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We introduce a new monotone hybrid iterative scheme for finding a common element of the set of
common fixed points of a countable family of nonexpansive multivalued maps, the set of solutions
of variational inequality problem, and the set of the solutions of the equilibrium problem in a
Hilbert space. Strong convergence theorems of the purposed iteration are established.

1. Introduction

Let D be a nonempty convex subset of a Banach spaces E. Let F be a bifunction from D ×D
to R, where R is the set of all real numbers. The equilibrium problem for F is to find x ∈ D
such that F(x, y) ≥ 0 for all y ∈ D. The set of such solutions is denoted by EP(F). The set D
is called proximal if for each x ∈ E, there exists an element y ∈ D such that ‖x − y‖ = d(x,D),
where d(x,D) = inf{‖x − z‖ : z ∈ D}. Let CB(D), K(D), and P(D) denote the families
of nonempty closed bounded subsets, nonempty compact subsets, and nonempty proximal
bounded subsets of D, respectively. The Hausdorff metric on CB(D) is defined by

H(A,B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d
(
y,A

)}
(1.1)

forA,B ∈ CB(D). A single-valuedmap T : D → D is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖
for all x, y ∈ D. A multivalued map T : D → CB(D) is said to be nonexpansive ifH(Tx, Ty) ≤
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‖x − y‖ for all x, y ∈ D. An element p ∈ D is called a fixed point of T : D → D (resp.,
T : D → CB(D)) if p = Tp (resp., p ∈ Tp). The set of fixed points of T is denoted by F(T). The
mapping T : D → CB(D) is called quasi-nonexpansive [1] if F(T)/= ∅ andH(Tx, Tp) ≤ ‖x − p‖
for all x ∈ D and all p ∈ F(T). It is clear that every nonexpansive multivalued map T with
F(T)/= ∅ is quasi-nonexpansive. But there exist quasi-nonexpansive mappings that are not
nonexpansive; see [2].

The mapping T : D → CB(D) is called hemicompact if, for any sequence {xn} in D
such that d(xn, Txn) → 0 as n → ∞, there exists a subsequence {xnk} of {xn} such that
xnk → p ∈ D. We note that ifD is compact, then everymultivaluedmapping T : D → CB(D)
is hemicompact.

A mapping T : D → CB(D) is said to satisfy Condition (I) if there is a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that

d(x, Tx) ≥ f(d(x, F(T))) (1.2)

for all x ∈ D.
In 1953, Mann [3] introduced the following iterative procedure to approximate a fixed

point of a nonexpansive mapping T in a Hilbert space H:

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N, (1.3)

where the initial point x0 is taken in C arbitrarily and {αn} is a sequence in [0, 1].
However, we note that Mann’s iteration process (1.3) has only weak convergence, in

general; for instance, see [4–6].
In 2003, Nakajo and Takahashi [7] introduced the method which is the so-called CQ

method to modify the process (1.3) so that strong convergence is guaranteed. They also
proved a strong convergence theorem for a nonexpansive mapping in a Hilbert space.

Recently, Tada and Takahashi [8] proposed a new iteration for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed points of a
nonexpansive mapping T in a Hilbert space H.

In 2005, Sastry and Babu [9] proved that the Mann and Ishikawa iteration schemes
for multivalued map T with a fixed point p converge to a fixed point q of T under certain
conditions. They also claimed that the fixed point q may be different from p. More precisely,
they proved the following result for nonexpansive multivalued map with compact domain.

In 2007, Panyanak [10] extended the above result of Sastry and Babu [9] to uniformly
convex Banach spaces but the domain of T remains compact.

Later, Song and Wang [11] noted that there was a gap in the proofs of Theorem 3.1
[10] and Theorem 5 [9]. They further solved/revised the gap and also gave the affirmative
answer to Panyanak [10] question using the following Ishikawa iteration scheme. In the main
results, domain of T is still compact, which is a strong condition (see [11, Theorem 1]) and T
satisfies condition (I) (see [11, Theorem 1]).

