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The Leray-Schauder alternative is used to investigate the existence of solutions for second-order
impulsive differential equations with nonlocal conditions in Banach spaces. The results improve
some recent results.

1. Introduction

The theory of impulsive differential equations is emerging as an important area of
investigation since it is a lot richer than the corresponding theory of nonimpulsive differential
equations. Many evolutionary processes in nature are characterized by the fact that at certain
moments in time an abrupt change of state is experienced. That is the reason for the rapid
development of the theory of impulsive differential equations; see the monographs [1, 2].

This paper is concerned with the study on existence of second-order impulsive
differential equations with nonlocal conditions of the form

x′′(t) = f
(
t, x(t), x′(t)

)
, t ∈ J = [0, b], t /= tk,

Δx|t=tk = Ik(x(tk)), k = 1, . . . , m,

Δx′|t=tk = Ik
(
x(tk), x′(tk)

)
, k = 1, . . . , m,

x(0) + g(x) = x0, x′(0) = η,

(1.1)

where the state x(·) takes values in Banach space X with the norm ‖ · ‖, x0, η ∈ X, 0 = t0 <

t1 < · · · < tm < tm+1 = b, Δx|t=tk = x(t+k) − x(t−k),Δx′|t=tk = x′(t+k) − x′(t−k). f, g, and Ik, Ik (k =
1, 2, . . . , m) are given functions to be specified later.
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The nonlocal condition is a generalization of the classical initial condition. The first
results concerning the existence and uniqueness of mild solutions to Cauchy problems with
nonlocal conditions were studied by Byszewski [3]. Recently, theorems about existence,
uniqueness and continuous dependence of impulsive differential abstract evolution Cauchy
problems with nonlocal conditions have been studied by Fu and Cao [4], Anguraj and
Karthikeyan [5], Abada et al. [6], Li and Han [7], and in the references therein.

Up to now there have been very few papers in this direction dealing with the existence
of solutions for second-order impulsive differential equations with nonlocal conditions. Our
purpose here is to extend the results of first-order impulsive differential equations to second-
order impulsive differential equations with nonlocal conditions.

Our main results are based on the following lemma [8].

Lemma 1.1 (Leray-Schauder alternative). Let S be a convex subset of a normed linear space E and
assume that 0 ∈ S. Let G : S → S be a completely continuous operator, and let

ζ(G) = {x ∈ S : x = λGx, for some 0 < λ < 1}. (1.2)

Then either ζ(G) is unbounded or G has a fixed point.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.

Denote J0 = [0, t1], Jk = (tk, tk+1], J ′ = J \ {tk}, k = 1, 2, . . . , m.We define the following
classes of functions:

PC(J,X) = {x : J → X : xk ∈ C(Jk, X), k = 0, 1, . . . , m, and there exist x(t+k), x(t
−
k), k =

1, . . . , mwith x(tk) = x(t−k)},
PC1(J,X) = {x ∈ PC(J,X) : x′

k
∈ C(Jk, X), k = 0, 1, . . . , m, and there exist

x′(t+k), x
′(t−k), k = 1, . . . , m with x′(tk) = x′(t−k)}, where xk and x′

k represent the restriction
of x and x′ to Jk, respectively (k = 0, . . . , m), and ‖xk‖Jk = sups∈Jk‖xk(s)‖.

Obviously, PC(J,X) is a Banach space with the norm ‖x‖PC = max{‖xk‖Jk , k =
0, . . . , m}, and PC1(J,X) is also a Banach space with the norm ‖x‖PC1 = max{‖x‖PC, ‖x′‖PC}.

Definition 2.1. A map f : J ×X ×X → X is said to be an L1-Carathéodory if

(i) f : (·, w, v) : J → X is measurable for every w,v ∈ X,

(ii) f : (t, ·, ·) : X ×X → X is continuous for almost all t ∈ J ,
(iii) for each i > 0, there exists αi ∈ L1(J, R+) such that for almost all t ∈ J

sup
‖w‖,‖v‖≤i

‖f(t,w, v)‖ ≤ αi(t). (2.1)

Definition 2.2. A function x ∈ PC1(J,X)∩C2(J ′, X) is said to be a solution of (1.1) if x satisfies
the equation x′′(t) = f(t, x(t), x′(t)) a.e. on J ′, the conditions Δx|t=tk = Ik(x(tk)), Δx′|t=tk =
Ik(x(tk), x′(tk)), k = 1, . . . , m, and x(0) + g(x) = x0, x′(0) = η.
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Lemma 2.3. If x ∈ PC1(J,X) ∩ C2(J ′, X) satisfies

x′′(t) = f
(
t, x(t), x′(t)

