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We mainly investigate the global asymptotic stability and exponential convergence of positive
solutions to two families of higher-order difference equations, one of which was recently studied
in Stević’s paper (2010). A new concise proof is given to a quite recent result by Stević and
analogous parallel result of the other inverse equation, which extend related results of Aloqeili
(2009), Berenhaut and Stević (2007), and Liao et al. (2009).

1. Introduction

The interest in investigating rational difference equations has a long history; for instance, see
[1–24] and the references cited therein. More generally, it is meaningful to study not only
rational recursive equations but also those with powers of arbitrary positive degrees.

For instance, at many conferences, Stević proposed to study the behavior of positive
solutions of the following generic difference equation (see also [25]):

xn = A +
x
p
n−m
x
q

n−k
, n ∈ N0, (1.1)

whereA, p, q > 0, and k,m ∈ N, k /=m. For some recent results in this area, see [26–32] and the
references therein.



2 Discrete Dynamics in Nature and Society

By a useful transformation method from [4], the authors of [3] confirmed that the
unique positive equilibrium of the rational recursive equation

yn =
yn−k + yn−m
1 + yn−kyn−m

, n ∈ N0, (1.2)

where 1 ≤ k < m, is globally asymptotically stable for all solutions with positive initial values.
In the meantime, they also remarked that the global asymptotic stability for the unique
equilibrium of the difference equation

yn =
1 + yn−kyn−m
yn−k + yn−m

, n ∈ N0, (1.3)

can be shown through analogous calculations. Some particular cases of (1.3) had already been
considered in [12, 13].

In [3]were proposed the following two conjectures.

Conjecture 1.1. Suppose that 1 ≤ k < l < m and that {yn} satisfies

yn =
yn−kyn−lyn−m + yn−k + yn−l + yn−m
yn−kyn−l + yn−kyn−m + yn−lyn−m + 1

, n ∈ N0, (1.4)

with positive initial values. Then, the sequence {yn} converges to the unique positive equilibrium point
y = 1.

Some special cases of (1.4) had been studied by Li [9, 10] with a semicycle analysis
method, which is useful for lower-order difference equations but tedious and complicated
to some extent(see the explanation in [33]). Finally, Conjecture 1.1 was also confirmed in [2]
with the similar transformation method used in [3, 4]. However, it is somewhat harder to
prove the following conjecture in the same way.

Conjecture 1.2. Assume that q is odd and 1 ≤ k1 < k2 < · · · < kq, and define S = {1, 2, . . . , q}. If
{yn} satisfies

yn =
f1
(
yn−k1 , yn−k2 , . . . , yn−kq

)

f2
(
yn−k1 , yn−k2 , . . . , yn−kq

) , n ∈ N0, (1.5)

with y−kq , y−kq+1, . . . , y−1 ∈ (0,+∞), where

f1
(
x1, x2, . . . , xq

)
=

q∑
i=1
i odd

∑
{t1,t2,...,ti}⊂S
t1<t2<···<ti

xt1xt2 · · ·xti ,

f2
(
x1, x2, . . . , xq

)
= 1+

q−1∑
i=2

i even

∑
{t1,t2,...,ti}⊂S
t1<t2<···<ti

xt1xt2 · · ·xti .

(1.6)

Then the sequence {yn} converges to the unique positive equilibrium point y = 1.
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Next, we present two definitions as defined in [1].

Definition 1.3. A function of n variables is symmetric if it is invariant under any permutation
of its variables. That is, a function ϕ(x1, . . . , xn) is called symmetric if

ϕ(x1, . . . , xn) = ϕ
(
xπ(1), . . . , xπ(n)

)
, (1.7)

where π(i) is any permutation of the numbers {1, 2, . . . , n}.

Definition 1.4. The kth elementary symmetric function σk of variables x1, . . . , xn, where k ∈
{1, 2, . . . , n} is defined by

σk(x1, . . . , xn) =
∑

i1<i2<···<ik
xi1xi2 · · ·xik , (1.8)

where the sum is taken over all Cn
k
choices of the indices i1, . . . , ik from the set of integers

{1, 2, . . . , n}.