In 2009, Shahzad and Zegeye [2] extended and improved the results of Panyanak [10],
Sastry and Babu [9], and Song and Wang [11] to quasi-nonexpansive multivalued maps.
They also relaxed compactness of the domain of T and constructed an iteration scheme which
removes the restriction of T , namely, Tp = {p} for any p ∈ F(T). The results provided an
affirmative answer to Panyanak [10] question in a more general setting. In the main results,
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T satisfies Condition (I) (see [2, Theorem 2.3]) and T is hemicompact and continuous (see [2,
Theorem 2.5]).

A mapping A : D → H is called α-inverse-strongly monotone [12] if there exists a
positive real number α such that

〈Ax −Ay, x − y〉 ≥ α‖Ax −Ay‖2, ∀x, y ∈ D. (1.4)

Remark 1.1. It is easy to see that if A : D → H is α-inverse-strongly monotone, then it is a
(1/α)-Lipschitzian mapping.

Let A : D → H be a mapping. The classical variational inequality problem is to find a
u ∈ D such that

〈Au, v − u〉 ≥ 0, ∀v ∈ D. (1.5)

The set of solutions of variational inequality (3.9) is denoted by V I(D,A).

Question. How can we construct an iteration process for finding a common element of the
set of solutions of an equilibrium problem, the set of solutions of a variational inequality
problem, and the set of common fixed points of nonexpansive multivalued maps ?

In the recent years, the problem of finding a common element of the set of solutions
of equilibrium problems and the set of fixed points of single-valued nonexpansive mappings
in the framework of Hilbert spaces and Banach spaces has been intensively studied by many
authors; for instance, see [8, 13–20] and the references cited theorems.

In this paper, we introduce a monotone hybrid iterative scheme for finding a common
element of the set of a common fixed points of a countable family of nonexpansive
multivalued maps, the set of variational inequality, and the set of solutions of an equilibrium
problem in a Hilbert space.

2. Preliminaries

The following lemmas give some characterizations and a useful property of the metric
projection PD in a Hilbert space.

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. LetD be a closed
and convex subset of H. For every point x ∈ H, there exists a unique nearest point in D,
denoted by PDx, such that

‖x − PDx‖ ≤ ‖x − y‖, ∀y ∈ D. (2.1)

PD is called themetric projection ofH ontoD. We know that PD is a nonexpansive mapping of
H onto D.
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Lemma 2.1 (see [21]). Let D be a closed and convex subset of a real Hilbert space H and let PD

be the metric projection from H onto D. Given x ∈ H and z ∈ D, then z = PDx if and only if the
following holds:

〈x − z, y − z〉 ≤ 0, ∀y ∈ D. (2.2)

Lemma 2.2 (see [7]). Let D be a nonempty, closed and convex subset of a real Hilbert space H and
PD : H → D the metric projection from H onto D. Then the following inequality holds:

‖y − PDx‖2 + ‖x − PDx‖2 ≤ ‖x − y‖2, ∀x ∈ H, ∀y ∈ D. (2.3)

Lemma 2.3 (see [21]). LetH be a real Hilbert space. Then the following equations hold:

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉, for all x, y ∈ H;

(ii) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2, for all t ∈ [0, 1] and x, y ∈ H.

Lemma 2.4 (see [22]). Let D be a nonempty, closed and convex subset of a real Hilbert space H.
Given x, y, z ∈ H and also given a ∈ R, the set

{
v ∈ D : ‖y − v‖2 ≤ ‖x − v‖2 + 〈z, v〉 + a

}
(2.4)

is convex and closed.

For solving the equilibrium problem, we assume that the bifunction F : D × D → R

satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ D;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ D;

(A3) for each x, y, z ∈ D, lim supt↓0F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) F(x, ·) is convex and lower semicontinuous for each x ∈ D.

Lemma 2.5 (see [13]). LetD be a nonempty, closed and convex subset of a real Hilbert spaceH. Let
F be a bifunction from D ×D to R satisfying (A1)–(A4) and let r > 0 and x ∈ H. Then, there exists
z ∈ D such that

F
(
z, y

)
+
1
r

〈
y − z, z − x

〉 ≥ 0, ∀y ∈ D. (2.5)

Lemma 2.6 (see [18]). For r > 0, x ∈ H, defined a mapping Tr : H → D as follows:

Tr(x) =
{
z ∈ D : F

(
z, y

)
+
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ D

}
. (2.6)

Then the following holds:

(1) Tr is a single value;
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(2) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉; (2.7)

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.

