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This paper deals with the problem of delay-dependent stability criterion of arbitrary switched
linear systems with time-varying delay. Based on switched quadratic Lyapunov functional
approach and free-weighting matrix approach, some linear matrix inequality criterions are found
to guarantee delay-dependent asymptotically stability of these systems. Simultaneously, arbitrary
switched linear system can be expressed as a problem of uncertain liner system, so some delay-
dependent stability criterions are obtained with the result of uncertain liner system. Two examples
illustrate the exactness of the proposed criterions.

1. Introduction

Recently, switched linear systems have got more and more attention in the research
community, which consists of a family of liner subsystems described by liner differential
or difference equations and a switching law that orchestrates switching between them; see,
for example, [1–4]. Simultaneously, systems with delays abound in the world and time-
delay systems frequently appear in vast engineering systems [5–7]. Therefore, many papers
consider switched linear systems with time constant delay or time-varying delay [8–24].
Naturally, stability is a fundamental property which has been investigated from the very
beginning for this class of systems [25]. For stability analysis under arbitrary switching, even
when all subsystems of a switched system are asymptotically stable or exponentially stable,
it is still possible to construct a divergent trajectory from any initial state for such a switched
system [4]. Thus, this paper aims to study the stability of arbitrary switched linear system
with time-varying delay.

On one hand, many methods have been developed in the study of arbitrary switched
systems such as common quadratic Lyapunov functional approach (CQLF), converse



2 Discrete Dynamics in Nature and Society

Lyapunov theorem, and switched quadratic Lyapunov functional approach (SQLF) [4, 26–
28]. On the other hand, Wu M. and He Y. develop free-weighting matrix approach for stability
of liner system and uncertain liner system [29–33]. In this paper, Based on SQLF and free-
weighting matrix approach, we consider the linear switched system:

x(k + 1) = Ar(k)x(k) +Adr(k)x(k − d(k)) + Br(k)u(k), k ∈ Z+, r(k) ∈ Ω, (1.1)

where x(k) ∈ Rn is the state, u(k) ∈ Rn is the control input, and r(k) is a switching rule
defined by r(k) : N → Ω with Ω = {1, 2, . . . ,N}. Moreover, r(k) = i means the subsystem
(Ai,Adi, Bi) is active. d(k) is nonnegative differential time-varying functions which denote
the time delays and satisfy 0 ≤ d1 ≤ d(k) ≤ d2.

At the same time, the uncertain linear system

x(k + 1) = (A −ΔA(k))x(k) + (Ad −ΔAd(k))x(k − d(k)) + (B −ΔB(k))u(k), k ∈ Z+,
(1.2)

where x(k) ∈ Rn is the state, u(k) ∈ Rn is the control input, A, Ad, and B are given constant
matrices, ΔA(k), ΔAd(k), and ΔB(k) are the parameter uncertainties matrices which are
assumed to be of the form

[
ΔA(k) ΔAd(k) ΔB(k)

]
= DF(k)

[
Ea Ead Eb

]
, (1.3)

where Ea, Ead, and Eb are given constant matrices of appropriate dimensions and F(k) is the
uncertain matrix such that

FT (k)F(k) ≤ I. (1.4)

From (1.1) and (1.2), we know that when one subsystem switches to another subsystem, there
exist matrixes A, Ad, and B such that

[
Ar(k) Adr(k) Br(k)

]
=
[
A −ΔA(k) Ad −ΔAd(k) B −ΔB(k)

]
(1.5)

so system (1.1) be equivalent to system (1.2). The key ideas of this paper are that SQLF is
connected with free-weighting matrix approach and arbitrary switched linear system can be
expressed as a problem of uncertain liner system.

