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We propose a discrete agent-based model to investigate the migration dynamics of heterogeneous
individuals. Compatibility among agents of different types is expressed in terms of homophily
parameters capturing the extent to which similar individuals are attracted to, or dissimilar
individuals are repelled by, each other. Based on agent-based simulations, we establish the
connection between emerging spatiotemporal patterns and the homophily parameters. Key results
are presented in a novel phase diagram, which reveals a wide range of spatial patterns including
the cell, worm, herd, amoeba, and swarm modes under the dynamic regime and the separation,
ghetto, and integration modes under the stationary one. Our model thus provides a generalized
framework encompassing both static equilibrium and nonstationary systems to investigate the
impact of agent heterogeneity on population dynamics. We demonstrate potential applications of
our model to social systems using sexual segregation of ungulate habitats as a case study.

1. Introduction

Spatiotemporal patterns are ubiquitous in natural and social systems. Many of these patterns
are the results of bottom-up, self-organizing behavior without the presence of a top-down,
central control. Numerous studies have explored whether such complex patterns, either
spatial or temporal, can be explained with a simple set of rules defined between interacting
individuals, or agents, in the system. Discrete multiagent models are widely used to pursue
such a quest in physics, biology, and social sciences. In such a model, the rules of interaction
between agents can be defined in unlimited ways, depending on the system of interests.

One approach is to employ a set of rules borrowed from the laws of nature. For
example, when biologists try to identify a fission-fusion process, the chemical and physical
forces acting on each cell are identified and the equations of motion are applied to describe
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cell motility in themost precise way [1, 2]. Another example is the application of conventional
physics laws, such as Newton’s law of motion, which is relatively straightforward when
we deal with particle-like individuals. But when the constituting individuals behave
autonomously in a way that cannot be predicted with certainty, the laws of physics alone are
inadequate. For example, when simulating the migratory patterns of a school of fish [3, 4],
we cannot directly identify the forces that lead to the spontaneous emergence of collective
behavior. Each individual has an internal degree of autonomy [5], in contrast to particle-like
agents that follows simple, mechanistic rules. Pedestrians [6], bird flocks [7], and schools
of fish are examples of autonomous agents that react collectively to environmental changes.
Often the external forces driving the behavior of autonomous agents are cultural, economical,
psychological, or sociodemographical. In this case physical laws alone are insufficient, and
new models need to be developed in order to explain the emerging collective behavior with
a simple set of rules. In [8] for example, the flight pattern of a flock of birds is successfully
reduced to just three simple rules. Most of these examples dealing with the spatial patterns of
natural systems share at least one thing in common, namely, that the rules, be it physical or
not, generate a continuous path of motion for every agent in the system. Thus, even though
the rules are not directly derived from physical laws, the resulting continuous trajectory is
nevertheless consistent with the laws of physics.

Another approach is to assume that laws of physics are of secondary importance or
even ignore them completely altogether. The well-known Conway’s game of life [9] is a good
example of this class of models. Depending on the initial setup and rules, distinct spatial
patterns can arise from a two- or three-dimensional cellular automaton. There are those who
have even argued that many automaton creatures generated using simple rules are indistin-
guishable from real-life organisms [7]. However, cellular automaton rules are typically highly
abstract, not paying much attention to how they can be realized in the real world. Between
the two extremes of true physical and purely conceptual models, there exist hybrid ones. For
example, consider the migration of households [10, 11] across neighborhoods in a city. In
this case, the migration’s intermediate trajectory is usually considered of little importance.
Instead, only the origin and the final destination matter. The migration of households could
be explained in terms of simple rules as in the Schelling model [10]. Sometimes such a
migration can be explained in terms of the physics-like rules. For example, we can define
the potential field as a function of the spatial distribution of all agents in the system [11]. As
agents relocate and situation unfolds, the potential field also changes accordingly, which in
turn affects agents’ migratory behavior in the subsequent period. This coevolving system is
known to be associated with adaptive fitness landscapes or adaptive potentials [12].

