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We present a discrete two-regional Kaldorian macrodynamic model with flexible exchange rates
and explore numerically the stability of equilibrium and the possibility of generation of business
cycles. We use a grid search method in two-dimensional parameter subspaces, and coefficient
criteria for the flip and Hopf bifurcation curves, to determine the stability region and its
boundary curves in several parameter ranges. The model is characterized by enhanced stability
of equilibrium, while its predominant asymptotic behavior when equilibrium is unstable is period
doubling. Cycles are scarce and short-lived in parameter space, occurring at large values of the
degree of capital movement β. By contrast to the corresponding fixed exchange rates system,
for cycles to occur sufficient amount of trade is required together with high levels of capital
movement. Rapid changes in exchange rate expectations and decreased government expenditure
are factors contributing to the creation of interregional cycles. Examples of bifurcation and
Lyapunov exponent diagrams illustrating period doubling or cycles, and their development into
chaotic attractors, are given. The paper illustrates the feasibility and effectiveness of the numerical
approach for dynamical systems of moderately high dimensionality and several parameters.

1. Introduction

Aspects of international macroeconomics and regional economics are studied recently by
methods of nonlinear economic dynamics (see, e.g., [1–3]). In particular, the Kaldorian
business cycle theory (originated by [4]) has been developed by Lorenz [5], Gandolfo [6],
and others. Recent developments in business cycle dynamics can be found in the work of Puu
and Sushko [7], while a general discussion of analytical and numerical methods in the study
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of nonlinear dynamical systems in economics is in the work of Lorenz [8]. Interregional
Kaldorian macrodynamic models of business cycles, based on trade interaction between the
regions, have been studied by Lorenz [9] and Puu [2].

In this paper we study the economic interdependency between two regions. We
consider a five-dimensional nonlinear discrete time model of the economic transactions
between the regions with flexible exchange rates. The present work is a sequel to our previous
study of the corresponding model of two-regional Macrodynamics with fixed exchange rates
[10]. The economic structures of both regions, assumed similar, are characterized by the
Kaldorian business cycle model, and the two regions interact economically through trade
and capital movement. These two factors of economic interaction are expressed by separate
terms of the model equations and quantified by means of the basic interaction parameters,
δ for trade and β for capital movement. The present model is an extended two-regional
version of the Kaldorian small open economy model with flexible exchange rates, which was
expressed as a three-dimensional system of nonlinear difference equations and considered
in Asada et al. [11]. The corresponding three-dimensional small open economy model with
fixed exchange rates was considered in Asada et al. [12].

The Kaldorian model of nonlinear business cycles provides a surprisingly simple and
fundamental mechanism of complex macroeconomic behavior due to the dynamic interaction
of income and capital by using very standard textbook-like macroeconomic equations, and
because of its simplicity has huge potential to extend in various ways by introducing
more realistic factors. Our paper is one such attempt to extend the model, which is not
yet investigated thoroughly by other authors. It is appropriate to quote here the following
description by Gandolfo: “It is an impressive tribute to its author, and a demonstration of the
importance of nonlinearity, that Kaldor’s business cycle model still yields stimuli to research”
[6, pages 441-442].

Here we explore our two-regional macrodynamic model with flexible exchange rates
focusing on the stability of equilibrium under variations of the model parameters and
on the asymptotic behavior of the system outside the stability region, and consider in
particular the possibility of occurrence of business cycles. For a five-dimensional model with
several parameters, this is a formidable task. However, by means of a numerical grid search
method and analytical coefficient criteria, we determine the stability region in several two-
dimensional sections of the parameter space and identify the flip bifurcation curve and the
Hopf-Neimark bifurcation curve as parts of the boundary of this region.

Indeed, the main aspect of the work in terms of methodology is that by contrast
to many contributions in the field of economic dynamics, we do not employ simplifying
assumptions to reduce the dynamical system to fewer dimensions so as to enable the
derivation of analytical results, but adopt an almost entirely numerical approach which
can be a valuable alternative means of exploration for a nonlinear dynamical system of
moderately high dimensionality and several parameters. It is our aim to illustrate the
feasibility and effectiveness of the numerical approach for such systems. Our study of the
present model completes a series of numerical studies of extended, 3- and 5-dimensional,
Kaldorian Macrodynamic models.

