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We consider the existence and multiplicity of solutions to discrete conjugate boundary value
problems. A generalized asymptotically linear condition on the nonlinearity is proposed, which
includes the asymptotically linear as a special case. By classifying the linear systems, we define
index functions and obtain some properties and the concrete computation formulae of index
functions. Then, some new conditions on the existence andmultiplicity of solutions are obtained by
combining some nonlinear analysis methods, such as Leray-Schauder principle and Morse theory.
Our results are new even for the case of asymptotically linear.

1. Introduction

Let N,Z, and R be the sets of all natural numbers, integers, and real numbers, respectively.
For a, b ∈ Z, define Z(a, b) = {a, a+ 1, . . . , b}when a ≤ b. Δ is the forward difference operator
defined by Δu(n) = u(n+ 1)−u(n), and Δ2u(n) = Δ(Δu(n)). LetA be anm×mmatrix.Aτ or
xτ denotes the transpose of matrix A or vector x. The set of eigenvalues of matrix A will be
denoted by σ(A), and the determinant of matrix Awill be denoted by detA.

Discrete boundary value problems (BVPs for short) arise in the study of solid state
physics, combinatorial analysis, chemical reactions, population dynamics, and so forth.
Besides, they are also natural consequences of the discretization of continuous BVPs. Thus,
these problems have been studied by many scholars.

Discrete two-point BVPs

Δ2u(n − 1) + f(n, u(n)) = 0, n ∈ Z(1, T),

u(0) = A, u(T + 1) = B
(1.1)
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often appear in electrical circuit analysis, mathematical physics, finite elasticity, and so forth
as the mathematical models, where f : Z(1, T)×R

d → R
d with d ∈ N, T > 0 is a given integer,

and A,B are given constants.
We may think of (1.1) as being a discrete analogue of the continuous BVPs:

u′′ + f(t, u) = 0, a ≤ t ≤ b,

u(a) = A, u(b) = B,
(1.2)

which have been studied by many scholars because of its numerous applications in science
and technology. In particular, Hale, Walter, Mawhin, and so forth have obtained some
significant results on the existence, uniqueness, andmultiplicity of solutions of (1.2). We refer
the readers to [1–3] and references therein for further details.

Let

y(n) =
Bn −A(n − T − 1)

T + 1
, z(n) = u(n) − y(n). (1.3)

Then (1.1) reduces to

Δ2z(n − 1) + f
(
n, z(n) + y(n)

)
= 0, n ∈ Z(1, T),

z(0) = 0 = z(T + 1).
(1.4)

Hence, in the following, we can only consider the discrete conjugate BVPs, that is,

Δ2u(n − 1) + f(n, u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1).
(1.5)

As being remarked in [4], the nature of the solution of a continuous problem is not
identical with that of the solution of its discrete analogue. And since discrete analogs of
continuous problems yield interesting dynamical systems in their own right, many scholars
have investigated BVPs (1.5) independently. There are fundamental questions that arise for
BVPs (1.5). Does a solution exist, is it unique, and how many solutions can be found if
BVPs (1.5) have multiple solutions? How to find the lower bound or the upper bound of
the number of solutions of BVPs (1.5)? Furthermore, how to obtain the precise number of
solutions of BVPs (1.5)?

In recent years, the existence, uniqueness, and multiplicity of solutions of discrete
BVPs have been studied by many authors. In fact, early in 1968, Lasota [5] studied the
discretizations of (1.2)with f(t, u) replaced by f(t, u, u′) and proved that the discrete problem
had one and only one solution with f satisfying a Lipschitz condition. Note that under certain
conditions the solution of a nonhomogeneous BVPs can be expressed in terms of Green’s
functions. For example, suppose that u(n) is a solution of (1.1). Then

u(n) =
T∑

m=1

G(n,m)f(m,u(m)) +w(n), (1.6)
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where G(n,m) is Green’s function for

Δ2u(n − 1) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1),

w(n) = A +
B −A

T + 1
n.

(1.7)

Let B = {u | u is a real-valued function defined on Z(0, T + 1), u(0) = u(T + 1) = 0}, and define
T : B → B by

Tu(n) =
T∑

m=1

G(n,m)f(m,u(m)) +w(n) (1.8)

for n in Z(0, T + 1). Then there is a one-to-one correspondence between the fixed points of T
and the solutions of BVPs (1.1). When the nonlinearity f satisfies growth conditions known
as Lipschitz conditions, a unique solution of BVPs (1.1) can be obtained by using Contraction
Mapping Theorem see [6, 7] for more details.

Note that discrete BVPs model numerous physical phenomena in nature hence it is
of fundamental importance to know the criteria that ensure the existence of at least one
meaningful solution. And since discrete BVPs often have multiple solutions, it is useful to
have a collection of results that yield existence of solutions without the implication that the
solutions must be unique. To this end, many scholars have obtained some significant results
on the existence and multiplicity of solutions of discrete BVPs by using various analytic
techniques and various fixed-point theorems, for example, the upper and lower solution
method [8–10], the conical shell fixed point theorems [11, 12], the Brouwer and Schauder
fixed point theorems [9, 13, 14], and topological degree theory [15, 16]. As we know, critical-
point theory (which includes the minimax method and Morse theory, etc.) has played an
important role in dealing with the existence and multiplicity of solutions to continuous
systems [2, 17]. It is natural for us to think that critical-point theory may be applied to study
the existence and multiplicity of solutions to discrete systems. In fact, in recent papers [18–
25], the authors have applied critical-point theory to study the existence and multiplicity of
periodic solutions to discrete systems. We also refer to [26–31] for the discrete BVPs. In [26],
Agarwal et al. employed the Mountain Pass Lemma to study (1.5) and obtained the existence
of multiple solutions. Very recently, B. Zheng and Q. Zhang [32] studied discrete BVPs (1.5)
with f(n, u(n)) = V ′(u(n)) and obtained the existence of exactly three solutions by using both
Morse theory and degree theory, and so forth. To the best of our knowledge, [32] is among
a few works dealing with discrete BVPs by using Morse theory. Hence, further studies on
application of Morse theory to discrete BVPs are still perspective.

Here, we consider the case f(n, u(n)) = ∇V (n, u(n)) that is, we consider the following
discrete conjugate BVPs:

Δ2u(n − 1) +∇V (n, u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1),
(1.9)
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where V (n, ·) ∈ C1(Rd,R) for every n ∈ Z(1, T), ∇V (n, z) denotes the gradient of V with
respect to z, and d ≥ 2, T > 0 are given integers.

Assume

∇V (n, z) = A(n, z)z + o(|z|) (1.10)

as |z| → ∞, where A : Z(1, T) × R
d → GLs(Rd), and

A1(n) ≤ A(n, z) ≤ A2(n) (1.11)

for every n ∈ Z(1, T), and z ∈ R
d, A1, A2 : Z(1, T) → GLs(Rd), GLs(Rd) denotes the group

of d × d real nonsingular symmetric matrices, and |z| denotes the Euclidean norm of z in R
d.