This paper is organized as follows. In Section 2, we give some basic definitions. We
analyze the stability of the system (1.1) with the SQLF and free-weighting matrix approach
in Section 3. Based on uncertain liner system, we study the stability of the system (1.1) in
Section 4. Some examples are given in Section 5. The last section offers the conclusions of this
paper.
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2. Preliminaries

In this section, with the switched quadratic Lyapunov functional approach, we investigate
the stability of the origin of an autonomous switched system given by

x(k + 1) = Ar(k)x(k), k ∈ Z+, r(k) ∈ Ω. (2.1)

Define the indicator function

ξ(k) = [ξ1(k), . . . , ξi(k), . . . , ξN(k)]T , (2.2)

with

ξi(k) =

⎧
⎨

⎩

1 if r(k) = i,

0, otherwise.
(2.3)

Then, the switched system (2.1) can also be written as

x(k + 1) =
N∑

i=1

ξi(k)Aix(k). (2.4)

This corresponds to the switched Lyapunov function defined as

V (k, x(k)) = xT (k)Pr(k)x(k) = xT (k)

(
N∑

i=1

ξi(k)Pi

)

x(k) (2.5)

with Pi is symmetric positive definite matrices. If such a positive-definite Lyapunov function
exists and

ΔV (k, x(k)) = V (k + 1, x(k + 1)) − V (k, x(k)) (2.6)

is negative definite along the solutions of (2.1), then the origin of the switched system (2.1) is
asymptotically stable. In order to represent, we give the following notation.

Throughout this paper, the superscript T stands for the inverse and transpose of a
matrix; Rn×m is the set of all n × m real matrices; P > 0 means that the matrix P is positive
definite; and the symmetric terms in a symmetric matrix are denoted by �, for example,

[
M O

� N

]

=

[
M O

OT N

]

. (2.7)
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Lemma 2.1 (see [4]). If there exist positive definite symmetric matrices Pi ∈ Rn×n(Pi = PTi ),
satisfying

[
Pi A

T
i Pj

� Pj

]

< 0 (2.8)

for all i, j ∈ Ω, then the switched linear system (2.1) is asymptotically stable.

Lemma 2.2 (see [4]). If there exist positive definite symmetric matrices Pi ∈ Rn×n(Pi = PTi ) and
matrices Fi, Gi ∈ Rn×n(i ∈ Ω), satisfying

[
AiF

T
i + FiAT

i − Pi AiGi − Fi
� Pj −Gi −GT

i

]

< 0 (2.9)

for all i, j ∈ Ω, then the switched linear system (2.1) is asymptotically stable.

Lemma 2.3 (see [33]). Let d1 and d2 be positive integers such that 0 ≤ d1 ≤ d2. When u(k) = 0, the
systems (1.2) is asymptotically stability if there exist symmetric matrices P = PT > 0, Q = QT > 0,
Z = ZT > 0, X =

[
X11 X12
� X22

]
≥ 0 and any appropriate dimensional matrices N1, N2 and λ > 0 such

that the following LMIs hold,

⎡

⎢⎢⎢⎢⎢
⎣

Ψ11 + λETaEa Ψ12 + λETaEad (A − I)TH PD

� Ψ22 + λETadEad AT
d
H 0

� � −H HD

� � � −λI

⎤

⎥⎥⎥⎥⎥
⎦
< 0,

⎡

⎢⎢
⎣

X11 X12 N1

� X22 N2

� � Z

⎤

⎥⎥
⎦ ≥ 0,

(2.10)

where Ψ11 = (d2 − d1 + 1)Q + P(A − I) + (A − I)TP +N1 +NT
1 + d2X11, Ψ12 = PAd +NT

Z −N1 +
d2X12,Ψ22 = −Q −NT

2 −N2 + d2X22, andH = P + d2Z.

3. Stability Analysis of System (1.1) with SQLF

In this section, firstly, when we do not consider the control input, the linear switched system
(1.1) is rewritten as

x(k + 1) = Ar(k)x(k) +Adr(k)x(k − d(k)), k ∈ Z+, r(k) ∈ Ω. (3.1)

With SQLF and free-weighting matrix approach, we have the following theorem.