Obviously, the functions f1, f2 defined by (1.6) and (1.7) are symmetric and can be
rewritten as

f1
(
x1, x2, . . . , xq

)
=

q∑
i=1
i odd

σi, f2
(
x1, x2, . . . , xq

)
= 1+

q−1∑
i=2

i even

σi. (1.9)

In this paper, we give a new proof of a quite recent result by Stević in [34] where he,
among others, studied the stability of one of the following two difference equations, which
are dual:

yn =
f2
(
yr
n−k1 , y

r
n−k2 , . . . , y

r
n−kq

)

f1
(
yr
n−k1 , y

r
n−k2 , . . . , y

r
n−kq

) , n ∈ N0, (1.10)

yn =
f1
(
yr
n−k1 , y

r
n−k2 , . . . , y

r
n−kq

)

f2
(
yr
n−k1 , y

r
n−k2 , . . . , y

r
n−kq

) , n ∈ N0, (1.11)

where 3 ≤ q ∈ N is odd, r ∈ (0, 1] and 1 ≤ k1 < k2 < · · · < kq.
Apparently, Equation (1.11) is the generic form of (1.2), (1.4), and (1.5).
In [6, 18] the authors proved that the main results in some of papers [9–12] are direct

consequences of a result confirmed by Kruse and Nesemann [35]. For example, in [6] was
showed that the main result in [13] is also a consequence of Corollary 3 in [35]. On basis of
these works, in 2008, Aloqeili [1] confirmed Conjecture 1.2 in the same way.
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Later, Liao et al. [14] proved Conjecture 1.2 by using a new approach. They used a
sort of “frame sequences” method(the notion suggested by Stević), which has been widely
used in [5, 7, 18, 36–41]. Through careful analysis, we find that the method used in [14] can
be further simplified and applied in proving Stević’s result in a more concise and interesting
way. Namely, we give a new proof of the following result, which generalizes related results
in [1, 2, 9, 10, 14].

Theorem 1.5. Assume that y−kq , y−kq+1, . . . , y−1 ∈ (0,+∞), r ∈ (0, 1], 3 ≤ q ∈ N is odd and positive
integers k1, k2, . . . , kq are satisfying 1 ≤ k1 < k2 < · · · < kq. Then

(1) the unique positive equilibrium point y = 1 of (1.10) is globally asymptotically stable;

(2) the unique positive equilibrium point y = 1 of (1.11) is globally asymptotically stable.

2. Auxiliary Results and Notation

In this section, we will introduce some useful notation and lemmas. Consider the following
notation(for similar ones see [14]), which play an important role in the paper:

α
(
x1, x2, . . . , xq

)
=

1
2

[
q∏
i=1

(
xr
i + 1

) −
q∏
i=1

(
xr
i − 1

)]
,

β
(
x1, x2, . . . , xq

)
=

1
2

[
q∏
i=1

(
xr
i + 1

)
+

q∏
i=1

(
xr
i − 1

)]
.

(2.1)

Employing α and β, define a mapping Φ1 : R
q
+ → R as follows:

Φ1
(
x1, x2, . . . , xq

)
=

α
(
x1, . . . , xq

)

β
(
x1, . . . , xq

) =

∏q

i=1

(
xr
i + 1

) −∏q

i=1

(
xr
i − 1

)
∏q

i=1

(
xr
i + 1

)
+
∏q

i=1

(
xr
i − 1

) . (2.2)

Then (1.10) can be rewritten as

yn =

∏q

i=1

(
yr
n−ki + 1

)
−∏q

i=1

(
yr
n−ki − 1

)

∏q

i=1

(
yr
n−ki + 1

)
+
∏q

i=1

(
yr
n−ki − 1

) , n ∈ N0, (2.3)

or

yn = Φ1

(
yn−k1 , yn−k2 , . . . , yn−kq

)
, n ∈ N0, (2.4)

with 3 ≤ q ∈ N being odd, and r ∈ R+.
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By the notation defined by (2.1), define the other function Φ2 : R
q
+ → R such that:

Φ2
(
x1, x2, . . . , xq

)
=

β
(
x1, . . . , xq

)

α
(
x1, . . . , xq

) =

∏q

i=1

(
xr
i + 1

)
+
∏q

i=1

(
xr
i − 1

)
∏q

i=1

(
xr
i + 1

) −∏q

i=1

(
xr
i − 1

) . (2.5)

Then (1.11) can be rewritten as

yn =

∏q

i=1

(
yr
n−ki + 1

)
+
∏q

i=1

(
yr
n−ki − 1

)

∏q

i=1

(
yr
n−ki + 1

)
−∏q

i=1

(
yr
n−ki − 1

) , n ∈ N0, (2.6)

or

yn = Φ2

(
yn−k1 , yn−k2 , . . . , yn−kq

)
, n ∈ N0, (2.7)

with 3 ≤ q ∈ N being odd, and r ∈ R+.

Lemma 2.1. If r ∈ (0, 1], then both (2.4) and (2.7) have the unique positive equilibrium point y = 1.

Proof. Suppose that λ1 > 0 is an equilibrium of (2.4), then

λ1 = Φ1(λ1, . . . , λ1) =

(
λr1 + 1

)q − (
λr1 − 1

)q
(
λr1 + 1

)q + (
λr1 − 1

)q , (2.8)

which implies

(1 − λ1)
(
λr1 + 1

)q = (λ1 + 1)
(
λr1 − 1

)q
. (2.9)

Obviously λ1 = 1, due to the different signs of both sides of the last equality for the case λ1 /= 1.
Likewise, let λ2 > 0 be an equilibrium of (2.7); then

λ2 = Φ2(λ2, . . . , λ2) =

(
λr2 + 1

)q + (
λr2 − 1

)q
(
λr2 + 1

)q − (
λr2 − 1

)q , (2.10)

which indicates

(λ2 − 1)
(
λr2 + 1

)q = (λ2 + 1)
(
λr2 − 1

)q
. (2.11)

Assume that λ2 /= 1. If λ2 > 1, then by the monotonicity of the map h(x) = (x+1)/(x−1), x > 1
we have that

λ2 + 1
λ2 − 1

≤ λr2 + 1
λr2 − 1

<

(
λr2 + 1
λr2 − 1

)q

, (2.12)
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which contradicts (2.11).Similarly, if 0 < λ2 < 1, then by the monotonicity of the function
l(x) = (1 + x)/(1 − x), x ∈ (0, 1), we have that

1 + λ2
1 − λ2

≤ 1 + λr2
1 − λr2

<

(1 + λr2
1 − λr2

)q

, (2.13)

which also contradicts (2.11). Thus λ2 = 1.
The proof is complete.

Lemma 2.2. (1) Let Φ1 be defined by (2.2); then Φ1 is monotonically increasing in xj if and only
if
∏q

i=1,i /= j(xi − 1) < 0, and monotonically decreasing in xj if and only if
∏q

i=1,i /= j(xi − 1) > 0, for
j = 1, 2, . . . , q.

(2) Let Φ2 be defined by (2.5), then Φ2 is monotonically decreasing in xj if and only if∏q

i=1,i /= j(xi − 1) < 0, and monotonically increasing in xj if and only if
∏q

i=1,i /= j(xi − 1) > 0, for
j = 1, 2, . . . , q.

Proof. The results follow directly from the facts below:

∂Φ1

∂xj
=

−rxr−1
j

∏q

i=1,i /= j

(
x2r
i − 1

)
[
β
(
x1, x2, . . . , xq

)]2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< 0,
q∏

i=1,i /= j

(xi − 1) > 0,

> 0,
q∏

i=1,i /= j

(xi − 1) < 0,

j ∈ {
1, . . . , q

}
,

∂Φ2

∂xj
=

rxr−1
j

∏q

i=1,i /= j

(
x2r
i − 1

)
[
α
(
x1, x2, . . . , xq

)]2

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

> 0,
q∏

i=1,i /= j

(xi − 1) > 0,

< 0,
q∏

i=1,i /= j

(xi − 1) < 0,

j ∈ {
1, . . . , q

}
.