Throughout this paper, for any A1, A2 ∈ GLs(Rd), we denote A1 ≤ A2 if A2 − A1 is semi-
positive definite, and we denote A1 < A2 if A2 − A1 is positive definite. For any A1, A2 :
Z(1, T) → GLs(Rd), we denote A1 ≤ A2 if A1(n) ≤ A2(n) for every n ∈ Z(1, T), and we
denote A1 < A2 if A1(n) ≤ A2(n) for every n ∈ Z(1, T) and {n | A1(n) < A2(n)}/= ∅.

If A(n, z) ≡ A(n) in (1.10), then (1.10) is usually called an asymptotically linear
condition. So here we call (1.10) and (1.11) generalized asymptotically linear conditions. Our
results are new even for the case of asymptotically linear case.

The rest of this paper is organized as follows. In Section 2, firstly, we classify the linear
systems

Δ2u(n − 1) +A(n)u(n) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1)
(1.12)

for every A : Z(1, T) → GLs(Rd). This classification gives a pair of integers (i(A), ν(A)) ∈
Z(0, dT) × Z(0, d). We call i(A) and ν(A) the index and nullity of A, respectively. Secondly,
we give some properties of the index and nullity together with the concrete computation
formulae. And finally, we introduce the definition of relative Morse index and give its precise
description. By using both results in Section 2 and Leray-Schauder principle, we obtain some
solvable conditions of (1.9) in Section 3. However, we cannot exclude the possibility that the
solution we found is trivial. To this end, we make use of Morse theory to obtain the existence
and multiplicity of nontrivial solutions to (1.9). Examples are also included to illustrate the
results obtained.

2. Index Theory for Linear Systems

To establish the index theory for (1.12), we introduce the following finite dimensional
sequence space:

E =
{
u | u = (u(0), u(1), . . . , u(T), u(T + 1))τ , u(0) = 0 = u(T + 1)

}
, (2.1)
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where u(n) = (u1(n), u2(n), . . . , ud(n))
τ ∈ R

d for every n ∈ Z(0, T+1). Define the inner product
on E as follows:

〈u, v〉 =
T∑

n=0
(Δu(n),Δv(n)), ∀u, v ∈ E, (2.2)

by which the norm ‖ · ‖ on E can be induced by

‖u‖ =

(
T∑

n=0
|Δu(n)|2

) 1/2

, ∀u ∈ E, (2.3)

where (·, ·) is the usual inner product on R
d, and | · | is the usual norm on R

d.
Define a linear map Γ : E → R

dT by

Γu = (u1(1), u1(2), . . . , u1(T), u2(1), u2(2), . . . , u2(T), . . . , ud(1), ud(2), . . . , ud(T))τ . (2.4)

It is easy to see that the map Γ defined in (2.4) is a linear homeomorphism, and (E, 〈·, ·〉) is a
Hilbert space, which can be identified with R

dT .
Define

qA(u, v) =
T∑

n=0
(Δu(n),Δv(n)) −

T∑

n=1

(A(n)u(n), v(n)), ∀u, v ∈ E. (2.5)

For any u, v ∈ E, if qA(u, v) = 0, we say that u and v are qA orthogonal. For any two subspaces
E1 and E2 of E, if qA(u, v) = 0 for any u ∈ E1 and v ∈ E2, we say that E1 and E2 are qA
orthogonal.

For any subspace E1 of E, we say that qA is positive definite (or negative definite) on
E1 if qA(u, u) > 0 (or qA(u, u) < 0) for all u ∈ E1 \ {0}. And if qA(u, u) = 0 for all u ∈ E1, then
E1 is called a null subspace of E.

Proposition 2.1. For any A : Z(1, T) → GLs(Rd), the following results hold.

(1) There are {λi(A)}mi=1 ⊂ R with λ1(A) < λ2(A) < · · · < λm(A) such that

Δ2u(n − 1) + (A(n) + λi(A)Id)u(n) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1)
(2.6)

has a nontrivial solution. If Ei(A) denotes the subspace of solutions with respect to λi(A),
then dimEi(A) := ni ≤ d and E =

⊕m
i=1Ei(A).

(2) The space E has a qA orthogonal decomposition

E = E+(A)
⊕

E0(A)
⊕

E−(A) (2.7)

such that qA is positive definite, negative definite, and null on E+(A), E−(A), and E0(A),
respectively.



6 Discrete Dynamics in Nature and Society

To prove Proposition 2.1, we need the following lemma.

Lemma 2.2. For any u = {u(n)}T+1n=0 ∈ E, the following inequalities hold.

4 sin2 π

2(T + 1)

T∑

n=1

|u(n)|2 ≤
T∑

n=0
|Δu(n)|2 ≤ 4 cos2

π

2(T + 1)

T∑

n=1

|u(n)|2. (2.8)

Proof. Note that

T∑

n=0
(Δu(n),Δu(n)) =

T∑

n=1

2(u(n), u(n)) −
T−1∑

n=1

2(u(n), u(n + 1)) = (AΓu,Γu), (2.9)

where

A =

⎛

⎜⎜⎜⎜⎜
⎝

B 0 · · · 0

0 B · · · 0

· · · · · · · · · · · ·
0 0 · · · B

⎞

⎟⎟⎟⎟⎟
⎠

dT×dT

, B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T×T

. (2.10)

Assume that λ is an eigenvalue of B and that ξ = (ξ1, ξ2, . . . , ξT )
τ is an eigenvector associated

to λ. Define the sequence {v(n)}T+1n=0 as

v(i) = ξi, i = 1, 2, . . . , T, v(0) = 0 = v(T + 1). (2.11)

Then {v(n)}T+1n=0 satisfies

Δ2v(n − 1) + λv(n) = 0, n ∈ Z(1, T),

v(0) = 0 = v(T + 1).
(2.12)

Equation (2.12) has a nontrivial solution if and only if

λ = λk = 4 sin2 kπ

2(T + 1)
, k = 1, 2, . . . , T ; (2.13)

see [33]. So σ(A) = σ(B) = {λ1, λ2, . . . , λT}with λ1 < λ2 < · · · < λT and

λmin = min{λ1, λ2, . . . , λT} = 4 sin2 π

2(T + 1)
= λ1,

λmax = max{λ1, λ2, . . . , λT} = 4 cos2
π

2(T + 1)
= λT .

(2.14)
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Noticing that for any real symmetric dT × dT matrix A, we have

λ1(Γu,Γu) ≤ (AΓu,Γu) ≤ λT (Γu,Γu), ∀u ∈ R
dT . (2.15)

Since (Γu,Γu) =
∑T

n=1 |u(n)|2, the inequalities (2.8) now follow from (2.9) and (2.15).

Remark 2.3. In the following, we rewrite (2.8) as

λ1|u|2 ≤ ‖u‖2 ≤ λT |u|2 (2.16)

for simplicity.