We can similarly define the fitness landscape for households in a city. A household
migrates to another neighborhood in order to improve its welfare, that is, its fitness level. For
example, a household relocates because of its preference for same-ethnic neighbors [11]. The
migration dynamics is comparable to the dynamics of Brownian particles [5]. A Brownian
particle also moves on an adaptive landscape to improve its potential, but its trajectory is
a continuous one. The typical trajectory of Brownian particles may not be appropriate to
describe the movement of migrating households. A particle cannot pass through a zone
that has higher potential than its present one. By contrast, any migrating households can
pass through Beverly Hills even though housing there is unaffordable to most households.
Similarly, but in opposite sense, buffalos frequently move between groups during mating
periods at the risk of greater exposure to predation [13]. Clearly, conventional laws of
physics cannot describe the rules of discrete migration since the individual trajectory is not
continuous. But those rules are still not purely conceptual, in the sense that rules are based on
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the physics-like ansatz. In describing discrete migration dynamics, the rules are not defined
in terms of acceleration or velocity but in terms of position. In addition to migration of
households, the fission-fusion of animal groups is another example [13, 14]. And though
not transpiring on physical space, the dynamics of human networks is an example in which
social distance between groups replaces the role of geometrical distance [15].

This study links discrete migration dynamics to an agent-based model in order
to explain the emergence of distinct spatial patterns in complex systems. To that end,
a dynamical system composed of two types of migrating individuals is defined and
investigated. In that system, compatibility between two individuals is described in terms
of differential attraction coefficients or homophily parameters [16]. The original concept of
“homophily” developed in the sociology literature is based on the principle that similarity
breeds compatibility [17]. Similarities in race, ethnicity, age, religion, education, and gender
all create strong homophilous relationships. The result is agents that are attracted to same-
type individuals sharing similar characteristics, while at the same time repelled by dissimilar
individuals, or perhaps attracted but only to a lesser degree. Under this pretext, positive
homophily arises from the interaction of two same-type individuals that benefit from the
presence of each other; while negative homophily is generated when two incompatible
individuals of different types attempt to evade each other. A more general notion may
also allow positive homophily to result from the interaction of dissimilar individuals while
negative one could stem from the interaction of same-type individuals. Similar homophily
principles have been applied in biology to examine the preferential mixing behavior [18] of
animals and in sociology to understand in-group attraction and out-group avoidance [19].
The general setup of our homophily-augmented agent-based model is briefly described next.

Starting from an initial random distribution of agents on a two-dimensional square
lattice, individuals relocate under a single move condition defined in terms of adaptive
potential and frictional cost. Specifically, an agent migrates to a new location if its increase in
potential net of travel costs is positive. We show below that the emerging spatial patterns of
the system population depend on specific values of the homophily parameters, which capture
the extent to which individuals are attracted or repelled by each other. A key result of this
study is the phase-diagram representation of the emerging patterns on the homophily plane.
We then demonstrate how our model can be used as a tool to study the grouping behavior of
ungulates.

2. The Model

Agents in our model interact on a two-dimensional lattice system composed of L × L sites.
A total, fixed number of N heterogeneous agents of multiple types are distributed on the
lattice system in such a way that, at any given time, a location is either empty or occupied
by a maximum of one agent. Thus, the average population density is p = N/L2. Although
potentially there is no limit on the number of agent types that our model could accommodate,
in this study we focus mainly on a two-group system. Specifically, the agent population can
be broken down into two subgroups denoted by setA and set B, respectively. SetA comprises
of nA agents of type Awhile set B comprises of nB agents of type B. Hence,N = nA + nB. For
completeness, let E denote the set of empty locations, comprising of nE = L2 −N sites.