(2.14)

Remark 2.3. The second statement (i.e., (2)) in Lemma 2.2 can also be found in Stević’s paper
[34] (see Lemma 1 and Corollary 1).

For r ∈ R
+, 3 ≤ q ∈ N odd, define a map Ψ : R+ → R such that

Ψ(x) =
(1 + xr)q − (1 − xr)q

(1 + xr)q + (1 − xr)q
, (2.15)

which has the following simple property:

Ψ
(
1
x

)
=

1
Ψ(x)

, x ∈ R+. (2.16)
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Lemma 2.4. Suppose that 0 < ξ < 1, and let Γ = Ψ(ξ),Φ ∈ {Φ1,Φ2}. If x1, x2, . . . , xq ∈ [ξ, 1/ξ],
then

Γ ≤ Φ
(
x1, x2, . . . , xq

) ≤ 1
Γ
. (2.17)

Proof. Since Φ(x1, x2, . . . , xq) is symmetric in x1, x2, . . . , xq, without loss of generality, we
suppose that ξ ≤ x1 ≤ x2 ≤ · · · ≤ xq ≤ 1/ξ. If there exists j ∈ {1, . . . , q} such that xj = 1,
then by (2.2) and (2.5) we can easily get that Φ(x1, x2, . . . , xq) = 1. Thus, assume xj /= 1 for all
j ∈ {1, . . . , q}.

Then we have the following q + 1 cases to consider:

(1) ξ ≤ x1 ≤ · · · ≤ xq−1 ≤ xq < 1 <
1
ξ
;

(2) ξ ≤ x1 ≤ · · · ≤ xq−1 < 1 < xq ≤ 1
ξ
;

(3) ξ ≤ x1 ≤ · · · < 1 < xq−1 ≤ xq ≤ 1
ξ
;

...

(
q
)

ξ ≤ x1 < 1 < · · · ≤ xq−1 ≤ xq ≤ 1
ξ
;

(
q + 1

)
ξ < 1 < x1 ≤ · · · ≤ xq−1 ≤ xq ≤ 1

ξ
.

(2.18)

By Lemma 2.2, for the above cases, we have that

(1) 1 < Φ1
(
x1, . . . , xq−1, xq

) ≤ 1
Γ
;

(2) Γ ≤ Φ1
(
x1, . . . , xq−1, xq

)
< 1;

(3) 1 < Φ1
(
x1, . . . , xq−1, xq

) ≤ 1
Γ
;

...

(
q
)

1 < Φ1
(
x1, . . . , xq−1, xq

) ≤ 1
Γ
;

(
q + 1

)
Γ ≤ Φ1

(
x1, . . . , xq−1, xq

)
< 1.

(2.19)

Obviously, Γ ≤ Φ1(x1, x2, . . . , xq) ≤ 1/Γ follows directly from the above inequalities.
The proof of the case Φ = Φ2 is analogous and hence omitted.
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Lemma 2.5. Suppose that 0 < r ≤ 1, ξ ∈ (0, 1) is fixed and let Γ = Ψ(ξ). Then we have

Γ > ξ. (2.20)

Proof. By the monotonicity of the function h(x) = (1 + x)/(1 − x), x ∈ (0, 1), we have that

1 + ξ

1 − ξ
≤ 1 + ξr

1 − ξr
<

(
1 + ξr

1 − ξr

)q

, (2.21)

which implies

(1 − ξ)(1 + ξr)q > (1 + ξ)(1 − ξr)q. (2.22)

Therefore, ((1 + ξr)q − (1 − ξr)q)/((1 + ξr)q + (1 − ξr)q) > ξ, that is, Γ > ξ.
The proof is complete.

The following corollary follows directly from Lemma 2.4 and Lemma 2.5.