Proof of Proposition 2.1. (1) We claim that the norm ‖ · ‖λ0 induced by the inner product

(u, v)λ0 :=
T∑

n=0
(Δu(n),Δv(n)) +

T∑

n=1

((λ0Id −A(n))u(n), v(n)), ∀u, v ∈ E (2.17)

is equivalent to ‖ · ‖, where λ0 is a positive number satisfying λ0Id > A. In fact, it is easy to see
that there exists c ∈ (0,+∞) such that

0 ≤
T∑

n=1

((λ0Id −A(n))u(n), u(n)) ≤ c
T∑

n=1

|u(n)|2 ≤ c

λ1

T∑

n=0
|Δu(n)|2 = c

λ1
‖u‖2. (2.18)

Hence

‖u‖2 ≤ ‖u‖2λ0 ≤
(
1 +

c

λ1

)
‖u‖2. (2.19)

Define a bilinear function

a(u, v) =
T∑

n=1

(u(n), v(n)), ∀u, v ∈ E, (2.20)

and then

|a(u, v)| ≤
(

T∑

n=1

|u(n)|2
)1/2( T∑

n=1

|v(n)|2
) 1/2

≤ 1
λ1

‖u‖‖v‖ ≤ 1
λ1

‖u‖λ0‖v‖λ0 . (2.21)

Hence, there exists a unique continuous linear operator Kλ0 : E → E satisfying

T∑

n=1

(u(n), v(n)) = (u,Kλ0v)λ0 . (2.22)
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It is easy to see thatKλ0 is self-adjoint, and hence all the eigenvalues ofKλ0 are real. Therefore,
there exist μi, i = 1, 2, . . . , m and eij , j = 1, 2, . . . , ni such that

(
eij , elk

)
λ0

=

⎧
⎨

⎩

1, i = l and j = k,

0, i /= l or j /= k,
Kλ0eij = μieij , (2.23)

where ni is the multiplicity of μi with
∑

i ni = dT . By (2.22) and (2.23)we have

μi

(
eij , u

)
λ0

=
T∑

n=1

(
eij(n), u(n)

)
, ∀u ∈ E. (2.24)

In particular, μi =
∑T

n=1 |eij(n)|2 > 0. Without loss of generality we assume that μi is strictly
monotonously decreasing, that is, μ1 > μ2 > · · · > μm. Denote λi(A) = 1/μi − λ0 and Ei(A) =
span{eij}ni

j=1, then E =
⊕m

i=1Ei(A). We claim that for every λi(A), eij = {eij(n)}T+1n=0 ∈ E is a
nontrivial solution of (2.6). In fact, by (2.24), for any u ∈ E, we have

μi

T∑

n=0

(
Δeij(n),Δu(n)

)
+ μi

T∑

n=1

(
(λ0Id −A(n))eij(n), u(n)

)
=

T∑

n=1

(
eij(n), u(n)

)
, (2.25)

and since μi > 0, the above equality means

T∑

n=1

(
Δ2eij(n − 1) +

(
A(n) +

1
μi
Id − λ0Id

)
eij(n), u(n)

)
= 0, ∀u ∈ E. (2.26)

Therefore eij satisfies (2.6). Now, we have proved the first result of Proposition 2.1 except
dimEi(A) = ni ≤ d.

Set u(n) = y1(n),Δu(n − 1) = −y2(n); then (2.6) is equivalent to

Δy1(n) = −y2(n + 1), n ∈ Z(0, T),

Δy2(n) = (A(n) + λi(A)Id)y1(n), n ∈ Z(1, T),

y1(0) = 0 = y1(T + 1),

(2.27)

which is also equivalent to

y(n + 1) = B(n)y(n), n ∈ Z(1, T),

y1(0) = 0 = y1(T + 1),
(2.28)

where

y(n) =

(
y1(n)

y2(n)

)

, B(n) =

(
Id − λi(A)Id −A(n) −Id
λi(A)Id +A(n) Id

)

. (2.29)



Discrete Dynamics in Nature and Society 9

Since det(B(n)) ≡ 1, B(n) is a nonsingular 2d × 2d matrix for every n. So, we can assume that
Φ(n) is the fundamental matrix of equation y(n + 1) = B(n)y(n) satisfying Φ(0) = I2d. The
general solution of y(n + 1) = B(n)y(n) can be given by y(n) = Φ(n)c, where c =

(
c1

c2

)
∈ R

2d

and ci ∈ R
d, i = 1, 2. Set

Φ(n) =

(
Φ11(n) Φ12(n)

Φ21(n) Φ22(n)

)

, where Φij(n) is d × d matrix, i, j = 1, 2, (2.30)

then y1(n) = Φ11(n)c1 +Φ12(n)c2. By y1(0) = 0 = y1(T + 1) and Φ(0) = I2d, we have c1 = 0 and

Ei(A) ∼=
{
c2 ∈ R

d | Φ12(T + 1)c2 = 0
}
⊆ R

d. (2.31)

Hence, dimEi(A) = ni ≤ d.
(2) For any u ∈ E with u =

∑
i,j cijeij , by (2.23) and (2.24), we have

qA(u, u) = (u, u)λ0 − λ0(u,Kλ0u)λ0 =
∑

i,j

(∣∣cij
∣∣2 − λ0μi

∣∣cij
∣∣2
)
=
∑

i,j

λi(A)μi

∣∣cij
∣∣2. (2.32)

Hence, if we denote

E+(A) =
{
u =

∑
cijeij | cij = 0, if λi(A) ≤ 0

}
,

E0(A) =
{
u =

∑
cijeij | cij = 0, if λi(A)/= 0

}
,

E−(A) =
{
u =

∑
cijeij | cij = 0, if λi(A) ≥ 0

}
,

(2.33)

then the results hold.

Definition 2.4. For any A : Z(1, T) → GLs(Rd), define the index of A as i(A) := dimE−(A),
and define the nullity of A as ν(A) := dimE0(A).

In the following we shall discuss the properties of (i(A), v(A)).

Proposition 2.5. For any A : Z(1, T) → GLs(Rd), one has the following.

(1) ν(A) is the dimension of the solution subspace of (1.12), and ν(A) ∈ Z(0, d).

(2) i(A) =
∑

λi(A)<0 ni, where λi and ni are defined in the proof of Proposition 2.1.

Proof. (1) By Proposition 2.5, if λi(A)/= 0 for any i, then (1.12) has only a trivial solution, and
hence E0(A) = {0}, ν(A) = 0. If λi(A) = 0 for some i with multiplicity ni, then by the proof of
Proposition 2.1, Ei(A) is the solution subspace of (1.12) and ν(A) := dimEi(A) ∈ Z(1, d).

(2) By the proof of Proposition 2.1, E−(A) =
⊕

λi(A)<0Ei(A), and Ei(A) and Ej(A) are
qA orthogonal if i /= j. Hence the result holds.