Certain conclusions are drawn on the effects of the model parameters. These regard
mainly the size of the region of stability of equilibrium in parameter space, the possibility of
occurrence of business cycles at reasonably small values of the interaction parameters, and
the type of predominant asymptotic dynamical behavior of the system outside the stability
region. The model exhibits complex dynamics, and our results are presented mostly in the
form of stability and bifurcation diagrams.
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The paper is organized as follows. In Sections 2 and 3 we present the structure of the
model and derive the fundamental dynamical system of equations. In Section 4 we present
the functional forms and specifications adopted for our numerical study. In Sections 5 and
6 we determine the position of equilibrium, discuss its stability and the boundaries of the
stability region in parameter space, identify the Hopf and flip bifurcation curves, in a variety
of parameter ranges, and discuss the effects of variation of the basic model parameters.
In Section 7 we consider the asymptotic dynamical behavior of the system outside the
stability region. In Section 8 we focus on the effect of the speed of adaptation of the expected
exchange rate, and in Section 9 we explore briefly the effect of a state parameter depending
on government spending. Section 10 summarizes our findings and conclusions.

2. Structure of the Model

The following set of (2.1)–(2.9) is common to the two-regional Kaldorian macrodynamic
model with flexible exchange rates in this paper and that with fixed exchange rates in Asada
et al. [10].

The Kaldorian quantity adjustment process in the goods market is expressed as

Yi(t + 1) − Yi(t) = αi[Ci(t) + Ii(t) +Gi + Ji(t) − Yi(t)], αi > 0, (2.1)

where it is assumed that the real output of each region fluctuates according to whether the
regional excess demand in the goods market is positive or negative. We can consider this
process as a dynamic Keynesian multiplier process under fixed prices.

The capital accumulation equation becomes

Ki(t + 1) −Ki(t) = Ii(t), (2.2)

which implies that the net investment expenditure contributes to the changes of the capital
stock.

Consumption function is given by

Ci(t) = ci[Yi(t) − Ti(t)] + C0i, 0 < ci < 1, C0i > 0, (2.3)

which is a very standard textbook-like Keynesian consumption function that describes that
current regional consumption is an increasing function of current regional income.

We formulate the investment function as

Ii(t) = Ii(Yi(t), Ki(t), ri(t)),
∂Ii
∂Yi

> 0,
∂Ii
∂Ki

< 0,
∂Ii
∂ri

< 0, (2.4)

which means that the real regional investment expenditure is an increasing function of real
regional income and a decreasing function of real regional capital stock and of the nominal
regional rate of interest. This is a standard Keynesian/Kaldorian investment function.

We introduce the following quite conventional and simple tax function:

Ti(t) = τiYi(t) − T0i, 0 < τi < 1, T0i > 0, (2.5)

which means that the regional tax is an increasing function of regional income.
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The equilibrium condition of the money market is given by

Mi(t)
pi

= Li(Yi(t), ri(t)),
∂Li
∂Yi

> 0,
∂Li
∂ri

< 0, (2.6)

which is a standard textbook-like formulation of the “LM equation”.
The current account function of region 1 is written as

J1(t) = δH1(Y1(t), Y2(t), E(t)),
∂H1

∂Y1
< 0,

∂H1

∂Y2
> 0,

∂H1

∂E
> 0, 0 ≤ δ ≤ 1, (2.7)

which means that the current account (net export) of a region depends on the incomes of the
two regions and the exchange rate of the currencies of the two regions.

The capital account function of region 1 is given by

Q1(t) = β
[
r1(t) − r2(t) −

Ee(t) − E(t)
E(t)

]
, β > 0, (2.8)

which describes the dynamic of the interregional capital movement. This means that the
capital moves between regions depending on the interest rates differential between the
regions and the expected rate of change of the exchange rate.

The following equation is simply the definition of the total balance of payments of
region 1:

A1(t) = J1(t) +Q1(t). (2.9)

Here t denotes the time period and the subscript i (= 1, 2) is the index number of a region.
The meanings of the symbols are as follows: Yi: real regional income, Ci: real private
consumption expenditure, Ii: real net private investment expenditure on physical capital,
Gi: real government expenditure (fixed), Ki: real physical capital stock, Ti: real income tax,
ri: nominal rate of interest, Mi: nominal money supply, pi: price level (fixed), E: exchange
rate (1 unit of currency of region 2 = E units of currency of region 1), Ee: expected exchange
rate of near future, Ji: balance of current account (net export) in real terms (Ep2J2 = −p1J1),
Qi: balance of capital account in real terms (Ep2Q2 = −p1Q1), Ai = Ji + Qi: total balance of
payments in real terms (Ep2A2 = −p1A1), αi: adjustment speed in the goods market, β: degree
of capital mobility, and δ: degree of interregional trade.

The following set of (2.10)–(2.12) is peculiar to the model with flexible exchange rates
in this paper:

A1(t) = 0, (2.10)

Ee(t + 1) − Ee(t) = γ[E(t) − Ee(t)], γ > 0, (2.11)

Mi(t) =Mi = const. (2.12)
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Furthermore, we fix price levels as follows:

p1 = p2 = 1. (2.13)

Equation (2.10) means that the exchange rate E(t) is determined endogenously to keep the
equilibrium of the total balance of payments instantaneously.