Corollary 2.6. Assume that 0 < ξ < 1. If any positive solution (yn)
+∞
n=−kq to (2.4) or (2.7) has the

initial values

y−kq , y−kq+1, . . . , y−1 ∈
[
ξ,
1
ξ

]
, (2.23)

then we have yn ∈ [ξ, 1/ξ], for n ∈ N0.

Define two sequences (ξi)
+∞
i=0 and (ηi)

+∞
i=0 as follows:

ξi+1 = Ψ(ξi), ηi+1 = Ψ
(
ηi
)
, i ∈ N0, (2.24)

with initial values ξ0, η0 > 0.

Lemma 2.7. For the sequences (ξi)
+∞
i=0 and (ηi)

+∞
i=0 defined by (2.24), if 0 < ξ0 < 1, and ξ0η0 = 1, then

lim
i→∞

ξi = lim
i→∞

ηi = 1. (2.25)

Proof. Inductively, we can simply obtain that 0 < ξi < 1 < ηi < +∞, i ∈ N0. Through simple
calculations, by (2.16), we have that

ξiηi ≡ 1, ∀i ∈ N0. (2.26)

Therefore by Lemma 2.4 and Lemma 2.5, we get that

0 < ξi ≤ ξi+1 < 1 < ηi+1 ≤ ηi, i ∈ N0, (2.27)
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which implies that the sequences (ξi)
+∞
i=0 and (ηi)

+∞
i=0 converge to some limits (denoted by ξ∗

and η∗, resp.), that is,

ξ∗ = lim
i→+∞

ξi ∈ [ξ0, 1], η∗ = lim
i→+∞

ηi ∈
[
1, η0

]
. (2.28)

By taking limits on both sides of the first identity of (2.24), we get

ξ∗ =

(
1 + (ξ∗)r

)q − (
1 − (ξ∗)r

)q
(
1 + (ξ∗)r

)q + (
1 − (ξ∗)r

)q , (2.29)

which implies

(1 − ξ∗)
(
1 + (ξ∗)r

)q = (1 + ξ∗)(1 − (ξ∗)r)q. (2.30)

Suppose that ξ∗ /= 1; then by the monotonicity of the function f(x) = (1+x)/(1−x), x ∈ (0, 1),
we have that

1 + ξ∗

1 − ξ∗
≤ 1 + (ξ∗)r

1 − (ξ∗)r
<

(
1 + (ξ∗)r

1 − (ξ∗)r

)q

, (2.31)

which contradicts (2.29). Hence, we have that ξ∗ = 1 and then obviously it follows by (2.26)
and (2.28) that ξ∗ = η∗ = 1.

The proof is complete.

3. Stability

In this section, we give a new, concise and clear proof of Stević’s Theorem 1.5, by the lemmas
in Section 2.

Proof of Theorem 1.5. Employing Lemma 2.2, the linearized equations of (2.4) and (2.7) about
the equilibrium y = 1 are both

zn = 0 · zn−k1 + 0 · zn−k2 + · · · + 0 · zn−kq ≡ 0, n ∈ N0. (3.1)

Then by the Linearized Stability Theorem, y = 1 is locally stable.
Thus it suffices to confirm that y = 1 is also a global attractor for all positive solutions

of (2.4) and (2.7).
Let (yn)

+∞
n=−kq be a positive solution to (2.4) or (2.7) with initial values

y−kq , y−kq+1, . . . , y−1 ∈ (0,+∞). (3.2)

We need to prove that limn→∞yn = 1.
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Apparently, there exists ξ0 ∈ (0, 1) such that

yi ∈
[
ξ0, η0

]
, i = −kq,−kq + 1, . . . ,−1, (3.3)

where η0 = 1/ξ0. Employing Corollary 2.6, we have

yn ∈ [
ξ0, η0

]
, n = −kq,−kq + 1, . . . . (3.4)

Let sequences (ξi)
+∞
i=0 and (ηi)