Discrete Dynamics in Nature and Society 5

Theorem 3.1. Let d1 and d2 be positive integers such that 0 ≤ d1 ≤d2; the systems (3.1) is
asymptotically stability, if there exist symmetric matrices Pi = PTi > 0, Pj = PTj > 0, Q = QT ≥ 0,

Z = ZT ≥ 0, Xij =
[
X
ij

11 X
ij

12

� X
ij

22

]
≥ 0 and any appropriate dimensional matrices Nij

1 and Nij

2 such that

the following LMIs hold,

Φij =

⎡

⎢⎢⎢⎢
⎣

Φij

11 Φij

12 d2(Ai − I)TZ

� Φij

22 d2A
T
diZ

� � −d2Z

⎤

⎥⎥⎥⎥
⎦
< 0, (3.2)

Θij =

⎡

⎢⎢⎢⎢
⎣

X
ij

11 X
ij

12 N
ij

1

� X
ij

22 N
ij

2

� � Z

⎤

⎥⎥⎥⎥
⎦
≥ 0, i, j ∈ Ω, (3.3)

whereΦij

11 = (d2−d1+1)Q+AT
i PjAi−Pi+N

ij

1 +(N
ij

1 )
T+d2X

ij

11,Φ
ij

12 = AT
i PjAdi+(N

ij

2 )
T−Nij

1 +d2X
ij

12

and Φij

22 = AT
diPjAdi −Q − (N

ij

2 )
T −Nij

2 + d2X
ij

22.

Proof. Suppose that y(l) = x(l + 1) − x(l), then we have x(k + 1) = x(k) + y(k) and x(k) =
x(k − d(k)) +

∑k−1
i=k−d(k) y(l).

Combined with (2.2), we consider the following SQLF:

V (k, x(k)) = V1(k, x(k)) + V2(k, x(k)) + V3(k, x(k)),

V1(k, x(k)) = xT (k)Pr(k)x(k) = xT (k)

(
N∑

i=1

ξi(k)Pi

)

x(k),

V2(k, x(k)) =
0∑

θ=−d2+1

k−1∑

l=k−1+θ

yT (l)Zr(k)y(l) =
0∑

θ=−d2+1

k−1∑

l=k−1+θ

yT (l)

(
N∑

i=1

ξi(k)Zi

)

y(l),

V3(k, x(k)) =
−d1+1∑

θ=−d2+1

k−1∑

l=k−1+θ

xT (l)Qr(k)x(l) =
−d1+1∑

θ=−d2+1

k−1∑

l=k−1+θ

xT (l)

(
N∑

i=1

ξi(k)Qi

)

x(l),

(3.4)

where Pi = PTi > 0, Zi = ZT
i ≥ 0, and Qi = QT

i ≥ 0.
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With (2.6), we obtain

ΔV1(k, x(k)) = xT (k + 1)Pr(k+1)x(k + 1) − xT (k)Pr(k)x(k)

= xT (k)
[
AT
r(k)Pr(k+1)Ar(k) − Pr(k)

]
x(k)

+ xT (k − d(k))
[
AT
dr(k)Pr(k+1)Adr(k)

]
x(k − d(k))

+ xT (k)AT
r(k)Pr(k+1)Adr(k)x(k − d(k)) + xT (k − d(k))AT

dr(k)Pr(k+1)Ar(k)x(k),

(3.5)

ΔV2(k, x(k)) =
0∑

θ=−d2+1

k∑

l=k+θ

yT (l)Zr(k+1)y(l) −
0∑

θ=−d2+1

k−1∑

l=k−1+θ

yT (l)Zr(k)y(l)

= d2y
T (k)Zr(k+1)y(k) −

k−1∑

l=k−d2

yT (l)Zr(k)y(l)

+
0∑

θ=−d2+1

k−1∑

l=k+θ

yT (l)
[
Zr(k+1) − Zr(k)

]
y(l)

(3.6)

when Zr(k+1) = Zr(k),

ΔV2(k, x(k)) ≤ d2y
T (k)Zr(k+1)y(k) −

k−1∑

l=k−d2

yT (l)Zr(k)y(l), (3.7)

ΔV3(k, x(k)) =
−d1+1∑

θ=−d2+1

k∑

l=k+θ

xT (l)Qr(k+1)x(l) −
−d1+1∑

θ=−d2+1

k−1∑

l=k−1+θ

xT (l)Qr(k)x(l)