Remark 2.6. By (1) of Proposition 2.5, ν(A) ≥ 0, and ν(A) = 0 if and only if λi(A)/= 0 for any
i ∈ Z(1, dT)which holds if and only if (1.12) has only a trivial solution.
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Proposition 2.7. For any A1, A2 : Z(1, T) → GLs(Rd), the following results hold.

(1) If A1 ≤ A2, then i(A1) ≤ i(A2).

(2) If A1 ≤ A2, then i(A1) + ν(A1) ≤ i(A2) + ν(A2).

(3) If A1 < A2, then i(A1) + ν(A1) ≤ i(A2).

To prove Proposition 2.7, we firstly prove the following lemma.

Lemma 2.8. Let E1 be a subspace of E satisfying

qA(u, u) ≤ 0, ∀u ∈ E1, (2.34)

and then

dimE1 ≤ i(A) + ν(A). (2.35)

Moreover, if

qA(u, u) < 0, ∀u ∈ E1 \ {0}, (2.36)

then

dimE1 ≤ i(A). (2.37)

Proof. Without loss of generality we can assume that dimE1 = k ≥ 1 and E1 =
span{e1, e2, . . . , ek}. Let ei = e+i + e∗i , where e∗i ∈ E−(A) ⊕ E0(A), e+i ∈ E+(A). To prove
i(A) + ν(A) ≥ k, we only need to prove that e∗1, e

∗
2, . . . , e

∗
k is linear independent. If not, there

exist not all zero constants α1, α2, . . . , αk such that
∑k

i=1 αie
∗
i = 0. So e :=

∑k
i=1 αiei =

∑k
i=1 αie

+
i ∈

E+(A), and hence qA(e, e) > 0. This is a contradiction to (2.34). This implies that e∗1, e
∗
2, . . . , e

∗
k

is linear independent and i(A) + ν(A) := dimE−(A) + dimE0(A) = dim(E−(A) ⊕ E0(A)) ≥ k.
The first part is proved.

To prove the second part, let ei = e+i + e−i + e0i , where e∗i ∈ E∗(A), ∗ = +, 0,−. To prove
i(A) ≥ k, we only need to prove that e−1 , e

−
2 , . . . , e

−
k is linear independent. If not, there exist not

all zero constants c1, c2, . . . , ck such that
∑k

i=1 cie
−
i = 0. So, e :=

∑k
i=1 ciei =

∑k
i=1(cie

+
i + cie

0
i ) ∈

E+(A) ⊕ E0(A) and qA(e, e) ≥ 0. This is a contradiction to (2.36).

Proof of Proposition 2.7. For any u ∈ E, denote u = u+ + u0 + u−, where u∗ ∈ E∗(A1), ∗ = +,−, 0.

(1) From Lemma 2.8, we only need to show that

qA2(u, u) < 0, ∀u ∈ E−(A1) \ {0}. (2.38)

In fact, for every u = u− ∈ E−(A1), if u− /= 0, then

qA2(u, u) ≤ qA1(u, u) = qA1

(
u−, u−) < 0. (2.39)



Discrete Dynamics in Nature and Society 11

(2) From Lemma 2.8, we only need to show that

qA2(u, u) ≤ 0, ∀u ∈ E−(A1) ⊕ E0(A1). (2.40)

In fact, for every u = u− + u0 ∈ E−(A1) ⊕ E0(A1), one has

qA2(u, u) ≤ qA1(u, u) = qA1

(
u0, u0

)
+ qA1

(
u−, u−) ≤ 0. (2.41)

(3) From Lemma 2.8, we only need to show that

qA2(u, u) < 0, ∀u ∈ E−(A1) ⊕ E0(A1) \ {0}. (2.42)

In fact, for every u = u− + u0 with u− ∈ E−(A1), u0 ∈ E0(A1), if u− /= 0, then

qA2(u, u) ≤ qA1(u, u) = qA1

(
u0, u0

)
+ qA1

(
u−, u−) < 0. (2.43)

If u− = 0, u0 /= 0, then {u0(n)}T+1n=0 is a nontrivial solution of

Δ2u(n − 1) +A1(n)u(n) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1).
(2.44)

From A1 < A2 we have

qA2

(
u0, u0

)
< qA1

(
u0, u0

)
= 0. (2.45)

Hence (2.42) holds.

Proposition 2.9. If U ∈ O(d), that is, U ∈ GLs(Rd) and UτU = Id, then for any A : Z(1, T) →
GLs(Rd), i(UτAU) = i(A), ν(UτAU) = ν(A). In particular, for any A ∈ GLs(Rd), we have

i(A) =
d∑

i=1

	{k ∈ Z(1, T) | λk < ai}, ν(A) =
d∑

i=1

	{k ∈ Z(1, T) | λk = ai}, (2.46)

where λk is given by (2.13), and {ai}di=1 = σ(A) is the set of eigenvalues of A.

Proof. Firstly, we claim that

λi(UτAU) = λi(A). (2.47)
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In fact, since λ0Id > A if and only if λ0Id > UτAU, we can choose λ0(UτAU) = λ0(A). By
(2.22) and (2.23), it is easy to see that μi(UτAU) = μi(A), and hence (2.47) holds. Therefore,
by Definition 2.4,

i(UτAU) = i(A), ν(UτAU) = ν(A). (2.48)

Since

E∗(diag{A1, A2}
) ∼= E∗(A1) ⊕ E∗(A2), ∗ = +, 0,−, (2.49)

we have

i
(
diag{A1, A2}

)
= i(A1) + i(A2), ν

(
diag{A1, A2}

)
= ν(A1) + ν(A2). (2.50)

Note that the scalar eigenvalue problem

Δ2y(n − 1) + λy(n) = 0, n ∈ Z(1, T),

y(0) = 0 = y(T + 1)
(2.51)

has a nontrivial solution if and only if λ = λk = 4 sin2(kπ/2(T + 1)), k ∈ Z(1,T). By
Proposition 2.1 and Definition 2.4, we see that for any α ∈ R,

i(α) = 	{k ∈ Z(1, T) | λk < α}, ν(α) = 	{k ∈ Z(1, T) | λk = α}. (2.52)

Since {ai}di=1 is the set of eigenvalues of A, there exists an orthogonal matrix U such that

UτAU = diag{a1, a2, . . . , ad}. (2.53)

From (2.48), (2.50), and (2.52) we have

i(A) =
d∑

i=1

	{k ∈ Z(1, T) | λk < ai}, ν(A) =
d∑

i=1

	{k ∈ Z(1, T) | λk = ai}. (2.54)

This completes the proof.