The potential or fitness level of an agent depends on the spatial distribution of all
the agents in the system. Specifically, every agent in the system contributes to an agent’s
potential. The spatial distribution evolves due tomigration, whichmeans every time an agent
moves; it affects the adaptive potential of all other agents. Next, define αIJ as the homophily
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parameter that comes into effect when agent i of type I and agent j of type J interact. We thus
have four homophily constants corresponding to interactions between and within the two
types of agents, namely, αAA, αAB, αBA, and αBB. We assume that empty sites also contribute
to an agent’s potential, which can be viewed as agents’ preference for empty space. Denote
the contribution of an empty site to the potential of a type-A and a type-B agent as αAE and
αBE, respectively. Note that empty sites do not have preferences, which mean that αEA and
αEB are undefined in our model. The potential of an agent i is then defined as in the following
equation:

φi =
j /= i∑

j=1 to L2

αIJ

dν
ij

. (2.1)

In (2.1), I ∈ {A,B} denotes agent i’s type and J ∈ {A,B, E} denotes either agent j’s type or
an empty cell e ∈ E, while dij measures the Euclidian distance between agents i and j. The
summation is carried over all sites in the system except itself. It is important to note that
the power exponent v is strictly positive implying that the transmission of influence across
individuals decays with distance. The exponent v can take any real value, depending on
the nature of the interactions. It is shown in [11] that, in general, agent-agent interactions
are global when v ≤ 2, while local when v is greater than 2. In the present study we assume
global interactions and fix v = 1, which implies that every individual is affected by everybody
else in the system. We recognize that in complex-systems studies local interactions are
often assumed. For example, the classic Schelling’s model of residential segregation assumes
purely local interactions, so that only the nearest neighbors have an impact on the focal agent.
Conway’s game of life [9] and the voids model [8] are other well-known examples of purely
local interactions.

There are, however, complex systems in which purely local interactions alone are not
sufficient to understand the observed communal behavior. For example, a select group of
living cells behave as if they are “aware” of the state of their entire system [20], fish adjust
its swimming velocity to stay united with all other fish in its school [21], and traveling
vertebrates appear to utilize global information in order to move collectively together in
certain directions [22]. There have been also hybrid models of self-organizing systems
that combine local with global interactions, for example, to study the motility-proliferation
cycle of malignant brain tumor cells [23]. The distance-decay function that we employ here
reflects the combination of short-range, local interactions with long-range influences of agents
located farther away that weaken with distance but never become completely negligible.

The potential of an empty location can also be calculated using (2.1), which can be
thought of as the hypothetical potential that an evaluating agent would realize if it chooses
to move to an empty site. An empty location’s potential therefore depends on the type of
the evaluating agents. When an agent migrates to enhance its potential, the same empty
location acquires a different value (potential) depending on the type of the relocating agent.
Relocation therefore alters not only the potential of the migrating agent but also that of all
other agents and empty sites in the system as well. In this way agents in our model climb up
the hills on an adaptive fitness landscape.

We specify next the condition under which migration occurs. The key behavioral
assumption here is agents’ desire to find locations that yield higher potentials. However,
since a site’s maximum carrying capacity is one agent at any given time, and since we do
not allow swapping between agents, the only possible relocation of an agent is into an empty
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site. Consider the case in which agent a evaluates the attractiveness of empty site e. That agent
migrates to empty site e if the following condition is satisfied:

φe − φa ≥ fdae, (2.2)

where f is the friction factor and dae the distance between agent a’s current location and the
empty site e. The right-hand term fdae corresponds to moving cost that is proportional to the
distance between the agent’s origin location and its destination. Thus, according to condition
(2.2) an agent relocates if its increase in potential obtained by doing so is greater than the
moving cost.

The dynamics of the system in ourmodel is then completely defined by the sequence of
matching-evaluating-moving. At every single, discrete time step, only one agent is allowed
to move, if ever. Specifically at any given time, an agent and an empty cell are randomly
selected and matched. The selected agent then evaluates the attractiveness of the empty cell.
Migration occurs if condition (2.2) is satisfied. If it is not, no action is taken, and the simulation
advances to the next time step. Starting from a random initial distribution of agents, we repeat
the simple process of matching-evaluating-moving until no agents have any incentives to
change location anymore, or until a long-run spatial pattern can be identified.