= (d2 − d1 + 1)xT (k)Qr(k+1)x(k) −
k−d1∑

l=k−d2

xT (l)Qr(k)x(l)

+
−d1+1∑

θ=−d2+1

k−1∑

l=k+θ

xT (l)
[
Qr(k+1) −Qr(k)

]
x(l)

(3.8)

when Qr(k+1) = Qr(k),

ΔV3(k, x(k)) ≤ (d2 − d1 + 1)xT (k)Qr(k+1)x(k) − xT (k − d(k))Qr(k)x(k − d(k)). (3.9)

Suppose that r(k) = i and r(k + 1) = j mean that the subsystem i switches to the
subsystem j in the switching system. As this has to be satisfied under arbitrary switching
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laws, it follows that this has to hold for the special configuration ξi(k) = 1, ξl /= i(k) = 0, ξj(k +
1) = 1, and ξl /= j(k + 1) = 0. And supposing that Zj = Zi = Z and Qj = Qi = Q, we obtain

ΔV (k, x(k)) ≤ xT (k)
[
AT
i PjAi − Pi

]
x(k) + xT (k − d(k))

[
AT
diPjAdi

]
x(k − d(k)) + d2y

T (l)Zy(l)

+ xT (k)AT
i PjAdix(k − d(k)) + xT (k − d(k))AT

diPjAix(k)

−
k−1∑

l=k−d2

yT (l)Zy(l) + (d2 − d1 + 1)xT (k)Qx(k) − xT (k − d(k))Qx(k − d(k)).

(3.10)

By using the Leibniz-Newton formula, for any appropriately dimensioned matrices Nij

1 and
N

ij

2 , the following equation is true:

2
[
xT (k)Nij

1 + xT (k − d(k))Nij

2

]
×

⎡

⎣x(k) − x(k − d(k)) −
k−1∑

l=k−d(k)
y(l)

⎤

⎦ = 0. (3.11)

In addition, for any semipositive definite matrix Xij =
[
X
ij

11 X
ij

12

� X
ij

22

]
≥ 0, the following equation

holds:

k−1∑

l=k−d2

φT1 (k)X
ijφ1(k) −

k−1∑

l=k−d(k)
φT1 (k)X

ijφ1(k) = d2φ
T
1 (k)X

ijφ1(k) −
k−1∑

l=k−d(k)
φT1 (k)X

ijφ1(k) ≥ 0,

(3.12)

where φ1(k) = [xT (k)xT (k − d(k))]T .
With (3.1), (3.10), (3.11), and (3.12), we have

ΔV (k, x(k)) ≤ φT1 (k)Γ
ijφ1(k) −

k−1∑

l=k−d(k)
φT2 (k, l)Θ

ijφ2(k, l) ≤ 0, (3.13)

where

Γij =

⎡

⎣
Φij

11 + d2(Ai − I)TZ(Ai − I) Φij

12 + d2I(Ai − I)TZAdi

� Φij

22 + d2AdiZAdi

⎤

⎦,

φ2(k, l) =
[
φT1 (k) yT (l)

]T
.

(3.14)

And φ1(k) is defined in (3.12); Φij

11, Φij

12, and Φij

22 are defined in (3.2). Therefore, when
Γij < 0 and Θij ≥ 0, the system (3.1) is asymptotically stability. Applying Schur’s complement,
Γij < 0 is equivalent to Φij < 0, i, j ∈ Ω. This completes the proof of Theorem 3.1.
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If we have y(k), for any appropriately dimensioned matrices Tij1 , Tij2 ,Nij

1 ,Nij

2 ,Nij

2 , and

Xij =

⎡

⎢⎢⎢
⎣

X
ij

11 X
ij

12 X
ij

13

� X
ij

22 X
ij

23

� � X
ij

33

⎤

⎥⎥⎥
⎦
≥ 0, (3.15)

the following equations are also true:

2
[
xT (k)Tij1 + yT (k)Tij2

]
×
[
y(k) − (Ai − I)x(k) −Adix(k − d(k))

]
= 0,

2
[
xT (k)Nij

1 + yT (k)Nij

2 + xT (k − d(k))Nij

3

]
×

⎡

⎣x(k) − x(k − d(k)) −
k−1∑

l=k−d(k)
y(l)

