)A B∗(P + τR)B − F

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.25)

is a negative definite matrix, then network (2.1) is globally exponentially stable.

Proof. Let Ω = {ϕ | ϕ ∈ C(N[−τ, 0], RN)}. For ϕ ∈ Ω, define

∣
∣ϕ
∣
∣ = sup

s∈N[−τ,0]

∥
∥ϕ(s)

∥
∥; (3.26)

then Ω is a Banach space with the topology of uniform convergence. For any ϕ, ψ ∈ Ω, let
z(k, ϕ) and z(k, ψ) be the solutions of model (2.1) starting from ϕ and ψ, respectively.

It follows from model (2.1) that

z
(

k + 1, ϕ
) − z(k + 1, ψ

)

= A
(

σ
(

z
(

k, ϕ
)) − σ(z(k, ψ))) + B(σ(z(k − τ, ϕ)) − σ(z(k − τ, ψ))).

(3.27)

Let y(k + 1) = z(k + 1, ϕ) − z(k + 1, ψ) and f(k) = σ(z(k, ϕ)) − σ(z(k, ψ)). Then (3.27) can be
written as

y(k + 1) = Af(k) + Bf(k − τ). (3.28)

Now we consider the following Lyapunov functional candidate for system (3.28) as

V (k) = V1(k) + V2(k) + V3(k), (3.29)
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where

V1(k) = y∗(k)Py(k),

V2(k) =
k−1∑

i=k−τ
y∗(i)Qy(i),

V3(k) =
−1∑

i=−τ

k−1∑

l=k+i

η∗(l)Rη(l),

η(k) = y(k + 1) − y(k).

(3.30)

Then

ΔV1(k) = y∗(k + 1)Py(k + 1) − y∗(k)Py(k)

=
(

Af(k) + Bf(k − τ))∗P(Af(k) + Bf(k − τ)) − y∗(k)Py(k)

= f∗(k − τ)B∗PAf(k) + f∗(k − τ)B∗PBf(k − τ) − y∗(k)Py(k)

+ f∗(k)A∗PAf(k) + f∗(k)A∗PBf(k − τ),
ΔV2(k) = y∗(k)Qy(k) − y∗(k − τ)Qy(k − τ),

ΔV3(k) =
−1∑

i=−τ

[

η∗(k)Rη(k) − η∗(k + i)Rη(k + i)
]

= τη∗(k)Rη(k) −
−1∑

i=−τ

(

η∗(k + i)Rη(k + i)
)

.

(3.31)

Therefore,

ΔV (k) = ΔV1(k) + ΔV2(k) + ΔV3(k)

= α∗(k)Π1α(k) −
−1∑

i=−τ
η∗(k + i)Rη(k + i),

(3.32)

where

α(k) =
(

y∗(k), y∗(k − τ), f∗(k), f∗(k − τ))∗,

Π1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−P +Q + τR 0 −τA∗R −τB∗R

0 −Q 0 0

−τRA 0 A∗(P + τR)A A∗(P + τR)B

−τRB 0 B∗(P + τR)A B∗(P + τR)B

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
(3.33)
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It is easy to prove that

−τ
−1∑

i=−τ
η∗(k + i)Rη(k + i) ≤ −

−1∑

i=−τ
η∗(k + i)R

−1∑

i=−τ
η(k + i)

=
(

y(k)
y(k − τ)

)∗(−R R
R −R

)(
y(k)

y(k − τ)
)

.

(3.34)

We define

Π2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−P +Q +
(

τ − 1
τ

)

R
1
τ
R −τA∗R −τB∗R

1
τ
R −Q − 1

τ
R 0 0

−τRA 0 A∗(P + τR)A A∗(P + τR)B

−τRB 0 B∗(P + τR)A B∗(P + τR)B

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.35)

From (3.32) and (3.34), we have

ΔV (k) ≤ α∗(k)Π2α(k). (3.36)

By the definition of σ, we can get the following two inequations:

∣
∣σ
(

zi
(

k, ϕ
)) − σ(zi

(

k − ψ))∣∣ ≤ ∣∣zi
(

k, ϕ
) − zi

(

k − ψ)∣∣, (3.37)
∣
∣σ
(

zi
(

k − τ, ϕ)) − σ(zi
(

k − τ, ψ))∣∣ ≤ ∣∣zi
(

k − τ, ϕ) − zi
(

k − τ, ψ)∣∣. (3.38)

It is obvious that (3.37) is equivalent to

(

y(k)

f(k)

)∗(
eie

T
i 0

0 −eieTi

)(

y(k)

f(k)

)

≥ 0, (3.39)

and (3.38) is equivalent to

(
y(k − τ)
f(k − τ)

)∗(eieTi 0

0 −eieTi

)(

y(k − τ)
f(k − τ)

)

≥ 0, (3.40)

where ei is the unit column vector having 1 in ith row and zeros elsewhere.
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Let D = diag (d1, d2, . . . , dN) and F = diag(f1, f2, . . . , fN), where di, fi > 0 for each i. It
follows from (3.36), (3.39) and (3.40) that

ΔV (k) ≤ α∗(k)Π2α(k)

+
N∑

i=1

(

y(k)

f(k)

)∗(
dieie

T
i 0

0 −dieieTi

)(

y(k)

f(k)

)

+
N∑

i=1

(

y(k − τ)
f(k − τ)

)∗(
fieie

T
i 0

0 −fieieTi

)(

y(k − τ)
f(k − τ)

)

= α∗(k)Π2α(k)

+

(

y(k)

f(k)

)∗(
D 0

0 −D

)(

y(k)

f(k)

)

+

(

y(k − τ)
f(k − τ)

)∗(
F 0

0 −F

)(

y(k − τ)
f(k − τ)

)

= α∗(k)Wα(k).

(3.41)

SinceW is a negative definite matrix, we have

ΔV (k) ≤ λmax(W)‖α(k)‖2 ≤ λmax(W)
∥
∥y(k)

∥
∥
2
. (3.42)

By the similar method in [16], we can prove that network (2.1) is globally
exponentially stable.

Corollary 3.3. If there exist anN ×N positive diagonal matrixD and threeN ×N positive definite
matrices P , Q, and R such that

Π =

⎛

⎜
⎜
⎝

−P +Q +D R 0

R −Q − R −RW
0 −W∗R W∗(P + R)W −D

⎞

⎟
⎟
⎠

(3.43)

is negative definite, then network (2.4) is globally exponentially stable.

Proof. Similar to the proof of Theorem 3.2, let y(k + 1) = z(k + 1, φ) − z(k + 1, ψ) and f(k) =
σ(z(k, φ)) − σ(z(k, ψ)). Then

y(k + 1) =Wf(k). (3.44)

Now we consider the following Lyapunov functional candidate for system (3.44) as

V (k) = V1(k) + V2(k) + V3(k), (3.45)
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where

V1(k) = y∗(k)Py(k),

V2(k) = y∗(k − 1)Qy(k − 1),

V3(k) = η∗(k)Rη(k),

η(k) = y(k) − y(k − 1).

(3.46)

Then

ΔV1 = y∗(k + 1)Py(k + 1) − y∗(k)Py(k)

= f∗(k)W∗PWf(k) − y∗(k)Py(k),

ΔV2 = y∗(k)Qy(k) − y∗(k − 1)Qy(k − 1),

ΔV3 =
(

y(k + 1) − y(k))∗R(y(k + 1) − y(k)) − (y(k) − y(k − 1)
)∗
R
(

y(k) − y(k − 1)
)

=
(

Wf(k) − y(k))∗R(Wf(k) − y(k)) − (y(k) − y(k − 1)
)∗
R
(

y(k) − y(k − 1)
)

.

(3.47)

Let

α(k) =
(

y∗(k), y∗(k − 1), f∗(k)
)∗
,

Π1 =

⎛

⎜
⎜
⎝

−P +Q R 0

R −Q − R −RW
0 −W∗R W∗(P + R)W

⎞

⎟
⎟
⎠
.