Equation (2.11) formalizes the adaptive expectation hypothesis of the changes of the
expected exchange rate Ee(t).

It is worth noting that the nominal money supply of each region can be controlled by
the monetary authority of each region independent of interregional trade and interregional
capital movement in our model with flexible exchange rates.

Equation (2.12) means that nominal money supply of each region is fixed by the
regional monetary authority.

In our model, price levels, except the exchange rate, are supposed to be fixed for
simplicity. Equation (2.13) is the normalization procedure to simplify the notation.

3. Derivation of the Fundamental Dynamical System of Equations

Next, we derive the fundamental dynamical system of equations in this paper, which is a
five-dimensional system of nonlinear difference equations. Substituting (2.12) and (2.13) into
(2.6) and solving with respect to ri(t), we have the following “LM equation” (dependence of
the rate of interest on income) in each region:

ri(t) = ri(Yi(t)),
∂ri
∂Yi

= −∂Li/∂Yi
∂Li/∂ri

> 0. (3.1)

Substituting now (2.7), (2.8), and (2.9) into (2.10), we have

δH1(Y1(t), Y2(t), E(t)) + β
[
r1(Y1(t)) − r2(Y2(t)) −

Ee(t)
E(t)

+ 1
]
= 0. (3.2)

Solving this equation with respect to E(t), we obtain an expression of the exchange rate E(t)
as an endogenous variable:

E(t) = E
(
Y1(t), Y2(t), Ee(t); β, δ

)
, (3.3)

and differentiating (3.2) with respect to Y1, Y2, and Ee we obtain

∂E

∂Y1
=
−(∂H1/∂Y1) − (∂r1/∂Y1)

(
β/δ

)
(∂H1/∂E) + (Ee/E2)

(
β/δ

) ,

∂E

∂Y2
=
−(∂H1/∂Y2) + (∂r2/∂Y2)

(
β/δ

)
(∂H1/∂E) + (Ee/E2)

(
β/δ

) ,

∂E

∂Ee
=

(
β/δ

)
(∂H1/∂E)E + (Ee/E)

(
β/δ

) > 0.

(3.4)
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We note that due to (2.7), we have

∂E

∂Y1
> 0,

∂E

∂Y2
< 0, (3.5)

for sufficiently small values of β/δ, and

∂E

∂Y1
< 0,

∂E

∂Y2
> 0, (3.6)

for sufficiently large values of β/δ.
Substituting (2.2)–(2.5), (2.7), (3.1), and (3.3) into (2.1), (2.2), and (2.11), we obtain

the following nonlinear five-dimensional system of difference equations, which is the
fundamental system of dynamical equations in this paper:

Y1(t + 1) = Y1(t) + α1[c1(1 − τ1)Y1(t) + c1T01 + C01 +G1 + I1(Y1(t), K1(t), r1(Y1(t)))

+δH1
(
Y1(t), Y2(t), E

(
Y1(t), Y2(t), Ee(t); β, δ

))
− Y1(t)

]

= F1
(
Y1(t), K1(t), Y2(t), Ee(t);α1, β, δ

)
,

K1(t + 1) = K1(t) + I1(Y1(t), K1(t), r1(Y1(t))) = F2(Y1(t), K1(t)),

Y2(t + 1) = Y2(t) + α2

[
c2(1 − τ2)Y2(t) + c2T02 + C02 +G2 + I2(Y2(t), K2(t), r2(Y2(t)))

−
δH1

(
Y1(t), Y2(t), E

(
Y1(t), Y2(t), Ee(t); β, δ

))
E
(
Y1(t), Y2(t), Ee(t); β, δ

) − Y2(t)

]

= F3
(
Y1(t), Y2(t), K2(t), Ee(t);α2, β, δ

)
,

K2(t + 1) = K2(t) + I2(Y2(t), K2(t), r2(Y2(t))) = F4(Y2(t), K2(t)),

Ee(t + 1) = Ee(t) + γ
[
E
(
Y1(t), Y2(t), Ee(t); β, δ

)
− Ee

]
= F5

(
Y1(t), Y2(t), Ee(t); β, δ

)
.

(3.7)
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4. Functional Forms and Specifications

For our numerical exploration, the fundamental system of dynamical equations is employed
in the form of the following equations which are merely numerical specifications of the
general model formalized in Sections 2 and 3. In particular, (3.7) becomes, respectively,

Y1(t + 1) − Y1(t) = α1
{
φ1(t) + δH1(t) + [c1(1 − τ1) − 1]Y1(t) + Z1

}
,

K1(t + 1) −K1(t) = φ1(t),

Y2(t + 1) − Y2(t) = α2

{
φ2(t) −

δH1(t)
E(t)

+ [c2(1 − τ2) − 1]Y2(t) + Z2

}
,

K2(t + 1) −K2(t) = φ2(t),

Ee(t + 1) − Ee(t) = γ[E(t) − Ee(t)],

(4.1)

where

φi(t) = f(Yi(t)) −
3Ki(t)

10
− ri(t), i = 1, 2,

ri(t) = −Mi + 10Yi(t)1/4, i = 1, 2,

H1(t) = 100 − 100
E(t)

− 3Y1(t)
10

+
3Y2(t)

10
.