In the context of the variational inequality problem,

u ∈ V I(D,A) ⇐⇒ u = PD(u − λAu), ∀λ > 0. (2.8)

A set-valued mapping T : H → 2H is said to be monotone if for all x, y ∈ H, f ∈ Tx, and
g ∈ Ty imply that 〈f − g, x − y〉 ≥ 0. A monotone mapping T : H → H is said to be maximal
[23] if the graph G(T) of T is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping is maximal if and only if for (x, f) ∈ H ×H,
〈f − g, x − y〉 ≥ 0, ∀(y, g) ∈ G(T) imply that f ∈ Tx. Let A : D → H be an inverse strongly
monotone mapping and let NDv be the normal cone to D at v ∈ D, that is,

NDv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ D}, (2.9)

and define

Tv =

⎧⎨
⎩
Av +NDv, v ∈ D,

∅, v /∈D.
(2.10)

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(D,A) (see, e.g., [24]).
In general, the fixed point set of a nonexpansive multivalued map T is not necessary

to be closed and convex (see [25, Example 3.2]). In the next Lemma, we show that F(T) is
closed and convex under the assumption that Tp = {p} for all p ∈ F(T).

Lemma 2.7. LetD be a closed and convex subset of a real Hilbert spaceH. Let T : D → CB(D) be a
nonexpansive multivalued map with F(T)/= ∅ and Tp = {p} for each p ∈ F(T). Then F(T) is a closed
and convex subset of D.

Proof. First, we will show that F(T) is closed. Let {xn} be a sequence in F(T) such that xn → x
as n → ∞. We have

d(x, Tx) ≤ d(x, xn) + d(xn, Tx)

≤ d(x, xn) +H(Txn, Tx)

≤ 2d(x, xn).

(2.11)
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It follows that d(x, Tx) = 0, so x ∈ F(T). Next, we show that F(T) is convex. Let p = tp1 + (1 −
t)p2 where p1, p2 ∈ F(T) and t ∈ (0, 1). Let z ∈ Tp; by Lemma 2.3, we have

‖p − z‖2 = ‖t(z − p1
)
+ (1 − t)

(
z − p2

)‖2
= t‖z − p1‖2 + (1 − t)‖z − p2‖2 − t(1 − t)‖p1 − p2‖2

= td
(
z, Tp1

)2 + (1 − t)d(z, Tp2)
2 − t(1 − t)‖p1 − p2‖2

≤ tH(Tp, Tp1)
2 + (1 − t)H(Tp, Tp2)

2 − t(1 − t)‖p1 − p2‖2

≤ t‖p − p1‖2 + (1 − t)‖p − p2‖2 − t(1 − t)‖p1 − p2‖2

= t(1 − t)2‖p1 − p2‖2 + (1 − t)t2‖p1 − p2‖2 − t(1 − t)‖p1 − p2‖2

= 0.

(2.12)

Hence p = z. Therefore, p ∈ F(T).

3. Main Results

In the following theorem, we introduce a new monotone hybrid iterative scheme for finding
a common element of the set of a common fixed points of a countable family of nonexpansive
multivalued maps, the set of variational inequality, and the set of solutions of an equilibrium
problem in a Hilbert space, and we prove strong convergence theorem without the condition
(I).

Theorem 3.1. Let D be a nonempty, closed and convex subset of a real Hilbert space H. Let F be
a bifunction from D × D to R satisfying (A1)–(A4), let A : D → H be an α-inverse strongly
monotone mapping, and let Ti : D → CB(D) be nonexpansive multivalued maps for all i ∈ N with
Ω :=

⋂∞
i=1 F(Ti) ∩ EP(F) ∩ V I(D,A)/= ∅ and Tip = {p}, ∀p ∈ ⋂∞

i=1 F(Ti). Assume that αi,n ∈ [0, 1)
with lim supn→∞αi,n < 1 for all i ∈ N, {rn} ⊂ [b,∞) for some b ∈ (0,∞), and {λn} ⊂ [c, d] for
some c, d ∈ (0, 2α). For an initial point x0 ∈ H with C1 = D and x1 = PC1x0, let {xn}, {yn}, {si,n},
and {un} be sequences generated by

F
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ D,

yn = PD(un − λnAun),

si,n = αi,nyn + (1 − αi,n)zi,n,

Ci,n+1 =
{
z ∈ Ci,n : ‖si,n − z‖ ≤ ‖yn − z‖ ≤ ‖xn − z‖},

Cn+1 =
∞⋂
i=1

Ci,n+1,

xn+1 = PCn+1x0, ∀n ∈ N,

(3.1)

where zi,n ∈ Tiyn. Then, {xn}, {yn}, and {un} converge strongly to z0 = PΩx0.
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Proof. We split the proof into six steps.