⎤

⎦ = 0,

k−1∑

l=k−d2

ηT1 (k)X
ijη1(k) −

k−1∑

l=k−d(k)
ηT1 (k)X

ijη1(k) = d2η
T
1 (k)X

ijη1(k) −
k−1∑

l=k−d(k)
ηT1 (k)X

ijη1(k) ≥ 0,

(3.16)

where η1(k) = [xT (k) yT (l) xT (k − d(k))]T .
Considering (3.16), similar to the proof of Theorem 3.1, we can obtain the following

corollary.

Corollary 3.2. Let d1 and d2 be positive integers such that 0 ≤ d1 ≤d2; the systems (3.1) is
asymptotically stability if there exist symmetric matrices Pi = PTi > 0, Pj = PTj > 0, Q = QT ≥ 0,

Z = ZT ≥ 0, and any appropriate dimensional matrices Tij1 , T
ij

2 ,N
ij

1 ,N
ij

2 ,N
ij

2 , and

Xij =

⎡

⎢⎢⎢
⎣

X
ij

11 X
ij

12 X
ij

13

� X
ij

22 X
ij

23

� � X
ij

33

⎤

⎥⎥⎥
⎦
≥ 0 (3.17)

such that the following LMIs hold,

Υij =

⎡

⎢⎢⎢
⎣

Υij

11 Υij

12 Υij

13

� Υij

22 Υij

23

� � Υij

33

⎤

⎥⎥⎥
⎦
< 0,

⎡

⎢⎢⎢⎢⎢⎢
⎣

X
ij

11 X
ij

12 X
ij

13 N
ij

1

� X
ij

22 X
ij

23 N
ij

2

� � X
ij

33 N
ij

3

� � � Z

⎤

⎥⎥⎥⎥⎥⎥
⎦

≥ 0, i, j ∈ Ω,

(3.18)
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where Υij

11 = (d2 − d1 + 1)Q +AT
i PjAi − Pi − T

ij

1 (Ai − I) − (Ai − I)T (T
ij

1 )
T + (Nij

1 )
T +Nij

1 + d2X
ij

11,

Υij

12 = Tij1 − (Ai − I)T (T
ij

2 )
T + (Nij

2 )
T +d2X

ij

12, Υ
ij

13 = AT
i PjAdi −T

ij

1 Adi + (Nij

3 )
T −Nij

1 +d2X
ij

13, Υ
ij

22 =
d2Z+(Tij2 )

T+Tij2 +d2X
ij

22, Υ
ij

23 = −Tij2 Adi−N
ij

2 +d2X
ij

23, and Υ
ij

33 = AT
diPjAdi−Q−N

ij

3 +(N
ij

3 )
T+d2X

ij

33.

Next, we consider the design of a switched state feedback:

u(k) = Kr(k)x(k). (3.19)

Ensuring stability of the closed-loop switched system:

x(k + 1) =
(
Ar(k) + Br(k)Kr(k)

)
x(k) +Adr(k)x(k − d(k)), k ∈ Z+, r(k) ∈ Ω. (3.20)

Based on Theorem 3.1, we obtain the following theorem.

Theorem 3.3. Let d1 and d2 be positive integers such that 0 ≤ d1 ≤ d2. Under arbitrary switch, the
systems (1.1) is asymptotically stability if there exist symmetric matrices Pi = PTi > 0, Pj = PTj > 0,

Q = QT ≥ 0, Z = ZT ≥ 0, Y ij =
[
Y
ij

11 Y
ij

12

� Y
ij

22

]
≥ 0, and any appropriate dimensional matrices Mij

1 and

M
ij

2 such that the following LMIs hold,

Ξij =

⎡

⎢⎢⎢
⎣

Ξij11 Ξij12 d2(AiLi + BiVi − Vi)T

� Ξij22 d2LiA
T
di

� � d2R

⎤

⎥⎥⎥
⎦
≥ 0,

⎡

⎢⎢⎢
⎣

Y
ij

11 Y
ij

12 M
ij

1

� Y
ij

22 M
ij

2

� � LR−1L

⎤

⎥⎥⎥
⎦
≥ 0, i, j ∈ Ω,

(3.21)

whereΞij11 = (d2−d1+1)Wi+(AiLi)
TPj(AiLi)+(AiLi)Pj(BiVi)+(BiVi)