(3.48)

Then

ΔV = α∗(k)Π1α(k). (3.49)

As the proof in Theorem 3.2, there exists a matrix D = diag(d1, d2, . . . , dN) with di > 0 (i =
1, . . . ,N) such that

(
y(k)
f(k)

)∗(−D 0
0 D

)(y(k)

f(k)

)

≤ 0. (3.50)

So

ΔV ≤ α∗(k)Π1α(k) −
(

y(k)

f(k)

)∗(−D 0

0 D

)(

y(k)

f(k)

)

= α∗(k)Πα(k).

(3.51)
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By the similar method in [16], we can prove that network (2.4) is globally exponentially
stable.

Remark 3.4. It is known that the obtained criteria for checking stability of discrete-
time delayed neural networks depend on the mathematic technique and the constructed
Lyapunov functionals or Lyapunov-Krasovskii functionals in varying degrees. Using
elegant mathematic technique and constructing proper Lyapunov functionals or Lyapunov-
Krasovskii functionals can reduce conservatism. So, establishing some less conservatism
results will be in future works.

Remark 3.5. Recently, delay-fractioning approach is widely used to reduce conservatism;
it is proved that it can reduce more conservatism than many previous methods due to
the remaining of some useful terms [25]. In [25], the delay fractioning approach has been
used to investigate the global synchronization of delayed-complex networks with stochastic
disturbances, which has shown the potential of reducing conservatism. Using the delay-
partitioning approach, we can also investigate the stability of discrete-time delayed neural
networks; the corresponding results will appear in the near future.

4. Examples

Here, we present two examples to show the validity of our results.

Example 4.1. Consider a two-neuron neural network (2.1), where

A =

[

0.3 −0.1 + 0.1i

−0.1 − 0.1i 0.3

]

, B =

[−0.1 − 0.5i −0.1 + 0.1i

−0.1 + 0.1i −0.1 − 0.1i

]

,

H =
[

10 + i 1 + 10i
]T
.

(4.1)

Taking α1 = 13, and α2 = 12, we can calculate γ = 4.9/12, μ = 7.7/13, and γ + μ =
146.1/156 < 1. From Theorem 3.1, we know that the considered network (2.1) is bounded.

Furthermore, when P = 99I,Q = 45I, R = I, and D = F = 40I, the matrix W in
Theorem 3.2 is a negative definite matrix. From Theorem 3.2, we know that the considered
network (2.1) is globally exponentially stable. In fact, we can verify that (9.3+4.7i, 0.2−12.8i)T
and (9.3+4.7i, 0.2−12.8i)T are unique equilibrium points ofZ1(k) andZ2(k) of the considered
network (2.1), respectively. The global exponential stability of equilibrium points is further
verified by the simulation given in Figures 1, 2, 3, and 4.

Example 4.2. Consider a two-neuron neural network (2.4), where

W =
(

0.3 −0.4 − 0.5i
0.2 + 0.1i −0.5

)

, H =
[−0.1 − 0.1i −0.1 + 0.1i

]T
. (4.2)

Obviously, we cannot find a dialogue positive definite matrixD such thatDW is a Hermitian
matrix, so it is impossible using the theorem in [23] to judge the stability of the considered
network (2.4).
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Figure 1: The behavior of the real part of z1(k).
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Figure 2: The behavior of the imaginary part of z1(k).

When P = 9I,Q = D = 4I, R = I, the matrix Π in Corollary 3.3 is a negative
definite matrix. From Corollary 3.3, we know that the considered network (2.4) is globally
exponentially stable.

5. Conclusion

In this paper, the discrete-time delayed neural network with complex-valued linear
threshold neurons has been considered. Several new delay-dependent criteria for checking
the boundedness and global exponential stability have been established by constructing
appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality
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Figure 3: The behavior of the real part of z2(k).
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Figure 4: The behavior of the imaginary part of z2(k).

technique and analysis method. The proposed results are less conservative than some recently
known ones in the literature, which are demonstrated via two examples.

We would like to point out that it is possible to generalize our main results to
more complex systems, such as neural networks with time-varying delays [1, 8], neural
networks with parameter uncertainties [19], stochastic perturbations [17], Markovian
jumping parameters [18], and some nonlinear systems [26–32]. The corresponding results
will appear in the near future.
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