)
, t /= tk (k = 1, 2, . . . , m), (2.2)

then

x′(t) = x′(0) +
∫ t

0
f
(
s, x(s), x′(s)

)
ds +

∑

0<tk<t

[
x′(t+k

) − x′(tk)
]
, ∀t ∈ J, (2.3)

x(t) = x(0) + x′(0)t +
∑

0<tk<t

[
x
(
t+k
) − x(tk)

]
+

∑

0<tk<t

[
x′(t+k

) − x′(tk)
]
(t − tk)

+
∫ t

0
(t − s)f(s, x(s), x′(s)

)
ds, ∀t ∈ J.

(2.4)

Proof. Assume that tk < t ≤ tk+1 ( here t0 = 0, tm+1 = b ). Then

x′(t1) − x′(0) =
∫ t1

0
f
(
s, x(s), x′(s)

)
ds,

x′(t2) − x′(t+1
)
=
∫ t2

t1

f
(
s, x(s), x′(s)

)
ds,

...

x′(tk) − x′(t+k−1
)
=
∫ tk

tk−1
f
(
s, x(s), x′(s)

)
ds,

x′(t) − x′(t+k
)
=
∫ t

t+
k

f
(
s, x(s), x′(s)

)
ds.

(2.5)

Adding these together, we get

x′(t) = x′(0) +
∫ t

0
f
(
s, x(s), x′(s)

)
ds +

∑

0<tk<t

[
x′(t+k

) − x′(tk)
]
, (2.6)

that is, (2.3) holds.
Similarly, we have

x(t) = x(0) +
∫ t

0
x′(s)ds +

∑

0<tk<t

[
x
(
t+k
) − x(tk)

]
. (2.7)
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Substitution of (2.3) in (2.7) gives

x(t) = x(0) + x′(0)t +
∑

0<tk<t

[
x
(
t+k
) − x(tk)

]
+

∑

0<tk<t

[
x′(t+k

) − x′(tk)
]
(t − tk)

+
∫ t

0
(t − s)f(s, x(s), x′(s)

)
ds, ∀t ∈ J,

(2.8)

that is, (2.4) holds.

We assume the following hypotheses:

(H1) f : J ×X ×X → X is an L1-Carathéodory map;

(H2) Ik ∈ C(, X), Ik ∈ C(X × X,X), and there exist constants dk, dk such that ‖Ik(w)‖ ≤
dk, ‖Ik(w,v)‖ ≤ dk(k = 1, . . . , m) for every w,v ∈ X;

(H3) g : PC(J,X) → X is a continuous function and there exists a constantM such that

∥∥g(x)
∥∥ ≤M, for each x ∈ PC(J,X); (2.9)

(H4) there exists a function p ∈ L1(J, R+) such that

∥∥f(t,w, v)
∥∥ ≤ p(t)ψ(‖w‖ + ‖v‖), for a.e. t ∈ J and every w,v ∈ X, (2.10)

where ψ : [0,∞) → (0,∞) is a continuous nondecreasing function with

(b + 1)
∫b

0
p(s)ds <

∫∞

c

ds

ψ(s)
, (2.11)

where

c = ‖x0‖ +M + (b + 1)
∥∥η

∥∥ +
m∑

k=1

[
dk + (b + 1 − tk)dk

]
; (2.12)

(H5) for each bounded B ⊆ PC1(J,X) and t ∈ J the set

{

x0−g(x)+tη+
∑

0<tk<t

Ik(x(tk))+
∑

0<tk<t

Ik
(
x(tk), x′(tk)

)
(t − tk)+

∫ t

0
(t−s)f(s, x(s), x′(s)

)
ds :x∈B

}

(2.13)

is relatively compact in X.
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3. Main Results

Theorem 3.1. If the hypotheses (H1)–(H5) are satisfied, then the second-order impulsive nonlocal
initial value problem (1.1) has at least one solution on J .