(4.2)

We also adopt the numerical specifications:

M1 =M2 = 300, c1 = c2 = 0.8, τ1 = τ2 = 0.2,

Z1 = c1T01 + C01 +G1 = Z2 = c2T02 + C02 +G2 = 75,
(4.3)

corresponding to similarly structured regional economies. The function f is a particular case
of the Kaldorian sigmoid direct dependence of the investment function on income (see, e.g.,
[13]), given by

f(x) =
80
π

arctan
[

9π
80

(x − 250)
]
+ 35. (4.4)

These functional forms and specifications are taken in the present case of flexible exchange
rates to be essentially the same as in Asada et al. [10] for the case of fixed exchange rates,
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so as to facilitate comparison of that case with the present one. With the above forms and
specifications, the right-hand sides of the system are

f1 = α1

{
300 + Z + f(Y1(t)) −

3K1(t)
10

− 10Y1(t)1/4 − 36
100

Y1(t)

+δ
[

100 − 100
E(t)

− 3Y1(t)
10

+
3Y2(t)

10

]}
,

(4.5)

f2 = 300 + f(Y1(t)) −
3K1(t)

10
− 10Y1(t)1/4, (4.6)

f3 = α2

{
300 + Z + f(Y2(t)) −

3K2(t)
10

− 10Y2(t)1/4 − 36
100

Y2(t)

− δ

E(t)

[
100 − 100

E(t)
− 3Y1(t)

10
+

3Y2(t)
10

]}
,

(4.7)

f4 = 300 + f(Y2(t)) −
3K2(t)

10
− 10Y2(t)1/4, (4.8)

f5 = γ[E(t) − Ee(t)]. (4.9)

The system is completed by (3.2) which takes the following form:

δ

[
100 − 100

E(t)
− 3Y1(t)

10
+

3Y2(t)
10

]
+ β

[
1 − E

e(t)
E(t)

+ 10Y1(t)1/4 − 10Y2(t)1/4
]
= 0. (4.10)

The expression (3.3) of the exchange rate is now

E(t) =
10
[
100δ + βEe(t)

]
10β

[
1 + 10Y1(t)1/4 − 10Y2(t)1/4

]
+ δ[1000 − 3Y1(t) + 3Y2(t)]

, (4.11)

and the final recurrence system is obtained by substituting this into (4.5) and (4.7). For
simplicity, in our numerical exploration we shall further assume equal speeds of adjustment
of the goods markets in the two regions (α1 = α2 = α), thus reducing the space of
essential parameters of the model, from four-dimensional (α1, α2, β, δ) to three-dimensional
(α, β, δ). However, in the following we shall also discuss variations of the quantities γ and Z,
considered here as secondary parameters.

5. Position and Stability of Equilibrium

To find the equilibrium values of the system, denoted below by asterisks, we first observe
that (4.9) implies Ee∗ = E∗, and substituting this into (4.11) we obtain

Ee∗ = E∗ = − 1000δ

100β
[
−
(
Y ∗1

)1/4 +
(
Y ∗2

)1/4
]
+ δ

(
−1000 + 3Y ∗1 − 3Y ∗2

) . (5.1)
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It is then found from (4.5)–(4.8) and (5.1) that the equilibrium values of our flexible exchange
rates model under the above specifications are

Y ∗1 = Y ∗2 =
25Z

9
,

K∗1 = K∗2 =
10
3

[
300 + f

(
25Z

9

)
− 10

(
25Z

9

)1/4
]
,

Ee∗ = E∗ = 1.

(5.2)

In particular, for Z = 75 we obtain the following equilibrium values:

Y ∗1 = Y ∗2 =
625

3
∼= 208.333, K∗1 = K∗2 ∼= 862.449. (5.3)

Stability of the equilibrium is determined by the roots of the characteristic polynomial of the
Jacobian of the mapping, that is, the following matrix:

J∗ = I +

(
∂fi
∂xj

)
, i, j = 1, . . . , 5, (x1, x2, x3, x4, x5) = (Y1, K1, Y2, K2, E

e), (5.4)

where I is the 5×5 unit matrix, and the superscript (∗) denotes evaluation at the equilibrium.
The characteristic equation is a quintic:

P5(λ) = λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0, (5.5)

and for stability, all its roots, real or complex, must be inside the unit circle in the complex
plane.