TPj(AiLi)+(BiVi)
TPj(BiVi)−

Li + (Mij

1 )
T +Mij

1 +d2Y
ij

11, Ξ
ij

12 = (AiLi)
TPj(AdiLi) + (BiVi)

TPj(AdiLi) + (Mij

2 )
T −Mij

1 +d2Y
ij

12, and

Ξij22 = (AdiLi)
TPj(AdiLi) −W −M

ij

2 − (M
ij

2 )
T + d2Y

ij

22.

Proof. To the system (3.1), Ai is replaced by Ai + BiKi in (3.2). Simultaneously, two parts
of inequality (3.2) multiply the same matrix diag[P−1

i , P−1
i , Z−1] and two parts of inequality

(3.3) multiply the same matrix diag[P−1
i , P−1

i , P−1
i ]. Suppose that Li = P−1

i , Wi = P−1
i QP−1

i ,
Y ij = diag[P−1

i , P−1
i ]Xij diag[P−1

i , P−1
i ], R = Z−1, Mij

1 = P−1
i N

ij

1 P
−1
i , Mij

2 = P−1
i N

ij

2 P
−1
i , and

Vi = KiP
−1
i ; then we obtain (3.21).This completes the proof of Theorem 3.3.
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4. Stability Analysis of System (1.1) with Uncertain Liner System

In this section, results of uncertain liner system are extended to arbitrary switched linear
system for arbitrary switched linear system can be expressed as a problem of uncertain liner
system. When u(k) = 0, (1.5) are rewritten as

[
ΔA(k) ΔAd(k)

]
=
[
A −Ar(k) Ad −Adr(k)

]
. (4.1)

Then the system (3.1) is rewritten as

x(k + 1) =
(
A −

(
A −Ar(k)

))
x(k) +

(
Ad −

(
Ad −Adr(k)

))
x(k − d(k)), k ∈ Z+, r(k) ∈ Ω.

(4.2)

Combined with Lemma 2.3, we easily have the following theorem.

Theorem 4.1. Let d1 and d2 be positive integers such that 0 ≤ d1 ≤ d2. Under arbitrary switch, the
system (4.2) is asymptotically stability if there exist matrices P = PT > 0, Q = QT > 0, Z = ZT > 0,
X =

[
X11 X12
� X22

]
≥ 0 and any appropriate dimensional matrices A,Ad,D, Ea,Ead,Fi,N1,N2, and λ > 0

such that the LMIs (2.10) and the following LMIs hold,

[
A −Ai Ad −Adi

]
= DFi

[
Ea Ead

]

FTi Fi ≤ I, i ∈ Ω.
(4.3)

Next, we consider the design of a switched state feedback. With (4.1) and (4.2), the
system (3.20) is rewritten as

x(k + 1) =
(
A −

(
A −

(
Ar(k) + Br(k)Kr(k)

)))
x(k)

+
(
Ad −

(
Ad −Adr(k)

))
x(k − d(k)), k ∈ Z+, r(k) ∈ Ω.

(4.4)

Combined with Theorem 4.1, we easily have the following theorem.

Theorem 4.2. Let d1 and d2 be positive integers such that 0 ≤ d1 ≤ d2. Under arbitrary switch, the
systems (4.4) is asymptotically stability if there exist matrices P = PT > 0,Q = QT > 0, Z = ZT > 0,
X =

[
X11 X12
� X22

]
≥ 0, and any appropriate dimensional matrices A,Ad,D, Ea,Ead,Fi,N1,N2 and λ > 0

such that the LMIs (2.10) and (4.3), and the following LMIs hold,

[
A − (Ai + BiKi) Ad −Adi

]
= DFi

[
Ea Ead

]
, i ∈ Ω. (4.5)