Step 1. Show that PCn+1x0 is well defined for every x0 ∈ H.

Since 0 < c ≤ λn ≤ d < 2α for all n ∈ N, we get that PC(I − λnA) is nonexpansive for
all n ∈ N. Hence,

⋂∞
n=1 F(PC(I −λnA)) = V I(D,A) is closed and convex. By Lemma 2.6(4), we

know that EP(F) is closed and convex. By Lemma 2.7, we also know that
⋂∞

i=1 F(Ti) is closed
and convex. Hence, Ω :=

⋂∞
i=1 F(Ti) ∩ EP(F) ∩ V I(D,A) is a nonempty, closed and convex

set. By Lemma 2.4, we see that Ci,n+1 is closed and convex for all i, n ∈ N. This implies that
Cn+1 is also closed and convex. Therefore, PCn+1x0 is well defined. Let p ∈ Ω and i ∈ N. From
un = Trnxn, we have

‖un − p‖ = ‖Trnxn − Trnp‖ ≤ ‖xn − p‖ (3.2)

for every n ≥ 0. From this, we have

‖si,n − p‖ = ‖αi,nyn + (1 − αi,n)zi,n − p‖
≤ αi,n‖yn − p‖ + (1 − αi,n)‖zi,n − p‖
≤ αi,n‖yn − p‖ + (1 − αi,n)d

(
zi,n, Tip

)
≤ αi,n‖yn − p‖ + (1 − αi,n)H

(
Tiyn, Tip

)
≤ ‖yn − p‖
= ‖PD(un − λnAun) − PD

(
p − λnAp

)‖
≤ ‖un − p‖
≤ ‖xn − p‖.

(3.3)

So, we have p ∈ Ci,n+1, hence Ω ⊂ Ci,n+1, ∀i ∈ N. This shows that Ω ⊂ Cn+1 ⊂ Cn.

Step 2. Show that limn→∞‖xn − x0‖ exists.

Since Ω is a nonempty closed convex subset of H, there exists a unique v ∈ Ω such
that

z0 = PΩx0. (3.4)

From xn = PCnx0, Cn+1 ⊂ Cn and xn+1 ∈ Cn, ∀n ≥ 0, we get

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀n ≥ 0. (3.5)

On the other hand, as Ω ⊂ Cn, we obtain

‖xn − x0‖ ≤ ‖z0 − x0‖, ∀n ≥ 0. (3.6)
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It follows that the sequence {xn} is bounded and nondecreasing. Therefore, limn→∞‖xn − x0‖
exists.

Step 3. Show that xn → q ∈ D as n → ∞.

For m > n, by the definition of Cn, we see that xm = PCmx0 ∈ Cm ⊂ Cn. By Lemma 2.2,
we get

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2. (3.7)

From Step 2, we obtain that {xn} is Cauchy. Hence, there exists q ∈ D such that xn → q as
n → ∞.

Step 4. Show that q ∈ F.

From Step 3, we get

‖xn+1 − xn‖ −→ 0 (3.8)

as n → ∞. Since xn+1 ∈ Cn+1 ⊂ Cn, we have

‖si,n − xn‖ ≤ ‖si,n − xn+1‖ + ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ −→ 0 (3.9)

as n → ∞ for all i ∈ N,

‖yn − xn‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ −→ 0 (3.10)

as n → ∞. Hence, yn → q as n → ∞. It follows from (3.9) and (3.10) that

‖zi,n − yn‖ =
1

1 − αi,n
‖si,n − yn‖ −→ 0 (3.11)

as n → ∞ for all i ∈ N. For each i ∈ N, we have

d
(
q, Tiq

) ≤ ‖q − yn‖ + ‖yn − zi,n‖ + d
(
zi,n, Tiq

)
≤ ‖q − yn‖ + ‖yn − zi,n‖ +H

(
Tiyn, Tiq

)
≤ ‖q − yn‖ + ‖yn − zi,n‖ + ‖yn − q‖.