Our basic tool for the numerical determination of the region of stability is a two-
dimensional grid-search technique. We compute the characteristic polynomial (5.5) and its
roots at the node points of a dense grid covering a region of interest in a two-dimensional
section of the space of parameters, and store for graphical representation the points at which
the equilibrium is stable.

The technique is first employed to determine the stability diagrams of Figure 1
showing the stability region in the (β, δ) parameter plane for fixed γ = 1.2 and for different
values of the common speed of adjustment of the goods markets α. The part of the stability
region in which the roots of the characteristic equation are all real is shown dark-shaded,
while the part in which some of the roots are complex conjugate is shown light-shaded. In
these diagrams the flip bifurcation condition

g1
(
α, β, γ, δ

)
= P5(−1) = a0 + a2 + a4 − (1 + a1 + a3) = 0 (5.6)

is drawn in as a bold dashed curve. The Hopf bifurcation curve is also drawn in, as a
continuous curve. We have found that in all stability diagrams of this paper the Hopf
bifurcation curve can be determined by requiring that two of the roots of the characteristic
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polynomial have unit product (see [10]), and is given by the following relation of the
coefficients of the characteristic polynomial:

g2
(
α, β, γ, δ

)
= a4

0 + a
2
0(a1 − 2) − a2

2 − a0a2

(
a2

0+3a1−2a3 − 1
)
+ (1 + a1 − a3)

[
(a1 − 1)2 + a2

0a3

]

+ a4

{(
1 + 2a2

0 + a1

)
a2 − a0

[
a2

0 + a
2
1 + 3a3 − a1(2 + a3) − 1

]}

− a2
4

(
a2

0 + a1 + a0a2

)
+ a0a

3
4 = 0.

(5.7)

Each one of relations (5.6) and (5.7) is the implicit equation of a surface in the four-
dimensional space of the parameters (α, β, γ, δ), the contours of which for fixed γ and for
various levels of α provide in the (β, δ) plane one or more curves. Segments of the curves
arising from (5.6) form the part of the boundary of the stability region that is a flip bifurcation
curve, and similarly segments of the curves arising from (5.7) form the part of the boundary
of the stability region that is a Hopf bifurcation curve. Segments of the above curves that
are not parts of the boundary of the stability region do not correspond to loss of stability
and can be ignored. These two relations can therefore be employed, in combination with
the grid search technique, as coefficient criteria for flip bifurcations and Hopf bifurcations in
the present case of our five-dimensional discrete system (see [14], for a rigorous coefficient
criterion in the case of a four-dimensional continuous system).

The above tools are similarly employed to determine the stability region in the (β, α)
plane for γ = 1.2 and different values of the level of trade transactions δ, and some of the
resulting stability region diagrams are shown in Figure 2.

6. Geometrical Aspects and Implications

Let us now consider the geometrical aspects of the boundary curves of the stability region.
We begin by noting that in our model, (5.6) is equivalent to a quadratic with respect to α:

g1
(
α, β, γ, δ

)
= (1 − α00α)

{
10(1 − α00α)

[
β − 50

(
γ − 2

)
δ
]
− αβδ

[
3 − 10 × 33/4(γ − 2

)]}
= 0,

(6.1)

with roots

α = α00
−1, (6.2)

α =

{
α00 + βδ

3 − 10 × 33/4(γ − 2)
10
[
β − 50δ

(
γ − 2

)]
}−1

, (6.3)

where we have abbreviated

α00 =
9

50
+

33/4

85
− 23040

4352 + 95625 π2
∼= 0.1825. (6.4)
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Figure 1: The region of stability of equilibrium in the (β, δ) plane for γ = 1.2 and sample values of α.
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Figure 2: The region of stability of equilibrium in the (β, α) plane for γ = 1.2 and sample values of δ.

The constant root (6.2) corresponds to the leftmost point of the flip bifurcation curve in
the (β, α) plane, while (6.3) represents the flip bifurcation condition (5.6) in the form α =
α(β, γ, δ). Substituting this expression of α into (5.7), we obtain an equation

g2
(
α
(
β, γ, δ

)
, β, γ, δ

)
= 0, (6.5)

which, for a fixed value of γ, is satisfied by the values of β and δ representing the locus of
the points of intersection of the flip bifurcation curve with the Hopf bifurcation curve in the
(β, δ) plane. In Figure 1 this locus has been drawn in as a thin dashed curve.

Considering the existence of the locus for large values of β, we find that for β → ∞
the expression in the left-hand side of (6.5) tends to a limit function Pγ,δ, plots of which for
three sample values of γ are shown in Figure 3. Its roots with respect to δ (denoted by δ∞)
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for these values of γ are given below together with the following corresponding values of α
(denoted by α∞ and obtained from (6.3) for δ = δ∞ and β → ∞) :

γ = 1.2: δ∞ ∼= 0.2991, α∞ ∼= 1.2231,

γ = 1.4: δ∞ ∼= 0.1201, α∞ ∼= 2.6124,

γ = 1.6: δ∞ ∼= 0.0751, α∞ ∼= 3.6556.