+∞
i=0 be defined by (2.24). Let Φ ∈ {Φ1,Φ2}; then in light of

Lemma 2.4, (3.4), and (2.26), we get

Ψ(ξ0) ≤ Φ
(
yn−k1 , yn−k2 , . . . , yn−kq

)
≤ 1

Ψ(ξ0)
= Ψ

(
η0
)
, n ∈ N0. (3.5)

That is,

yn ∈ [
ξ1, η1

]
, n ∈ N0. (3.6)

In view of (3.6), (2.26) and Lemma 2.4, we have that

Ψ(ξ1) ≤ Φ
(
yn−k1 , yn−k2 , . . . , yn−kq

)
≤ 1

Ψ(ξ1)
= Ψ

(
η1
)
, n ≥ kq. (3.7)

That is,

yn ∈ [
ξ2, η2

]
, n ≥ kq. (3.8)

Reasoning inductively, we can get

yn ∈ [
ξi+1, ηi+1

]
, n ≥ ikq, i ∈ N0. (3.9)

By Lemma 2.7 and (3.9), we obtain

1 = lim
i→∞

ξi+1 ≤ lim
n→∞

yn ≤ lim
i→∞

ηi+1 = 1,
(3.10)

which implies

lim
n→∞

yn = 1. (3.11)

The proof is complete.
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4. Exponential Convergence

In this section, we will prove that all positive solutions to (2.4) and (2.7) with 0 < r ≤ 1 are
exponentially convergent, by using an approach from paper [42].

Theorem 4.1. If r ∈ (0, 1], then every positive solution to (2.4) and (2.7) exponentially converges to
1.

Proof. Let (yn)
∞
n=−kq be a positive solution to (2.4) or (2.7); then by Theorem 1.5, there exists a

sufficiently large natural numberN such that for arbitrary fixed ε > 0 we have |yn − 1| < ε for
all n ≥ N.

Denote Tn = |yn − 1|, n ≥ −kq; then Tn < ε for all n ≥ N.

(1). For (2.4).

Let 0 < ε ≤ 1 − r
√
1/q; then by (2.4), we have

Tn =
∣∣yn − 1

∣∣ =
2
∏q

j=1

∣∣∣yr
n−kj − 1

∣∣∣
∏q

j=1

(
yr
n−kj + 1

)
+
∏q

j=1

(
yr
n−kj − 1

)

≤
2
∏q

j=1

∣∣∣yr
n−kj − 1

∣∣∣
2
∑q

j=1 y
r
n−kj

≤
∏q

j=1

∣∣∣yr
n−kj − 1

∣∣∣
q(1 − ε)r

≤
q∏
j=1

∣∣∣yr
n−kj − 1

∣∣∣ ≤
q∏
j=1

∣∣∣yn−kj − 1
∣∣∣

=
q∏
j=1

Tn−kj ≤ εq−1Tn−kq , n ≥ N + kq.

(4.1)

(2). For (2.7).

Let 0 < ε < 1 be fixed; then by (2.7), we get

Tn =
∣∣yn − 1

∣∣ =
2
∏q

j=1

∣∣∣yr
n−kj − 1

∣∣∣
∏q

j=1

(
yr
n−kj + 1

)
−∏q

j=1

(
yr
n−kj − 1

)

≤
q∏
j=1

∣∣∣yr
n−kj − 1

∣∣∣ ≤
q∏
j=1

∣∣∣yn−kj − 1
∣∣∣

=
q∏
j=1

Tn−kj ≤ εq−1Tn−kq , n ≥ N + rq.

(4.2)

From this inequality and Lemma 1 in [43] (see also Corollary 1 therein), the result
directly follows.
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5. Other Simple Results

In this section, we will present some elementary results of (2.3) and (2.6)with r > 1.

Proposition 5.1. If r > 1, then there is no positive solution (yn)
+∞
n=−kq to (2.3) such that limn→∞yn =

+∞.