(3.12)

From (3.11), we obtain d(q, Tiq) = 0. Hence q ∈ F.
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Step 5. Show that q ∈ EP(F).

By the nonexpansiveness of PD and the inverse strongly monotonicity of A, we obtain

‖yn − p‖2 ≤ ‖un − λnAun −
(
p − λnAp

)‖2
≤ ‖un − p‖2 + λn(λn − 2α)‖Aun −Ap‖2

= ‖Trnxn − Trnp‖2 + λn(λn − 2α)‖Aun −Ap‖2

≤ ‖xn − p‖2 + c(d − 2α)‖Aun −Ap‖2.

(3.13)

This implies

c(2α − d)‖Aun −Ap‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

≤ ‖xn − yn‖
(‖xn − p‖ + ‖yn − p‖). (3.14)

It follows from (3.10) that

lim
n→∞

‖Aun −Ap‖ = 0. (3.15)

Since PD is firmly nonexpansive, we have

∥∥yn − p
∥∥2 =

∥∥PD(un − λnAun) − PD(p − λnAp)
∥∥2

≤ 〈un − λnAun) −
(
p − λnAp

)
, yn − p〉

=
1
2

(∥∥(un − λnAun) −
(
p − λnAp

)∥∥2

+
∥∥yn − p

∥∥2 − ∥∥(un − λnAun) − (p − λnAp) − (
yn − p

)∥∥2
)

≤ 1
2

(∥∥un − p
∥∥2 +

∥∥yn − p
∥∥2 − ∥∥(un − yn

) − λn
(
Aun −Ap

)∥∥2
)

≤ 1
2

(∥∥xn − p
∥∥2 +

∥∥yn − p
∥∥2 − ∥∥un − yn

∥∥2 + 2λn
〈
un − yn,Aun −Ap

〉)

≤ 1
2

(∥∥xn − p
∥∥2 +

∥∥yn − p
∥∥2 − ∥∥un − yn

∥∥2 + 2λn
∥∥un − yn

∥∥∥∥Aun −Ap
∥∥).

(3.16)

This implies that

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖un − yn‖2 + 2λn‖un − yn‖‖Aun −Ap‖. (3.17)
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It follows that

‖un − yn‖2 ≤ ‖xn − yn‖
(‖xn − p‖ + ‖yn − p‖)

+ 2d‖un − yn‖‖Aun −Ap‖.
(3.18)

From (3.10) and (3.15), we get

lim
n→∞

‖un − yn‖ = 0. (3.19)

It follows from (3.10) and (3.19) that

lim
n→∞

‖un − xn‖ = 0. (3.20)

Since un = Trnxn, we have

F
(
un, y

)
+

1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ D. (3.21)

From the monotonicity of F, we have

1
rn

〈
y − un, un − xn

〉 ≥ F
(
y, un

)
, ∀y ∈ D, (3.22)

hence

〈
y − un,

un − xn

rn

〉
≥ F

(
y, un

)
, ∀y ∈ D. (3.23)

From (3.20) and condition (A4), we have

0 ≥ F
(
y, q

)
, ∀y ∈ D. (3.24)

For t with 0 < t ≤ 1 and y ∈ D, let yt = ty + (1 − t)q. Since y, q ∈ D and D is convex, then
yt ∈ D and hence F(yt, q) ≤ 0. So, we have

0 = F
(
yt, yt

) ≤ tF
(
yt, y

)
+ (1 − t)F

(
yt, q

) ≤ tF
(
yt, y

)
. (3.25)

Dividing by t, we obtain

F
(
yt, y

) ≥ 0, ∀y ∈ D. (3.26)
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Letting t ↓ 0 and from (A3), we get

F
(
q, y

) ≥ 0, ∀y ∈ D. (3.27)

Therefore, we obtain q ∈ EP(F).

Step 6. Show that q ∈ V I(D,A).