Proof. Consider the space B = PC1(J,X) with norm

‖x‖PC1 = max
{‖x‖PC,

∥
∥x′∥∥

PC

}
. (3.1)

We will now show that the operator G defined by

Gx(t) = x0 − g(x) + tη +
∑

0<tk<t

Ik(x(tk)) +
∑

0<tk<t

Ik
(
x(tk), x′(tk)

)
(t − tk)

+
∫ t

0
(t − s)f(s, x(s), x′(s)

)
ds, t ∈ J

(3.2)

has a fixed point. This fixed point is then a solution of (1.1).
First we obtain a priori bounds for the following equation:

x(t) = λ
[
x0 − g(x) + tη

]
+ λ

∑

0<tk<t

Ik(x(tk)) + λ
∑

0<tk<t

Ik
(
x(tk), x′(tk)

)
(t − tk)

+ λ
∫ t

0
(t − s)f(s, x(s), x′(s)

)
ds, t ∈ J.

(3.3)

We have

‖x(t)‖ ≤ ‖x0‖ +M + b
∥∥η

∥∥ +
m∑

k=1

dk +
m∑

k=1

(b − tk)dk + b
∫ t

0
p(s)ψ

(‖x(s)‖ + ∥∥x′(s)
∥∥)ds, t ∈ J.

(3.4)

Denoting by μ(t) the right-hand side of the above inequality, we have

μ(0) = ‖x0‖ +M + b
∥∥η

∥∥ +
m∑

k=1

[
dk + (b − tk)dk

]
, ‖x(t)‖ ≤ μ(t), t ∈ J,

μ′(t) = bp(t)ψ
(‖x(t)‖ + ∥∥x′(t)

∥∥), t ∈ J.
(3.5)

But

x′(t) = λη + λ
∫ t

0
f
(
s, x(s), x′(s)

)
ds + λ

∑

0<tk<t

Ik
(
x(tk), x′(tk)

)
, t ∈ J. (3.6)
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Thus we have

∥
∥x′(t)

∥
∥ ≤ ∥

∥η
∥
∥ +

∫ t

0
p(s)ψ

(‖x(s)‖ + ∥
∥x′(s)

∥
∥)ds +

m∑

k=1

dk, t ∈ J. (3.7)

Denoting by r(t) the right-hand side of the above inequality, we have

r(0) =
∥∥η

∥∥ +
m∑

k=1

dk,
∥∥x′(t)

∥∥ ≤ r(t), t ∈ J,

r ′(t) = p(t)ψ
(‖x(t)‖ + ∥

∥x′(t)
∥
∥), t ∈ J.

(3.8)

Let

w(t) = μ(t) + r(t), t ∈ J. (3.9)

Then

w(0) = μ(0) + r(0) = c,

w′(t) = μ′(t) + r ′(t)

≤ bp(t)ψ(w(t)) + p(t)ψ(w(t))

= (b + 1)p(t)ψ(w(t)), t ∈ J.

(3.10)

This implies that

∫w(t)

w(0)

ds

ψ(s)
≤ (b + 1)

∫b

0
p(s)ds <

∫∞

c

ds

ψ(s)
, t ∈ J. (3.11)

This inequality implies that there is a constant K such that

w(t) = μ(t) + r(t) ≤ K, t ∈ J. (3.12)

Then

‖x(t)‖ ≤ μ(t), t ∈ J,
∥∥x′(t)

∥∥ ≤ r(t), t ∈ J,
(3.13)

and hence

‖x‖PC1 = max
{‖x‖PC,

∥∥x′∥∥
PC

} ≤ K. (3.14)
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Second, we must prove that the operator G : B → B is a completely continuous
operator.

Let Bi = {x ∈ B : ‖x‖PC1 ≤ i} for some i ≥ 1. We first show that G maps Bi into an
equicontinuous family. Let x ∈ Bi and t, t ∈ J. Then for 0 < t < t ≤ b, we have

∥
∥
∥(Gx)(t) − (Gx)

(
t
)∥∥
∥ ≤

∥
∥
∥tη − tη

∥
∥
∥ +

∥∥
∥
∥
∥
∥

∑

t≤tk<t
Ik(x(tk))

∥∥
∥
∥
∥
∥

+

∥
∥
∥∥
∥

∑

0<tk<t

[
(t − tk) −

(
t − tk

)]
Ik
(
x(tk), x′(tk)

)
∥
∥
∥∥
∥

+

∥
∥
∥
∥
∥
∥

∑

t≤tk<t

(
t − tk

)
Ik
(
x(tk), x′(tk)