5. Examples

Example 5.1. Consider the following switched delay systems with two subsystems

x(k + 1) = Aix(k) +Adix(k − d(k)), k ∈ Z+, i ∈ Ω, (5.1)
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where

A1 =

[
0.1 0

0 0.5

]

, Ad1 =

[
−0.2 0

−0.1 −0.1

]

, A2 =

[
0.2 0

0 0.3

]

, Ad2 =

[
−0.1 0

0.3 −0.2

]

, (5.2)

and Ω = {1, 2}.
When d1 = d2 that is, d(k) = d2, d2 is without limit. To time-varying delay d(k), when

d1 is given, d2 is a maximum value of the solvability of LMIs (3.2) and (3.3), and some results
are in Table 1.

In this example, the switching system has two subsystems, so there are there switches
that are between subsystem 1 and subsystem 2, between subsystem 1 and subsystem 1, and
between subsystem 2 and subsystem 2. According to Theorem 3.1, when d1 = 1 and d2 = 3,
solving the LMIs (3.2) and (3.3) leads to

Q =

[
29.9101 −3.0324

−3.0324 14.4926

]

Z =

[
5.3474 0.0341

0.0341 6.8596

]

, P1 =

[
143.7206 −9.2029

−9.2029 102.1555

]

,

P2 =

[
144.9590 −8.5971

−8.5971 93.0312

]

, N12
1 =

[
−1.2592 0.5437

−0.4002 −2.1476

]

,

N12
2 =

[
1.9723 −0.1401

0.4588 3.0624

]

, N21
1 =

[
−1.3023 −0.8619

0.8282 −2.1259

]

,

N21
2 =

[
2.2016 0.3203

−0.6405 3.2331

]

, N11
1 =

[
−1.2553 0.6225

−0.4427 −2.2909

]

,

N11
2 =

[
1.9636 −0.1949

0.5126 3.0790

]

, N22
1 =

[
−1.3199 −0.7026

0.7078 −2.0469

]

,

N22
2 =

[
2.2049 0.2493

−0.5319 3.1800

]

, X12 =

⎡

⎢⎢⎢⎢⎢
⎣

10.2348 0.0282 −0.8722 0.3092

0.0282 8.2857 0.3092 −0.5114

−0.8722 0.3092 6.3470 −0.8716

0.3092 −0.5114 −0.8716 4.7227

⎤

⎥⎥⎥⎥⎥
⎦
,

X21 =

⎡

⎢⎢⎢⎢⎢
⎣

10.1529 0.2694 −0.4215 −0.6588

0.2694 8.2610 −0.6588 −0.6227

−0.4215 −0.6588 5.0357 0.9594

−0.6588 −0.6227 0.9594 3.9515

⎤

⎥⎥⎥⎥⎥
⎦
,
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X11 =

⎡

⎢⎢⎢⎢⎢
⎣

10.2369 0.0251 −0.8788 0.3659

0.0251 7.7927 0.3659 −0.4471

−0.8788 0.3659 6.3347 −0.8928

0.3659 −0.4471 −0.8928 4.7126

⎤

⎥⎥⎥⎥⎥
⎦
,

X22 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

10.1467 0.2491 −0.4220 −0.5494

0.2491 8.4372 −0.5494 −0.7209

−0.4220 −0.5494 5.2477 0.8376

−0.5494 −0.7209 0.8376 4.0014

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

(5.3)

It can be seen from Figure 1 that when d1 = 1 and d2 = 3, all the state solutions
corresponding to the 10 random initial points are convergent asymptotically to the unique
equilibrium x∗ = {0, 0}.

Example 5.2. Consider the following switched delay systems with two subsystems:

x(k + 1) = Aix(k) +Adix(k − d(k)), k ∈ Z+, i ∈ Ω, (5.4)

where

A1 =

[
0.3850 0.0090

0.0180 0.5880

]

, Ad1 =

[
−0.4150 0.0090

−0.0820 −0.3120

]

,

A2 =

[
0.3970 0.0120

0.0150 0.5820

]

, Ad2 =

[
−0.4030 0.0120

−0.0850 −0.3180

]

, Ω = {1, 2}.