Proposition 2.10. For any A : Z(1, T) → GLs(Rd) with i(A) = 0, one has

T∑

n=0
|Δu(n)|2 ≥

T∑

n=1

(A(n)u(n), u(n)), ∀u ∈ E. (2.55)

And the equality holds if and only if u ∈ E0(A).
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Proof. For any u ∈ E with u =
∑

i,j cijeij , we have

T∑

n=0
|Δu(n)|2 =

T∑

n=1

(A(n)u(n), u(n)) +
∑

i,j

λi(A)μi

∣
∣cij

∣
∣2. (2.56)

Because i(A) = 0, by definition, λi(A) ≥ 0 for any i. So the inequality holds. And the equality
holds if and only if cij = 0 as λi(A)/= 0, that is, u ∈ E0(A).

By now, we have proved the monotonicity and have offered the computation formulae
of the indices. These will play an important role in discussing nonlinear Hamiltonian systems
in the next section. In the end of this section, we shall introduce the relative Morse index,
which is a precise expression of the number i(A2) − i(A1) as A2 > A1.

Definition 2.11. For any A1, A2 : Z(1, T) → GLs(Rd) with A1 < A2, define

I(A1, A2) =
∑

λ∈[0,1)
ν(A1 + λ(A2 −A1)). (2.57)

If A1 = α1Id, A2 = α2Id, where α1 < α2 are two real numbers, then by Proposition 2.9,
we have

I(α1Id, α2Id) =
∑

λ∈[0,1)
ν(α1Id + λ(α2 − α1)Id) = d	{k ∈ Z(1, T) | λk ∈ [α1, α2)},

i(α1Id) = d	{k ∈ Z(1, T) | λk < α1},

i(α2Id) = d	{k ∈ Z(1, T) | λk < α2}.

(2.58)

So

I(α1Id, α2Id) = i(α2Id) − i(α1Id). (2.59)

This gives us a steer toward the following result.

Proposition 2.12. For any A1, A2 : Z(1, T) → GLs(Rd) with A1 < A2, one has

I(A1, A2) = i(A2) − i(A1). (2.60)

Proof. Denote i(λ) := i(A1+λ(A2−A1)) for λ ∈ [0, 1], ν(λ) := ν(A1+λ(A2−A1)); then to prove
(2.60), we only need to prove that

i(λ + 0) = i(λ) + ν(λ), ∀λ ∈ [0, 1), (2.61)

i(λ − 0) = i(λ), ∀λ ∈ (0, 1] (2.62)

hold. In fact, if (2.61) and (2.62) hold, then the function λ → i(λ) is integer-valued, left
continuous, and nondecreasing. So, for any λ1 ∈ [0, 1], i(λ1) − i(0) must equal to the sum
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of the jumps i(λ) incurred in [0, λ1). By (2.61) and (2.62), this is precisely the sum of ν(λ),
0 ≤ λ < λ1, that is,

i(λ1) − i(0) =
∑

λ∈[0,λ1)
ν(λ). (2.63)

Hence, if we choose λ1 = 1, then (2.60) holds.
From (3) of Proposition 2.7, to prove (2.61), we only need to prove i(λ+0) ≤ i(λ)+ν(λ)

which is also equivalent to dT − i(λ) − ν(λ) ≤ dT − i(λ + 0). For any s ∈ [0, 1], set m+(s) =
dT − i(s) − ν(s), we only need to prove

m+(λ) ≤ m+(λ + 0) + ν(λ + 0). (2.64)

Similar to the proof of Lemma 2.8, it is easy to know that for ε > 0 sufficiently small, if

qBλ+ε(u, u) ≥ 0, ∀u ∈ E+(λ), (2.65)

then (2.64) holds, where E+(λ) = E+(A1+λ(A2−A1)), Bλ+ε(n) = A1(n)+(λ+ε)(A2(n)−A1(n)).
While as ε > 0 is sufficiently small and u ∈ E+(λ), we have

qBλ+ε(u, u) = qBλ(u, u) − ε
T∑

n=1

((A2(n) −A1(n))u(n), u(n))

= qBλ(u
+, u+) − ε

T∑

n=1

((A2(n) −A1(n))u(n), u(n)) ≥ 0,

(2.66)

where Bλ(n) = A1(n) + λ(A2(n) −A1(n)). Hence i(λ + 0) ≤ i(λ) + ν(λ).
On the other hand, from (1) of Proposition 2.7, to prove (2.62), we only need to prove

i(λ) ≤ i(λ − 0). By Lemma 2.8, to prove i(λ) ≤ i(λ − 0), we only need to prove

qBλ−ε(u, u) < 0, ∀u ∈ E−(λ) \ {0}, (2.67)

where ε > 0 is sufficiently small, Bλ−ε(n) = A1(n) + (λ − ε)(A2(n) − A1(n)). And as ε > 0 is
sufficiently small, we have

qBλ−ε(u, u) = qBλ(u, u) + ε
T∑

n=1

((A2(n) −A1(n))u(n), u(n))

= qBλ

(
u−, u−) + ε

T∑

n=1

((A2(n) −A1(n))u(n), u(n)) < 0,

(2.68)

where Bλ(n) = A1(n) + λ(A2(n) −A1(n)). This completes the proof.
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Proposition 2.13. For anyA : Z(1, T) → GLs(Rd), there exists ε0 > 0 such that for any ε ∈ (0, ε0],
one has

ν(A + εId) = 0, (2.69)

ν(A − εId) = 0, (2.70)

i(A − εId) = i(A), (2.71)

i(A + εId) = i(A) + ν(A). (2.72)

Proof. From Proposition 2.12 we have i(A+ Id) = i(A)+ I(A,A+ Id). From Definition 2.11 and
Proposition 2.12, we know that I(A,A+ Id) =

∑
λ∈[0,1) ν(A+λId) is finite, and then there must

exist some ε0 > 0 such that for any ε ∈ (0, ε0], ν(A + εId) = 0 and

i(A + εId) = i(A) +
∑

λ∈[0,1)
ν(A + λεId) = i(A) + ν(A). (2.73)

This proves (2.69) and (2.72).
To prove (2.70) and (2.71), note that I(A − Id,A) = i(A) − i(A − Id) and

I(A − Id,A) =
∑

λ∈[0,1)
ν(A − (1 − λ)Id) =

∑

λ∈(0,1]
ν(A − λId). (2.74)

Since I(A−Id,A) is finite, there exists ε0 > 0 such that for any ε ∈ (0, ε0], ν(A−εId) = 0. Hence

i(A − εId) = i(A) − I(A − εId,A) = i(A) −
∑

λ∈(0,1]
ν(A − λεId) = i(A). (2.75)

This proves (2.70) and (2.71).

3. Main Results

In this section, firstly, we shall obtain the existence of solutions to (1.9) by using both the
index theory in Section 2 and Leray-Schauder principle. Then, we obtain the multiplicity of
solutions to (1.9) by using Morse theory.