(6.6)

The quantities δ∞ and α∞ can be expressed as functions of γ in the following simple forms,
obtained by means of a numerical approximation technique using Pγ,δ and (6.3):

δ∞
(
γ
) ∼= 36

987γ − 956
, α∞

(
γ
) ∼= 10

(
623γ − 664

)
3
(
189γ + 1

) , (6.7)

with an accuracy of at least two decimal digits in the interval 1.2 < γ < 1.6. These functions
are shown as curves in Figure 4.
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The flip bifurcation curve and the Hopf bifurcation curve approach each other
asymptotically in the (β, δ) plane for β → ∞ when δ = δ∞. It follows from Figure 1 that they
do not intersect when δ < δ∞, but they do so at a finite value of β when δ > δ∞. Therefore,
the locus of their points of intersection does not exist when δ < δ∞.

Similarly, in the (β, α) plane the flip bifurcation curve and the Hopf bifurcation curve
approach each other asymptotically for β → ∞ when α = α∞. It follows from Figure 2 that
they do not intersect when α > α∞, but they do so at a finite value of βwhen α < α∞. Therefore,
the locus of their points of intersection does not exist when α > α∞.

Of importance here is also the fact that for γ = 1.2 the locus of intersections of the
flip bifurcation curve and the Hopf bifurcation curve attains its minimum with respect to
the parameter β of capital movement at a considerably large value of β. Specifically, this
minimum occurs at

β = βmin
∼= 249.13 (δ ∼= 0.662, α ∼= 0.688). (6.8)

To find the locus of intersections in the (β, α) plane, instead of in the (β, δ) plane, we can solve
(6.3) for δ and substitute the resulting expression

δ1
(
α, β, γ

)
=

10(1 − α00α)β
500(1 − α00α)

(
γ − 2

)
− αβ

[
10 × 33/4

(
γ − 2

)
− 3

] (6.9)

into (5.7). We then obtain the following equation which, for a fixed value of γ, is satisfied by
the values of β and α representing the points of the locus curve in the (β, α) plane:

g2
(
α, β, γ, δ1

(
α, β, γ

))
= 0. (6.10)

In Figure 2 the locus has been drawn in as in Figure 1 (thin dashed curve). However, since
the maximum value of δ allowed in the model is 1, we can substitute δ = 1 into (6.3) to find
the following relation representing, for a fixed value of γ, the model restriction δ ≤ 1 on the
flip bifurcation curve in the (β, α) plane:

α ≥
{
α00 + β

3 − 10 × 33/4(γ − 2)
10
[
β − 50(γ − 2)

]
}−1

. (6.11)

For the value γ = 1.2, we thus obtain

α ≥
{
α00 + β

3 + 8 × 33/4

10(β + 40)

}−1

∼= 0.433628 +
15.9724

β + 3.16579
. (6.12)

This expression of α, with the equality sign, represents the final location of the flip bifurcation
curve (corresponding to δ = 1). It follows that the actual locus of intersections of the flip
bifurcation curve with the Hopf bifurcation curve is only the part of the curve (6.10) on which
(6.12) is satisfied. In the diagrams of Figure 2, only that part of the curve is shown. We can
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now substitute α by its lowest possible value, as given by the right-hand side of (6.11), into
(6.10) to obtain an equation:

g∗2
(
β, γ

)
= 0, (6.13)

giving (for a fixed value of γ) the value of β at the final point of the actual locus. For γ = 1.2
we obtain β ∼= 276.65, and the value of α at this point is then found from (6.12) to be α ∼= 0.491.
Note in Figure 1 that this is the value of α for the intersection of the flip bifurcation curve with
the Hopf bifurcation curve to be at the top end point of the locus in the (β, δ) plane.

Let us now discuss the implications of the geometrical aspects of the boundary
curves of the stability region, including consequences on the possibility of occurrence of
interregional business cycles.

The minimum with respect to the parameter β of the locus of intersections of the flip
bifurcation curve with the Hopf bifurcation curve in Figures 1 and 2 means that no segment of
the curve (5.7) can be part of the boundary of the stability region for β < 249.13, equivalently
that no Hopf bifurcation curve exists, and no business cycles can occur, for lower values of β.
For lower values of β, it is the flip bifurcation curve that forms the boundary of the stability
region, and period doubling can be expected to be the only mode of asymptotic dynamical
behavior of the system when exiting the stability region in parameter space.

Further, it follows from the above considerations, regarding the final point (corre-
sponding to δ = 1) of the said locus, that in a global sense (i.e., for all values of δ) period
doubling does not occur when exiting the stability region at points of the (β, α) plane whose
coordinates satisfy the inequalities β > 276.65 and α < 0.491. In other words, only cycles may
occur on exit at such points.