3. Simulations and Results

We demonstrate next the dependence of the emerging spatiotemporal pattern on the model’s
parameters. Since our goal is to establish the connection between the extent of agent
heterogeneity and population dynamics, we focus on the impact of changing the homophily
parameter values while holding fixed the other system parameters. The reported results here
are based on agent-based simulations of a system in which the lattice size is 100 × 100, the
subgroup populations are nA = nB = 500, and the friction factor is f = 0.1, unless stated
otherwise. With two types of agent, there are six agent-specific parameters whose numerical
values remain to be determined, namely, (αAA, αAB, αAE) and (αBA, αBB, αBE). The first three
parameters influence directly the migratory behavior of type-A agents: αAA represents the
in-group homophily among the type-A agents and αAB the extent to which a type-B agent
affects a type-A one. More specifically, a positive αAB implies that type-A agents benefit
from the presence of type-B ones, while a negative value indicates that the former suffers
a reduction in potential from the presence of the latter. The parameters are not constrained
to be symmetric across types so that, in general, αAB /=αBA. Of course, symmetric homophily,
αAB = αBA, is automatically included as a special case.

We can easily show that, without loss of generality, the set of parameters
(αAA, αAB, and αAE) is shift invariant (see the appendix), which implies that the set of
parameters (αAA, αAB, and αAE) is equivalent to the set (αAA − c, αAB − c, and αAE − c)
for arbitrary constant c. Using this fact, we can standardize the parameter set such that
αAE = αBE = 0. Thus we are left with four nonzero homophily parameters αAA, αAB, αBA,
and αBB. This reduction in the number of nonzero parameters substantially reduces the
computation time required to compute agent potentials as defined by (2.1). The reward of
standardizing the homophily parameters is that we no longer have to compute empty sites’
contribution to agent potentials since αAE = αBE = 0, and hence at any given time we need
to keep track of only 10 percent of total cells that are occupied by agents. This results in 90
percent savings of the original computation time without standardization.
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Although the number of homophily parameters to be investigated has been reduced to
four, an exhaustive search is still impractical. We can further constrain the values of these four
parameters to those satisfying αAA + αAB = ±1.0, αBA + αBB = ±1.0. These constraints can be
thought of as a second standardization that normalizes the sum of the homophily parameter
values associated with a particular agent type to unity. With these two constraints, we have
only two independent parameters left. We select (αAA,αBB) to be the independent parameters.

We show next the distinct spatiotemporal patterns that emerge from the system
corresponding to different combinations of the two independent homophily parameters. In
general, starting from a random initial distribution, the long-run behavior of the system
converges toward two broad classes of temporal outcomes. Under some parameter setting,
the system settles down to a stationary equilibrium pattern. Every agent in the system
is satisfied with its current location or, equivalently, there is no possible relocation that
would make an agent profited from a move. This case therefore corresponds to the static
regime. Under some other parameter setting, however, the system never settles down.
Instead, the system remains out of equilibrium even in the long run, with agents constantly
moving in a state of perpetual motion. This case corresponds to the dynamic nonequilibrium
regime in which the prevailing spatial pattern is ever-changing. Figures 1 and 2 show
examples of spatial patterns that emerge under both stationary and dynamic regimes. A select
number of distinct patterns were already reported in a previous study [24]. Nevertheless, a
comprehensive study establishing the link between patterns and the model parameters has
not been done until now.

Figure 3 unifies the various pattern-parameters pairs using compact phase diagrams.
In that figure, patterns are classified based on visual inspection. Figure 3(a) shows the case of
αAA + αAB = 1.0 and αBB + αAB = 1.0. Only the upper triangular part is shown since the lower
part is symmetric with respect to the diagonal line where αAA = αBB. Figures 3(b) and 3(c)
corresponds to the cases in which at least one summation over the homophily parameters,
αAA + αAB or αBA + αBB, is negative.