Theorem 3.1. Assume that

(1) there exist A : Z(1, T) × R
d → GLs(Rd) and h : Z(1, T) × R

d → R
d which are both

continuous with respect to the second variable, where h(n, z) = o(|z|) as |z| → ∞ for
every n ∈ Z(1, T) and

∇V (n, z) = A(n, z)z + h(n, z); (3.1)
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(2) there exist A1, A2 : Z(1, T) → GLs(Rd) satisfying A1 ≤ A2, i(A1) = i(A2), ν(A2) = 0
such that

A1(n) ≤ A(n, z) ≤ A2(n), ∀z ∈ R
d (3.2)

for every n ∈ Z(1, T). Then (1.9) has at least one solution.

To prove Theorem 3.1, we need the following Leray-Schauder principle; see [34] for
detailed proof.

Lemma 3.2. Assume that (X, ‖·‖X) is a Banach space and thatΦ : X → X is completely continuous.
If the set {‖x‖X | x ∈ X, x = λΦx, 0 < λ < 1} is bounded, then Φ must have a fixed point in a closed
ball BR in X, where

BR = {x | x ∈ X, ‖x‖X ≤ R},

R = sup{‖x‖X | x = λΦx, 0 < λ < 1}.
(3.3)

Proof of Theorem 3.1. Assume that (3.2) holds. Since ν(A2) = 0, from (1) of Proposition 2.5, we
know that the system

Δ2u(n − 1) +A2(n)u(n) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1)
(3.4)

has only a trivial solution. Define Γ1 : E → E as

(Γ1u)(n) = Δ2u(n − 1) +A2(n)u(n); (3.5)

then Γ1 is an invertible operator. Define Γ2 : E → E as

(Γ2u)(n) = A2(n)u(n) − ∇V (n, u(n)); (3.6)

then finding the solutions to (1.9) is equivalent to finding solutions to

Γ1u − Γ2u = 0 (3.7)

in E, which is also equivalent to finding the fixed points of Γ−11 Γ2 in E since Γ1 is invertible. By
Lemma 3.2, we only need to prove that the possible solutions to

Δ2u(n − 1) + (1 − λ)A2(n)u(n) + λ∇V (n, u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1)
(3.8)
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are priori bounded with respect to the norm ‖ · ‖ in E, where λ ∈ (0, 1). If not, there exist
{uk} ⊂ E, {λk} ⊂ (0, 1) with ‖uk‖ → ∞ such that

Δ2uk(n − 1) + (1 − λk)A2(n)uk(n) + λk∇V (n, uk(n)) = 0, n ∈ Z(1, T),

uk(0) = 0 = uk(T + 1).
(3.9)

Denote vk(n) = uk(n)/‖uk‖, Bk(n) = (1−λk)A2(n)+λkA(n, uk(n)), ek(n) = λk(∇V (n, uk(n))−
A(n, uk(n))uk(n))/‖uk‖; then (3.9) is equivalent to

Δ2vk(n − 1) + Bk(n)vk(n) + ek(n) = 0, n ∈ Z(1, T),

vk(0) = 0 = vk(T + 1).
(3.10)

From (3.1), ek → 0 as ‖uk‖ → ∞. We may assume that vk → v0, λk → λ0, and bkij → bij ,

where Bk(n) = (b(k)ij )d×d(n). Denote B0(n) = (bij(n))d×d; let k → ∞ in (3.10); we have

Δ2v0(n − 1) + B0(n)v0(n) = 0, n ∈ Z(1, T),

v0(0) = 0 = v0(T + 1).
(3.11)

On the other hand, (3.2) implies thatA1 ≤ Bk ≤ A2, and henceA1 ≤ B0 ≤ A2. By i(A2) = i(A1),
ν(A2) = 0, and Proposition 2.7, we have ν(A1) = ν(A2) = ν(B0) = 0. This contradicts the fact
that (3.11) has a nontrivial solution.

Example 3.3. Let

V (n, z) =
d∑

i=1

Fi(zi) +
1
2

d∑

i=1

aii(n)z2i +
∑

1≤i<j≤d
aij(n)zizj +

(
d∑

i=1

z2i + 1

)3/4

sinn, (3.12)

where z = (z1, z2, . . . , zd)
τ , Fi(t) =

∫ t
0 sfi(s)ds, fi : R → [0, α] is continuous and α > 0,

aij(n) = aji(n), i = 1, 2, . . . , d, j = 1, 2, . . . , d. Set

A(n) =
(
aij(n)

)
d×d = Uτ diag{α1(n), α2(n), . . . , αd(n)}U, (3.13)

where U ∈ O(d). Since

∇V (n, z) =
(
z1f1(z1), z2f2(z2), . . . , zdfd(zd)

)τ +A(n)z +
3
2

(
d∑

i=1

z2i + 1

)−1/4

z sinn

= diag
{
f1(z1), f2(z2), . . . , fd(zd)

}
z +A(n)z +

3
2

(
d∑

i=1

z2i + 1

)−1/4

z sinn,

(3.14)
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V (n, z) satisfies (3.1)with

A(n, z) = A(n) + diag
{
f1(z1), f2(z2), . . . , fd(zd)

}
,

A1(n) = A(n), A2(n) = A(n) + αId,

h(n, z) =
3
2

(
d∑

i=1

z2i + 1

)−1/4

z sinn.

(3.15)

If ν(αi) = 0 for every i ∈ Z(1, d), then ν(A1) = 0. By Proposition 2.13, if α > 0 is small enough,
then ν(A2) = 0 and i(A1) = i(A2). Hence, by Theorem 3.1, (1.9) has at least one solution. In
particular, if we choose fi(t) = α(sin t)2i and αi(n) ≡ αi ∈ R, [αi, αi + α] ∩ {λk}Tk=1 = ∅ for every
i = 1, 2, . . . , d, then i(A1) = i(A2), ν(A1) = ν(A2) = 0. And hence (1.9) has at least one solution.

Theorem 3.4. In assumption (3.1) if A(n, z) = A(n) satisfying ν(A)/= 0 and

(z, h(n, z)) ≥ c1|z|α − b1, |h(n, z)| ≤ c2|z|α−1 + b2, (3.16)

where c1, c2, b1, b2 are all positive constants and 1 ≤ α < 2, then (1.9) has at least one solution.