It follows from the above discussion that the inequalities:

δ > δ∞, β > βmin, α < α∞ (6.14)

represent the threshold for the occurrence of cycles in our model. For δ > δ∞, α < α∞, and
large but finite values of capital movement β, the locus of intersections of the flip bifurcation
curve with the Hopf bifurcation curve exists, and cycles occur when exiting the stability
region in parameter space through the segment of the curve (5.7) which forms part of the
boundary of the stability region for such large values of β.

The important difference between our present flexible exchange rates system and the
corresponding fixed exchange rates system studied in Asada et al. [10] is that in our present
system for cycles to occur sufficient amount of trade is required together with high levels of
capital movement.

In Figure 5 we show the occurring cycles for δ = 0.6, β = 300, and α as the bifurcation
parameter varying between 0.627 and 0.629. The cycles are shown in their (Y1, Y2) and
exchange rate (ER) versus Y1 projections. The (Y1, Y2) projection in particular shows counter
synchronization of regional incomes when interregional cycles appear. Note, also, that when
the income of region 1 is sufficiently higher than the income of region 2, then the exchange
rate is less than 1, that is, the currency of region 1 is “stronger” (1 unit of currency of region 2
is <1 unit of currency of region 1). However, the occurring cycles are small in amplitude and
short-lived as α varies.

We conclude this section with the following basic conclusions concerning the
enhanced stability of equilibrium characterizing our model of flexible exchange rates. From
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Figure 5: Interregional cycles occurring for δ = 0.6 and β = 300 and α from 0.627 to 0.629, shown in their
(Y1, Y2) and (Y1,ER) projections.

the stability region diagrams, it can be seen that high levels of capital movement β do not
induce instability of the system for low levels of the speed of adjustment of the goods markets
α (i.e., for prudent reactions by firms); but high levels of α induce instability even at relatively
low levels of β (Figure 2). For prudent reactions by firms (α < 1) equilibrium remains stable
at high levels of capital movement even for high levels of trade transactions δ (Figure 1).

7. Period Doubling and Second Generation Cycles

We now consider the asymptotic dynamical behavior of the system outside the stability
region. For this we employ numerical simulations of the model mapping (4.5)–(4.9) to
compute bifurcation and Lyapunov exponent diagrams with β as the bifurcation parameter.
We choose parameter cases in which as β increases stability is lost by going through a flip
bifurcation, such being the characteristic cases in our model (except for very large values
of β). Our results for δ = 0.6 (see the bottom left-hand diagram of Figure 2 for the relevant
stability region), and sample values of α, are shown in Figure 6. As expected, period doubling
occurs when stability is lost (at: β ∼= 7.96 for α = 2, and β ∼= 14.71 for α = 1.5).

However, in the present case the period doubling process does not develop directly
into chaotic behavior. Instead, it first develops into an intermediate phase of “second
generation”, period-2, cycles as indicated by the characteristic flatness of the Lyapunov
exponent diagram for α = 2 and β approximately between 9.25 and 9.55. A similar situation,
for a narrower interval of β, is seen to occur for α = 1.5. Details of the bifurcation diagrams,
showing clearly the occurrence of second generation cycles for α = 1.5, are shown in Figure 7.
The actual second generation cycles occurring for δ = 0.6 and α = 2 are shown in Figure 8,
and their further development into chaotic attractors is shown in Figure 9 in some two-
dimensional “projections”.

8. Effect of the Speed of Adaptation of the Expected Exchange Rate

With regard to the effect of the speed of adaptation of the expected exchange rate γ,
incorporated in our model in accordance with the adaptive expectation hypothesis of the
changes of the expected exchange rate, it follows from the values (6.6) and Figures 3 and 4,
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Figure 8: Period-2 cycles for δ = 0.6, α = 2.

that increase of γ relaxes the threshold restrictions (6.14) for the occurrence of cycles in so far
as the parameters δ and α are concerned, since higher γ gives lower δ∞ and higher α∞.

To illustrate this conclusion, we present in Figure 10 the stability regions in the (β, α)
plane for γ = 1.4 and γ = 1.6. Compared to the case γ = 1.2, we see that for γ = 1.4 the locus of
intersections of the flip bifurcation curve and the Hopf bifurcation curve begins to exist (for
β → ∞) at lower values of δ and higher values of α, and thus cycles may occur for wider
intervals of parameters. This is more pronounced for γ = 1.6.
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Figure 9: Development of the cycles of Figure 8 into chaotic attractors at: β = 9.68 (top) and β = 9.76
(bottom: “mask-like” and “heart-like” attractors).