In the phase diagrams, dynamic nonequilibrium regimes are represented as shaded
areas. An interesting question is whether the phase transition lines between the dynamic
and static regimes can be estimated. We will not attempt to fully solve the question here.
Instead, we will present a simple approximation to help understand the phase transition that
separates the two regimes. The starting point is the recognition that dynamic regimes can
be obtained when the two types of agents interact as if they were predators and preys. This
predator-prey relationship can be approximated by the following condition:

αAB · αBA < 0. (3.1)

For example, if αAB > 0 and αAB < 0, then type-A agents are the predators that benefit from
closer proximity to type-B agents, which are the preys since they suffer from such proximity.
If we apply (3.1) to cases shown in Figure 3(a)where αAA+αAB = 1.0 and αBB+αAB = 1.0, then
we obtain the dynamic regime almost surely when αAA < 1 and αBB > 1. This approximation
seems to hold, at least for those dynamic patterns plotted in the phase diagram. It lacks
precision, however, because the actual zone covered by the dynamic regime is smaller than
that predicted by the approximation. This is due to the friction factor that is not reflected in
approximation (3.1). In particular, the dynamic zone gets smaller as the friction factor gets
larger, and vice versa. If the friction factor is increased to a level greater than some critical
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(a) (b) (c) (d)

Figure 1: Stationary patterns: (a) separated, (b) ghetto, (c) mixed, and (d) stripes.

Figure 2: Dynamic patterns, from top to bottom: (a) cell, (b) worm, (c) herd, (d) amoeba, and (e) swarm.

value, the system is “frozen” in its initial state [16], which means the static regime trivially
rules the entire phase plane.

Table 1 lists the long-run patterns of the population spatial distribution found in the
present study. It is important to keep in mind that the list is not meant to be exhaustive. A
number of patterns were already identified and reported in a previous study [24], including
the worm and the cell modes. However, the list also includes newly identified patterns such
as the herd, the amoeba, and the stripes modes. One contribution of this paper is the pinning
down of the patterns’ relative positions vis-à-vis others on the phase diagram. The cell pattern
in particular is fascinating since it can be thought of as representing self-replicating cells
in a live organism. In contrast to cellular automatons which may be considered the most
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Table 1: Regimes, spatial patterns, and shape.

Regime Pattern Shape

Dynamic

Worm Linear motion, bug shape
Cell Budding-fission.
Herd Necking-fission-fusion, irregular
Amoeba Fixed center
Swarm Chaotic

Stationary

Separation Two separated spheres
Segregation One community with distinct ghettos
Integration One mixed community
Stripes Stripes of same-type agents
Pairing Distributed pairs of agents of different types.

abstract form of life, the cell mode here can be viewed as a life-form at an intermediate level
of abstraction. It is also interesting that such complex life-form lies just on the edge of the
static regime in the phase diagram.

4. Applications

One potential application of our model is to study the population dynamics of social systems.
Many social groups experience continual change in terms of both size and memberships.
Changes occur when groups split into smaller ones, or when small clusters merge to form
a larger aggregation. For example, select ungulates form groups of sexually segregated
habitats [13, 14] except in the mating season. During the intermittent periods, the two groups
intermingle only when they are grazing. When they rest, the two groups again self-segregate
themselves sexually. Our model can be applied to explain such a dynamically changing
communal behavior. Denote male and female ungulates by type-A and B agents, respectively.
Our grid system in this case represents their habitats in which the two types of agents
are spatially distributed. We can then simulate the emerging spatiotemporal patterns of the
heterogeneous agent population using the present model.

During rest time, an ungulate agent prefers the company of another same-sex agent
to a different one. This can be represented by the conditions αAA > αAB and αBB > αBA.
If during rest time all agents prefer to live next to a neighbor than to be isolated, then a
location next to an empty grid would be the least desirable. In this case, the homophily
parameters could be set equal to, for example, (αAA, αAB, αAE) = (0.8, 0.2, 0.0) for males
and (αBA, αBB, αBE) = (0.2, 0.8, 0.0) for females. The parameter set in this case is (0.8, 0.8) in
Figure 3(a). The corresponding pattern is a stationary separation, like shown in Figure 1(a).
During grazing however, agents consider a location next to an empty grid—interpreted as the
ungulates’ common grassland—to be the most desirable. Thus the homophily parameters
during grazing may be set equal to (αAA, αAB, αAE) = (0.8, 0.2, 1.0) for males. Because of
the shift invariance property, this configuration is equivalent to (αBA, αBB, αBE) = (−0.2, −0.8,
0.0). The parameter configuration associatedwith grazing period therefore corresponds to the
distributed pattern, such as that shown in Figure 1(d), which again is shown in Figure 3(b).