Proof. From Proposition 2.13, there exists ε > 0 such that i(A + εId) = i(A) + ν(A) and ν(A +
εId) = 0 for any A : Z(1, T) → GLs(Rd). Denote A1 = A + εId, by Lemma 3.2, we only need
to prove that the possible solutions to

Δ2u(n − 1) + λA1(n)u(n) + (1 − λ)A(n)u(n) + (1 − λ)h(n, u(n)) = 0, n ∈ Z(1, T),

u(0) = 0 = u(T + 1)
(3.17)

are priori bounded with respect to the norm ‖ · ‖ in E. If not, there exist {uk} ⊂ E, λk ∈ (0, 1)
with ‖uk‖ → ∞ such that

Δ2uk(n − 1) + λkA1(n)uk(n) + (1 − λk)A(n)uk(n) + (1 − λk)h(n, uk(n)) = 0, n ∈ Z(1, T),

uk(0) = 0 = uk(T + 1).
(3.18)

Denote vk(n) = uk(n)/‖uk‖, we may assume that vk → v0 and λk → λ0. Hence, v = v0 is a
nontrivial solution to

Δ2v0(n − 1) + λ0A1(n)v0(n) + (1 − λ0)A(n)v0(n) = 0, n ∈ Z(1, T),

v0(0) = 0 = v0(T + 1)
(3.19)

which implies that ν(A + ελ0Id)/= 0. We claim that λ0 = 0. If not, λ0 ∈ (0, 1], then A < A +
λ0εId ≤ A + εId. From Proposition 2.7, we have i(A + εId) = i(A) + ν(A) ≤ i(A + λ0εId) and
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i(A + εId) = i(A + λ0εId). However, from Proposition 2.7, we also have i(A + λ0εId) + ν(A +
λ0εId) ≤ i(A + εId) + ν(A + εId) which implies that ν(A + λ0εId) = 0, a contradiction! Hence
λ0 = 0 and

Δ2v0(n − 1) +A(n)v0(n) = 0, n ∈ Z(1, T),

v0(0) = 0 = v0(T + 1).
(3.20)

From (3.18), we have

T∑

n=1

(
Δ2uk(n − 1) +A(n)uk(n), v0(n)

)

+
T∑

n=1

ελk(uk(n), v0(n)) +
T∑

n=1

(1 − λk)(h(n, uk(n)), v0(n)) = 0.

(3.21)

Therefore, from (3.16), (3.20), and (3.21), for k large enough,

0 ≥
T∑

n=1

(h(n, uk(n)), v0(n))

=
T∑

n=1

(
h(n, uk(n)),

uk(n)
‖uk‖

)
+

T∑

n=1

(h(n, uk(n)), v0(n) − vk(n))

≥ ‖uk‖−1
T∑

n=1

(
c1|uk(n)|α − b1

)
− ‖v0 − vk‖∞

T∑

n=1

(
c2|uk(n)|α−1 + b2

)
.

(3.22)

Dividing ‖uk‖α−1 at both sides, we have

0 ≥
T∑

n=1

(
c1|vk(n)|α − b1‖uk‖−α

)
− ‖v0 − vk‖∞

T∑

n=1

(
c2|vk(n)|α−1 + b2‖uk‖1−α

)
−→ c1

T∑

n=1

|v0(n)|α.

(3.23)

This is a contradiction since ‖v0‖/= 0 and c1 > 0. The proof is complete.

If ∇V (n, 0) ≡ 0, then u ≡ 0 is a solution to (1.9). As usual we call this solution the
trivial solution. It is much regretted that we do not know if the solution we found is not the
trivial one in Theorems 3.1 and 3.4. In the following, we will obtain the existence of nontrivial
solutions to (1.9) by using Morse theory.

Theorem 3.5. Assume the following

(1) V : Z(1, T) × R
d → R is C2 with respect to the second variable, and

∇V (n, z) = A1(n)z + o(|z|), as |z| −→ ∞ (3.24)

for every n ∈ Z(1, T) with ν(A1) = 0.
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(2) ∇V (n, 0) ≡ 0, A0(n) = V ′′(n, 0), and i(A1)/∈Z(i(A0), i(A0) + ν(A0)). Then (1.9) has at
least one nontrivial solution.

(3) Moreover, if we further assume that ν(A0) = 0, |i(A1) − i(A0)| ≥ d, then (1.9) has at least
two nontrivial solutions.

To prove Theorem 3.5, we need some results on Morse theory. Let E be a real Hilbert
space and f ∈ C1(E,R). As in [2], denote

fc =
{
u ∈ E | f(u) ≤ c

}
, Kc =

{
u ∈ E | f ′(u) = 0, f(u) = c

}
(3.25)

for c ∈ R. The following is the definition of the Palais-Smale condition (the (PS) condition for
short).

Definition 3.6. The functional f satisfies the (PS) condition if any sequence {um} ⊂ E such that
{f(um)} is bounded and f ′(um) → 0 as m → ∞ has a convergent subsequence.

Let u0 be an isolated critical point of f with f(u0) = c ∈ R, and letU be a neighborhood
of u0; the group

Cq

(
f, u0

)
:= Hq

(
fc ∩U, fc ∩U \ {u0}

)
, q = 1, 2, . . . (3.26)

is called the qth critical group of f at u0, where Hq(A,B) denotes qth singular relative
homology group of the pair (A,B) over a field F, which is defined to be quotient Hq(A,B) =
Zq(A,B)/Bq(A,B), where Zq(A,B) is the qth singular relative closed chain group and
Bq(A,B) is the qth singular relative boundary chain group.

For any two regular values a < b, if K ∩ f−1[a, b] = {u1, u2, . . . , ul}, denote Mq =
∑l

i=1 dimCq(f, ui) and βq = dimHq(fb, fa). The following results play an important role in
proving Theorem 3.5; see [2] for the detailed proof.

Lemma 3.7. Assume that f ∈ C2(E,R) satisfies the (PS) condition. Then one has the followingMorse
inequalities:

Mq −Mq−1 + · · · + (−1)qM0 ≥ βq − βq−1 + · · · + (−1)qβ0 (3.27)

for q = 0, 1, 2, . . . . One also has the following Morse equality:

∞∑

q=0

Mqt
q =

∞∑

q=0

βqt
q + (1 + t)Q(t), (3.28)

where Q(t) is a polynomial with nonnegative integer coefficients.
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Lemma 3.8. Assume that f ∈ C2(E,R) and that u0 is an isolated critical point of f with finite Morse
index μ(u0) and nullity ν(u0). Thenone has the following.

(1) For any q /∈Z(μ(u0), μ(u0) + ν(u0)), Cq(f, u0) ∼= 0.

(2) If u0 is a nondegenerate critical point, then

Cq

(
f, u0

) ∼= δq,μ(u0)F, q = 0, 1, 2, . . . . (3.29)

(3) If f has a minimal value at u0, then

Cq

(
f, x0

) ∼= δq,0F, q = 0, 1, 2, . . . . (3.30)

(4) If there exist integers q1 /= q2 such that Cq1(f, u0) � 0 and Cq2(f, u0) � 0, then |q1 − q2| ≤
ν(u0) − 2.

Now, Define

f(u) =
1
2

T∑

n=0
|Δu(n)|2 −

T∑

n=1

V (n, u(n)), u ∈ E. (3.31)

Then the functional f is C2 with

〈
f ′(u), v

〉
=

T∑

n=0
(Δu(n),Δv(n)) −

T∑

n=1

(∇V (n, u(n)), v(n))

= −
T∑

n=1

(
Δ2u(n − 1) +∇V (n, u(n)), v(n)

)
, ∀u, v ∈ E.

(3.32)

So solutions to (1.9) are precisely the critical points of f .

Lemma 3.9. Under assumptions of Theorem 3.5, there exist R0 > 0, R1 > 0 and f̃ satisfying the
following conditions.