(5.5)

When there exit matrixes

A =

[
0.4000 0.0000

0.0000 0.6000

]

, Ad =

[
−0.4000 0.0000

−0.1000 −0.3000

]

,

D =

[
0.0300 0.0000

0.0000 0.0300

]

, Ea =

[
1.0000 0.0000

0.0000 1.0000

]

,

Ead =

[
1.0000 0.0000

0.0000 1.0000

]

, F1 =

[
−0.5000 0.3000

0.6000 −0.4000

]

,

F2 =

[
−0.1000 0.4000

0.5000 −0.6000

]

,

(5.6)
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Figure 1: Global convergence of states x1 and x2 in Example 5.1, when d1 = 1 and d2 = 3.

which satisfied (4.3), and d1 = 1 and d2 = 3, based on Theorem 4.1 solving the LMIs (2.10)
leads to

P = (1.0e + 004) ∗
[

1.0888 −0.0129

−0.0129 0.2758

]

, Q = (1.0e + 003) ∗
[

2.5193 0.0379

0.0379 0.4439

]

,

Z = (1.0e + 003) ∗
[

1.4927 0.0809

0.0809 0.4826

]

, N1 =

[
−472.4815 −6.3448

−53.9979 −181.8198

]

,

N2 =

[
478.2798 −0.0086

45.6698 185.5393

]

,

X =

⎡

⎢⎢⎢⎢⎢
⎣

216.7792 −41.8304 −134.0982 −18.7083

−41.8304 113.2493 −18.7083 −62.9775

−134.0982 −18.7083 174.9568 −10.6693

−18.7083 −62.9775 −10.6693 84.3589

⎤

⎥⎥⎥⎥⎥
⎦
, λ = 148.1177.

(5.7)

It can be seen from Figure 2 that when d1 = 1 and d2 = 3, all the state solutions
corresponding to the 10 random initial points are convergent asymptotically to the unique
equilibrium x∗ = {0, 0}.
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Figure 2: Global convergence of states x1 and x2 in Example 5.2, when d1 = 1 and d2 = 3.

Table 1: Allowable upper bound of d2 with given d1.

d1 0 1 2 3 4 5 6 7 8 9 50 100
d2 11 12 13 14 15 16 17 18 19 20 61 111

6. Conclusions

This paper was dedicated to the delay-dependent stability of arbitrary switched linear sys-
tems with time-varying delay. We obtain two main results. Firstly, using switched quadratic
Lyapunov functional approach and free-weighting matrix approach, less conservative LMI
conditions have been proposed. Secondly, based on the result of uncertain liner system, some
delay-dependent stability criterions are obtained.

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers for their detailed
comments which greatly contributed to this paper.

References

[1] D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE
Control Systems Magazine, vol. 19, no. 5, pp. 59–70, 1999.

[2] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control systems,” Automatica, vol. 41,
no. 2, pp. 181–195, 2005.

[3] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King, “Stability criteria for switched and hybrid
systems,” SIAM Review, vol. 49, no. 4, pp. 545–592, 2007.

[4] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent
results,” IEEE Transactions on Automatic Control, vol. 54, no. 2, pp. 308–322, 2009.



Discrete Dynamics in Nature and Society 15

[5] J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems,”
Automatica, vol. 39, no. 10, pp. 1667–1694, 2003.

[6] S. Xu and J. Lam, “On equivalence and efficiency of certain stability criteria for time-delay systems,”
IEEE Transactions on Automatic Control, vol. 52, no. 1, pp. 95–101, 2007.

[7] Q. C. Zhong, Robust Control of Time-Delay Systems, Springer, London, UK, 2006.
[8] X.-M. Sun, J. Zhao, and D. J. Hill, “Stability and L2-gain analysis for switched delay systems: a delay-

dependent method,” Automatica, vol. 42, no. 10, pp. 1769–1774, 2006.
[9] S. Kim, S. A. Campbell, and X. Liu, “Stability of a class of linear switching systems with time delay,”

IEEE Transactions on Circuits and Systems. I, vol. 53, no. 2, pp. 384–393, 2006.
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