All the patterns that have been discussed so far assume a small friction factor of f
= 0.1. We do not investigate cases with larger friction factors here. The effect of the friction
factor has been well studied for a homogeneous, single-type agent population [16] in which
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αAA = 10
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Figure 3: Phase diagrams. (a) Upper triangle, αAA + αAB = 1.0 and αBA + αBB = 1.0. (b) Lower Triangle,
αAA + αAB = −1.0 and αBA + αBB = −1.0. (c) αAA + αAB = 1.0 and αBA + αBB = −1.0.

the system dynamics are driven by only one homophily parameter in addition to the friction
factor. If we standardize the homophily parameter to 1.0, then the population dynamics are
fully determined by the friction factor for a given population density. In this case, depending
on the values of the friction factor, four distinct spatial patterns can be identified in terms of
the population size distribution, namely, the random uniform, the exponential law, the power
law, and the black-hole patterns [16]. The friction factor of 0.1 then corresponds to the black-
hole pattern in which the entire population converges into a giant cluster encompassing all
agents in the system. In particular, if we set αAA = αBB = αAB = αBA = 1.0 representing
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Figure 4: Distributed groups for large friction f = 0.45.

essentially a homogeneous population, then all agents regardless of type collapse to a single
group, that is, the black hole. The reason why in the present study we observe separated
groups as shown in the phase diagram is due to negative, homophily parameters.

When the homophily parameters are all positive and the friction factor f = 0.1,
we obtain at most two groups in the long run. But at higher friction factors we obtain a
distributed system of groups—even with all-positive homophily parameters—where each
group can contain a mix of different types. An example is a multiracial city system. Cities in
such a system form spatially distributed groups, each composed of different types, that is,
races. In a multiracial system the degree of segregation between the different races is often of
interest. Another example is associated with mammalian groups. During the grazing period,
ungulates self-organize themselves into smaller groups, each of which is sexually segregated.
In order to quantify the overall degree of gender partitioning among ungulates, we compute
the segregation coefficient (SC) as follows [14]

SC =

[
1 − N

XY

K∑

i=1

xiyi

n i −1

]1/2

, (4.1)

where X and Y denote the total number of males and females in the system, respectively,
and N = X + Y . There are K-groups in the system. In the ith group, the male and female
subpopulations are denoted by x i and y i , respectively. Groups with only one member are
excluded from the calculation of the segregation coefficient. Our model can be easily applied
to see how segregation behavior responds to changes in the homophily parameters. Again
consider a population of ungulates where the group behavior of males is represented by
the parameters (αAA, αAB, αAE) = (0.8, 0.2, 0.0) while for females (αBA, αBB, αBE) = (0.2, 0.8,
0.0). The friction factor is set at f = 0.45, much higher than before in order to focus on cases
where ungulates migrate not solely because of homophily forces, in particular during grazing
periods when they strongly prefer to live next to an empty grassland.

With higher friction factor, the groups remain spatially distributed as shown in
Figure 4. But the homophily forces remain sufficiently strong that each group exhibits uneven
distribution of the two sexes. Note that we defined a “group” here as the cluster of locations
connected by at least one non-empty site. From simulations of a 200 × 200 lattice system with
X = 1600 and Y = 2400, we obtain the average SC equal to (mean, standard deviation) =



Discrete Dynamics in Nature and Society 11

Figure 5: A Static pattern obtained from a three-color case.