(1) f ′(u) = 0 implies ‖u‖ ≤ R0.

(2) f and f̃ have the same critical set.

(3) If ‖u‖ ≥ R1, then f̃(u) = (1/2)〈Lu, u〉.

Proof. Define L and g on E as

〈Lu, v〉 =
T∑

n=0
(Δu(n),Δv(n)) −

T∑

n=1

(A1(n)u(n), v(n)),

g(u) = f(u) − 1
2
〈Lu, u〉.

(3.33)
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Then

〈
f ′(u), v

〉
= 〈Lu, v〉 +

〈
g ′(u), v

〉
. (3.34)

Assumption ν(A1) = 0 implies that L is invertible. Taking ε1 = ‖L−1‖−1/2, there exists R0 > 0
such that if ‖u‖ > R0, then

∥
∥g ′(u)

∥
∥ < ε1‖u‖. (3.35)

So, as ‖u‖ > R0, we have

∥
∥f ′(u)

∥
∥ ≥

∥
∥
∥L−1

∥
∥
∥
−1
‖u‖ −

∥
∥g ′(u)

∥
∥ > ε1‖u‖, (3.36)

that is, no critical point is outside the ball BR0 .
To prove (2) and (3), let ρ ∈ C∞(R, [0, 1]) satisfy

ρ(t) =

⎧
⎨

⎩

1, t ≤ 0,

0, t ≥ 1
(3.37)

with 0 ≤ ρ(t) ≤ 1 and max |ρ′(t)| ≤ 3/2. Let ε = ‖L−1‖−1/5, then there exists c1 ≥ 0 such that

∥∥g ′(u)
∥∥ < ε‖u‖ + c1. (3.38)

Hence,

∣∣g(u)
∣∣ ≤

∫1

0

∣∣〈g ′(su), u
〉∣∣ds +

∣∣g(0)
∣∣

≤
∫1

0

(
εs‖u‖2 + c1‖u‖

)
ds +

∣∣g(0)
∣∣

=
ε

2
‖u‖2 + c1‖u‖ +

∣∣g(0)
∣∣.

(3.39)

Therefore, there exists c2 > 0 such that

∣∣g(u)
∣∣ ≤ ε‖u‖2 + c2, ∀u ∈ E. (3.40)

Define

R > max
{
1, R0,

c1 + 3/2
ε

}
, (3.41)
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where R0 is defined above and

λ = max{c2, 1} · R. (3.42)

If R ≤ ‖u‖ ≤ λ + R, then

c2
λ

< 1,
‖u‖
λ

≤ 2. (3.43)

Let

ρλ(t) = ρ

(
t − R

λ

)
, (3.44)

and define

f̃(u) =
1
2
〈Lu, u〉 + ρλ(‖u‖)g(u). (3.45)

Then the function f̃(u) satisfies (2) and (3). In fact,

f̃(u) =

⎧
⎪⎨

⎪⎩

f(u), ‖u‖ ≤ R,

1
2
〈Lu, u〉, ‖u‖ ≥ λ + R.

(3.46)

The only thing we have to check is that f̃ ′(u)/= 0 as R ≤ ‖u‖ ≤ λ + R. However,

∥∥∥f̃ ′(u)
∥∥∥ =

∥∥∥∥Lu +
1
λ
ρ′
(‖u‖ − R

λ

)
g(u)

u

‖u‖ + ρ

(‖u‖ − R

λ

)
g ′(u)

∥∥∥∥

≥
∥∥∥L−1

∥∥∥
−1
‖u‖ − 3

2λ

(
ε‖u‖2 + c2

)
− (ε‖u‖ + c1)

= 5ε‖u‖ − ε‖u‖ − 3ε
2λ

‖u‖2 −
(
c1 +

3c2
2λ

)

≥ ε‖u‖ −
(
c1 +

3
2

)
> 0.

(3.47)

Hence, let R1 = λ + R; the proof is completed.

From Lemma 3.9, f ′(u) = 0 if and only if f̃ ′(u) = 0. Thus, in order to find solutions
to (1.9), it suffices to find the critical points of f̃ . Moreover, f̃ satisfies the (PS) condition by
Lemma 3.9.
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Lemma 3.10. Under the assumptions of Theorem 3.5, there exist a, b with a < b such that the critical
points of f̃ belong to f̃−1((a, b)) := {u | a < f̃(u) < b} and

Hq

(
f̃ b, f̃a

)
∼= δq,i(A1)F. (3.48)

Proof. Define

a < min
B2R1

f̃ − 1, b > max
B2R1

f̃ + 1, f1(u) =
1
2
〈Lu, u〉, (3.49)

where a, b are finite. Noticing that all critical points of f̃ lie in BR0 , if u is a critical point of f̃ ,
then

a < min
BR0

f̃ ≤ f̃(u) ≤ max
BR0

f̃ < b. (3.50)

This implies that {u | a < f̃(u) < b} contains all critical points of f̃ . By the properties of the
raltive singular homology group, we have Hq(f̃ b, f̃a) ∼= Hq(fb

1 , f
a
1 ). However, ν(A1) = 0

implies that f1 has only critical point 0 with Morse index i(A1). From Lemma 3.8 the
conclusion holds.

Proof of Theorem 3.5. (1) By Lemma 3.10 and the Morse inequalities, f must have a critical
point u with Ci(A1)(f, u) � 0. Since i(A1)/∈Z(i(A0), i(A0) + ν(A0)), then from Lemma 3.8, we
have

Ci(A1)
(
f, 0

) ∼= 0. (3.51)

And hence u/= 0 is a critical point of f ; that is, (1.9) has at least one nontrivial solution.
(2) Since ν(A0) = 0, we have

Cq

(
f, 0

) ∼= δq,i(A0)F, q = 0, 1, 2, . . . . (3.52)

Nowwe assume that |i(A1)− i(A0)| ≥ d and that u is the only nonzero critical point of f . Then
from Morse equality, we have

ti(A0) +
∞∑

q=0

dimCq

(
f, u

)
tq = ti(A1) + (1 + t)Q(t). (3.53)
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We necessarily have dimCi(A1)(f, u) ≥ 1, and

either dimCi(A0)−1
(
f, u

)
≥ 1, or dimCi(A0)+1

(
f, u

)
≥ 1. (3.54)

(i) If dimCi(A0)−1(f, u) ≥ 1, then by assumption we have i(A0) − 1/= i(A1). Since the
nullity of u is less or equal to d, from Lemma 3.8, we have

|i(A0) − 1 − i(A1)| ≤ d − 2 (3.55)

which implies that |i(A0)− i(A1)| ≤ d−1. This is impossible since |i(A0)− i(A1)| ≥ d.

(ii) If dimCi(A0)+1(f, u) ≥ 1, then similar to the above proof we have |i(A0) − i(A1)| ≤
d − 1, also a contradiction.

Therefore, f has at least two nonzero critical points and hence (1.9) has at least two
nontrivial solutions.
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