Proof. Suppose (yn)
+∞
n=−kq is a positive solution to (2.3) such that

lim
n→∞

yn = +∞. (5.1)

Then for some fixed M > 1, there exists N ∈ N such that

∀n ≥ N, yn > M. (5.2)

Employing (2.3) and (5.2), we can simply get that

yN+kq =

∏q

j=1

(
yr
N+kq−kj + 1

)
−∏q

j=1

(
yr
N+kq−kj − 1

)

∏q

j=1

(
yr
N+kq−kj + 1

)
+
∏q

j=1

(
yr
N+kq−kj − 1

) < 1 (5.3)

which contradicts (5.2). The proof is complete.

Proposition 5.2. We have the following simple statements:

(1) if r > 1, then (2.6) has nonoscillatory positive solutions with all initial values yi ≥ 1,
−kq ≤ i ≤ −1, or 0 < yi < 1,−kq ≤ i ≤ −1;

(2) let H = {yi | yi /= 1,−kq ≤ i ≤ −1} and denote by ‖H‖ the cardinality of the set H. If
‖H‖ < q, then for any positive solution (yn)

+∞
n=−kq to (2.3) or (2.6), we get yn ≡ 1, for all

n ≥ 0.

6. Conclusions

In the following, let a∗ = max{a, 1/a} for any a ∈ R+ as defined in [20] and firstly we present
[20, Theorem 1].

Theorem 6.1 (see [20]). Let f, g satisfy the following two conditions:

(H1) [f(u1, u2, . . . , uk)]
∗ = f(u∗

1, u
∗
2, . . . , u

∗
k
) and [g(u1, . . . , ul)]

∗ = g(u∗
1, . . . , u

∗
l
);

(H2) f(u∗
1, u

∗
2, . . . , u

∗
k
) ≤ u∗

1.

Then x = 1 is the unique positive equilibrium for equation (1) which is globally asymptotically stable.
The Equation (1) mentioned in Theorem 6.1 is the following difference equation:

xn+1 =
f(xn−r1 , . . . , xn−rk)g(xn−m1 , . . . , xn−ml) + 1
f(xn−r1 , . . . , xn−rk) + g(xn−m1 , . . . , xn−ml)

, n ∈ N, (6.1)
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where f ∈ C(Rk
+, R+) and g ∈ C(Rl

+, R+) with k, l ∈ {1, 2, . . .}, 0 ≤ r1 < · · · < rk, and 0 ≤ m1 < · · · <
ml, and the initial values are positive real numbers.

Remark 6.2. Equation (1.10) is a special case of equation (1) in [20].

Proof. Let k ≥ 3, f1(u) = ur(u > 0), r ∈ R+, and define a recursive equation

fj
(
u1, u2, . . . , uj

)
=

fj−1
(
u1, u2, . . . , uj−1

)
ur
j + 1

fj−1
(
u1, u2, . . . , uj−1

)
+ ur

j

, (6.2)

for all 2 ≤ j ≤ q. Then the following difference equation:

yn = fq
(
yn−r1 , . . . , yn−rq

)
, n ∈ N0, (6.3)

where 1 ≤ r1 < r2 < · · · < rq and the initial values y−rq , y−rq+1, . . . , y−1 ∈ (0,+∞), is the very
Equation (1.10) in this paper.

Remark 6.3. Let f(u) = ur , r ∈ (0, 1], and g(u1, u2, . . . , uk) = fk(u1, u2, . . . , uk). Then through
simple calculations, we have

(H1) [f(u)]∗ = f(u∗) and [g(u1, u2, . . . , uk)]
∗ = g(u∗

1, u
∗
2, . . . , u

∗
k
);

(H2) (H2)f(u∗) ≤ u∗.

Thus the conditions (H1) and (H2) of [20, Theorem 1] hold. By [20, Theorem 1], we know
that the unique positive equilibrium y = 1 of (1.10) (also (6.3)) is globally asymptotically
stable.

Remark 6.4. Although the stability of (1.10) can be also obtained as a corollary from Theorem
1 of the paper by Sun and Xi [20], the method of proof of Theorem 1.5 in this paper is distinct.
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