Since T is the maximal monotone mapping defined by (2.10),

Tx =

⎧⎨
⎩
Ax +NDx, x ∈ D,

∅, x /∈D.
(3.28)

For any given (x, u) ∈ G(T), hence u −Ax ∈ NDx. It follows that

〈x − yn, u −Ax〉 ≥ 0. (3.29)

On the other hand, since yn = PD(un − λnAun), we have

〈x − yn, yn − (un − λnAun)〉 ≥ 0, (3.30)

and so

〈
x − yn,

yn − un

λn
+Aun

〉
≥ 0. (3.31)

From (3.29), (3.31), and the α-inverse monotonicity of A, we have

〈x − yn, u〉 ≥ 〈
x − yn,Ax

〉
≥ 〈

x − yn,Ax
〉 −〈

x − yn,
yn − un

λn
+Aun

〉

= 〈x − yn,Ax −Ayn〉 + 〈x − yn,Ayn −Aun〉 −
〈
x − yn,

yn − un

λn

〉

≥ 〈x − yn,Ayn −Aun〉 −
〈
x − yn,

yn − un

λn

〉
.

(3.32)

It follows that

lim
n→∞

〈x − yn, u〉 = 〈x − q, u〉 ≥ 0. (3.33)

Again since T is maximal monotone, hence 0 ∈ Tq. This shows that q ∈ V I(D,A).
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Step 7. Show that q = z0 = PΩx0.

Since xn = PCnx0 and Ω ⊂ Cn, we obtain

〈x0 − xn, xn − p〉 ≥ 0 ∀p ∈ Ω. (3.34)

By taking the limit in (3.34), we obtain

〈x0 − q, q − p〉 ≥ 0 ∀p ∈ Ω. (3.35)

This shows that q = PΩx0 = z0.
From Steps 3 to 5, we obtain that {xn}, {yn}, and {un} converge strongly to z0 = PΩx0.

This completes the proof.

Theorem 3.2. Let D be a nonempty, closed and convex subset of a real Hilbert space H. Let Ti :
D → CB(D) be nonexpansive multivalued maps for all i ∈ N with Ω :=

⋂∞
i=1 F(Ti) ∩ V I(D,A)/= ∅

and Tip = {p}, for all p ∈ ⋂∞
i=1 F(Ti). Assume that αi,n ∈ [0, 1) with lim supn→∞αi,n < 1 and

{λn} ⊂ [c, d] for some c, d ∈ (0, 2α). For an initial point x0 ∈ H with C1 = D and x1 = PC1x0, let
{xn}, {yn}, and {si,n} be sequences generated by

yn = PD(xn − λnAxn),

si,n = αi,nyn + (1 − αi,n)zi,n,

Ci,n+1 =
{
z ∈ Ci,n : ‖si,n − z‖ ≤ ‖yn − z‖ ≤ ‖xn − z‖},

Cn+1 =
∞⋂
i=1

Ci,n+1,

xn+1 = PCn+1x0, ∀n ∈ N,

(3.36)

where zi,n ∈ Tiyn. Then, {xn} and {yn} converge strongly to z0 = PΩx0.

Proof. Putting F(x, y) = 0 for all x, y ∈ D in Theorem 3.1, we obtain the desired result directly
from Theorem 3.1.

Theorem 3.3. LetD be a nonempty, closed and convex subset of a real Hilbert spaceH. Let Ti : D →
CB(D) be nonexpansive multivalued maps for all i ∈ N with Ω :=

⋂∞
i=1 F(Ti)/= ∅ and Tip = {p}, for

all p ∈ ⋂∞
i=1 F(Ti). Assume that αi,n ∈ [0, 1) with lim supn→∞αi,n < 1. For an initial point x0 ∈ H

with C1 = D and x1 = PC1x0, let {xn} and {si,n} be sequences generated by

si,n = αi,nxn + (1 − αi,n)zi,n,

Ci,n+1 = {z ∈ Ci,n : ‖sn − z‖ ≤ ‖xn − z‖},

Cn+1 =
∞⋂
i=1

Ci,n+1,

xn+1 = PCn+1x0, ∀n ∈ N,

(3.37)

where zi,n ∈ Tiyn. Then, {xn} converge strongly to z0 = PΩx0.



Discrete Dynamics in Nature and Society 13

Proof. Putting A = 0 in Theorem 3.2, we obtain the desired result directly from Theorem 3.2.
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