(0.35, 0.045) and the average group size for ni ≥ 2 is 3.2. The segregation coefficient
clearly suggests the tendency for males and females to live in gender-partitioned groups.
Changing the male homophily parameter values to (0.7, 0.3, and 0.0) reduces the segregation
coefficient to (0.16, 0.051). Thus, we could calibrate the parameters in order to fit the available
experimental data and then perform simulations to test whether sexual homophily causes
gender segregation, but not the other way around. Finally, we can also apply the model to
a heterogeneous population with more than two types of agents. In Figure 5, we present
an interesting spatial pattern generated from a system with three agent types. With greater
number of parameters, more complex patterns could be generated.

5. Concluding Remarks

We have developed an agent-based model to investigate how diverse spatial patterns can be
generated from a minimal set of interaction rules. Numerical simulations of the model allow
us to identify distinct stationary and dynamic patterns of the population spatial distribution,
and we present phase diagrams on the planes of homophily parameters. The complex
spatial patterns are generated primarily by agents’ simple adaptive behavior, and not by the
internal complexity of the agents themselves. The phase transition between the dynamic and
stationary regimes is also identified and explained. Our model can be applied to study the
group forming behavior of social communities. As an example, we apply themodel to explain
the sexual segregation of ungulates in terms of the homophily parameters and the friction
factor. Future extensions of this study could include the development of the generalized
Schelling model of segregation in a heterogeneous population with n types of agents. Also it
will be an interesting topic of research to classify social systems in terms of the various spatial
patterns of the population associated with the dynamic regime presented in this study.

Appendix

The Shift Invariance of Homophily Parameters

This appendix shows that the set of parameters (αAA, αAB, and αAE) is indeed shift invariant,
which implies that the set (αAA, αAB, αAE) is equivalent to the set (αAA − c, αAB − c, αAE − c) for
an arbitrary constant c.
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By definition, the potential of an agent a of type A is given by the following equation:

φa =
j /= i∑

j=1,L2

αIJ

dν
ij

=
j /= i∑

j={A}

αAJ

dν
ij

+
∑

j={B}

αAJ

dν
ij

+
∑

j={E}

αAJ

dν
ij

. (A.1)

In (A.1), the sets {A}, {B}, and {E} correspond to agents of type A and B, as well
as empty cells, respectively. Now, subtracting a constant c from every homophily parameter
yields

φa(αAA − c, αAB − c, αAE − c) =
j /=a∑

j=1,L2

(
αIJ − c

)

dν
ij

=
j /=a∑

j∈{A}

(
αAJ − c

)

dν
ij

+
∑

j∈{B}

(
αAJ − c

)

dν
ij

+
∑

j∈{E}

(
αAJ − c

)

dν
ij

=
j /=a∑

j={A}

αAJ

dν
ij

+
∑

j={B}

αAJ

dν
ij

+
∑

j={E}

αAJ

dν
ij

−
j /=a∑

j∈{A+B+E}

c

dν
ij

= φa(αAA, αAB, αAE) − c
j /=a∑

j∈{A+B+E}

1
dν
ij

.

(A.2)

Similarly, the potential of an agent b of type B is obtained as follows:

φb(αAA − c, αAB − c, αAE − c) = φb(αAA, αAB, αAE) − c
j /= b∑

j∈{A+B+E}

1
dν
ij

. (A.3)

Since we are dealing with systems exhibiting periodic boundaries, it follows that

j /=a∑

j∈{A+B+E}

1
dν
ij

=
j /= b∑

j∈{A+B+E}

1
dν
ij

= K, (A.4)

where K is a constant, which does not depend on the specific agent under consideration.
Thus, it follows that

φi(αIA − c, αIB − c, αIE − c) = φi(αIA, αIB, αIE) −K′, ∀i ∈ {A,B}, (A.5)

where K′ = cK is just another constant. This proves that the parameter sets (αAA − c, αAB −
c, αAE − c) and (αAA, αAB, αAE) are equivalent. Therefore, (αAA − c, αAB − c, αAE − c) and
(αAA, αAB, αAE) are shift invariant. This completes the proof.
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