)
∥
∥
∥
∥
∥
∥

+

∥∥∥∥∥

∫ t

0

[
(t − s) −

(
t − s

)]
f
(
s, x(s), x′(s)

)
ds

∥∥∥∥∥

+

∥∥∥∥∥

∫ t

t

(
t − s

)
f
(
s, x(s), x′(s)

)
ds

∥∥∥∥∥

≤
(
t − t

)∥∥η
∥∥ +

∑

t≤tk<t
dk +

∑

0<tk<t

(
t − t

)
dk +

∑

t≤tk<t

(
t − tk

)
dk

+
∫ t

0

(
t − t

)
αi(s)ds +

∫ t

t

(
t − s

)
αi(s)ds,

(3.15)

and similarly

∥∥∥(Gx)′(t) − (Gx)′
(
t
)∥∥∥ ≤

∥∥∥∥∥

∫ t

0
f
(
s, x(s), x′(s)

)
ds −

∫ t

0
f
(
s, x(s), x′(s)

)
ds

∥∥∥∥∥

+

∥∥∥∥∥∥

∑

0<tk<t

Ik
(
x(tk), x′(tk)

) −
∑

0<tk<t

Ik
(
x(tk), x′(tk)

)
∥∥∥∥∥∥

≤
∫ t

t

αi(s)ds +
∑

t≤tk<t
dk.

(3.16)

The right-hand sides are independent of x ∈ Bi and tend to zero as t − t → 0. Thus
G maps Bi into an equicontinuous family of functions. It is easy to see that the family GBi is
uniformly bounded. And from (H5), we know that GBi is compact. Then by Arzela-Ascoli
theorem, we can conclude that the map G : B → B is compact.

Next, we show that G : B → B is continuous. Let {un}∞0 � B with un → u in B.
Then there is an integer q such that ‖un(t)‖, ‖u′n(t)‖ ≤ q for all n and t ∈ J, so un ∈ Bq and
u ∈ Bq. By (H1), f(t, un(t), u′n(t)) → f(t, u(t), u′(t))(n → ∞) for almost all t ∈ J , and since
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‖f(t, un(t), u′n(t))− f(t, u(t), u′(t))‖ < 2αq(t), we have by the dominated convergence theorem
that

‖Gun −Gu‖PC = sup
t∈J

∥
∥
∥
∥
∥
[
g(un) − g(u)

]
+
∫ t

0
(t − s)[f(s, un(s), u′n(s)

) − f(s, u(s), u′(s))]ds

+
∑

0<tk<t

Ik(un(tk)) −
∑

0<tk<t

Ik(u(tk))

+
∑

0<tk<t
(t − tk)Ik

(
un(tk), u′n(tk)

) −
∑

0<tk<t
(t − tk)Ik

(
u(tk), u′(tk)

)
∥
∥
∥
∥
∥

≤ ∥
∥g(un) − g(u)

∥
∥

+
∫b

0
(b − s)∥∥f(s, un(s), u′n(s)

) − f(s, u(s), u′(s))∥∥ds

+
m∑

k=1

‖Ik(un(tk)) − Ik(u(tk))‖

+
m∑

k=1

(b − tk)
∥∥∥Ik

(
un(tk), u′n(tk)

) − Ik
(
u(tk), u′(tk)

)∥∥∥ −→ 0,

(3.17)

∥∥(Gun)′ − (Gu)′
∥∥
PC = sup

t∈J

∥∥∥∥∥

∫ t

0

[
f
(
s, un(s), u′n(s)

) − f(s, u(s), u′(s))]ds

+
∑

0<tk<t

Ik
(
un(tk), u′n(tk)

) −
∑

0<tk<t

Ik
(
u(tk), u′(tk)

)
∥∥∥∥∥

≤
∫b

0

∥∥[f
(
s, un(s), u′n(s)

) − f(s, u(s), u′(s))]∥∥ds

+
m∑

k=1

∥∥∥Ik
(
un(tk), u′n(tk)

) − Ik
(
u(tk), u′(tk)

)∥∥∥ −→ 0.

(3.18)

Thus G is continuous. This completes the proof that G is completely continuous.
Finally, the set ζ(G) = {x ∈ B : x = λGx, λ ∈ (0, 1)} is bounded, as we proved in the

first step. As a consequence of Lemma 1.1, we deduce that G has a fixed point x ∈ B which is
a solution of (1.1).
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