Also, compared to the case γ = 1.2 the locus now attains its minimum w.r.t. β at
considerably lower values of β:

γ = 1.4: βmin
∼= 36.804 (α ∼= 1.715, δ ∼= 0.299),

γ = 1.6: βmin
∼= 11.962 (α ∼= 2.743, δ ∼= 0.201).

(8.1)

Thus, cycles now begin to occur at considerably lower levels of capital movement, that is, the
threshold restriction for the occurrence of cycles is also relaxed with regard to the allowed
values of β.

With regard to the final point of the locus, we can apply relations (6.11) and (6.13)
as before. For the values of the speed of adaptation of the expected exchange rate employed
here, (6.11) takes the following simple forms:

γ = 1.4: α ≥
{
α00 + β

3 + 6 × 33/4

10(β + 30)

}−1

∼= 0.540476 +
14.6148

β + 2.95939
, (8.2)

γ = 1.6: α ≥
{
α00 + β

3 + 4 × 33/4

10(β + 20)

}−1

∼= 0.717195 +
12.4663

β + 2.61801
. (8.3)

For γ = 1.4 the value of β at the final point of the actual locus is found from (6.13) to be β ∼=
63.117, and the value of α at this point is found from (8.2) to be α ∼= 0.762. It follows that in a
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global sense (i.e., for all values of δ), period doubling does not occur when exiting the stability
region at points of the (β, α) plane whose coordinates satisfy the following inequalities:

γ = 1.4: β > 63.117, α < 0.762. (8.4)

Only cycles may occur on exit at such points. The corresponding inequalities for γ = 1.6 are

γ = 1.6: β > 25.918, α < 1.154. (8.5)

In Figure 11 we illustrate the asymptotic behavior of the system outside the stability
region by means of bifurcation and Lyapunov exponent diagrams for γ = 1.6 and δ = 0.4.
When exiting the stability region through the flip bifurcation curve, we get period doubling
and second generation cycles, but when exiting through the Hopf bifurcation curve we get
cycles for relatively small values of β. The actual cycles occurring in this case are similar to
the cycles shown in Figure 5.

To explore further the effect of the speed γ of adaptation of the exchange rate, we
employ the same techniques as in Section 5 to compute the region of stability of equilibrium
and its boundary curves in the (β, γ) plane. This is done for sample values of the speed of
adjustment α of the goods markets and sample values of the level δ of trade transactions
between the economic regions. Some of the stability regions obtained are shown in Figure 12.

We see in these diagrams that for high values of α (>1) the stability region is restricted
to relatively low values of β and to values of γ mainly below γ = 2. Also, as α increases
the segment of the continuous curve which forms part of the boundary of the stability
region, that is, the part which is truly a Hopf bifurcation curve, gets smaller in length;
thus cycles are possible for fewer parameter constellations. The possibility of cycles becomes
extinct eventually, shortly after a change of topology of the flip bifurcation curve (dashed) as
described below.

The flip bifurcation curve is a hyperbola in the (β, γ) plane, which is represented by
the expression found by solving (6.3) for γ, and has the following form:

γ =
ψ0(α, δ) + ψ1(α, δ) β
ζ0(α, δ) + ζ1(α, δ) β

, (8.6)

with

ψ0 = 1000(1 − α00α)δ, ψ1 = 10(1 − α00α) −
(

3 + 20 × 33/4
)
αδ,

ζ0 = 500(1 − α00α)δ, ζ1 = −10 × 33/4αδ.

(8.7)

At the critical value, the determinant ψ0ζ1 − ψ1ζ0 of the coefficients is zero for the branches
of the hyperbola to touch. On the other hand, Expression (8.6) is seen from (8.7) to take the
value:

γ =
ψ0

ζ0
= 2, (8.8)
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Figure 10: Regions of stability for γ = 1.4 (left) and γ = 1.6 (right).
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for β = 0; thus the flip bifurcation hyperbola in Figure 12 always goes through the point (0, 2).
Therefore, when the hyperbola branches touch, we have

ψ0 + ψ1β

ζ0 + ζ1β
=
ψ1

ζ1
+
ψ0ζ1 − ψ1ζ0

ζ1
(
ζ0 + ζ1β

) =
ψ1

ζ1
= 2, (8.9)

and the last equation gives

α = αcrit.(δ) =
(
α00 +

3δ
10

)−1

, (8.10)

where α00 is given by (6.4). Note that (8.10) can also be directly obtained from (6.3) for γ = 2.
Also, the root of the denominator of the expression (8.6) gives for α = αcrit. the value of β
when the hyperbola branches meet

β = βcrit.(δ) = 5 × 31/4δ. (8.11)

From (8.10) and (8.11), and for the values of δ used in Figure 12, we thus obtain

δ = 0.4: αcrit.
∼= 3.306, βcrit.

∼= 2.632,

δ = 0.8: αcrit.
∼= 2.367, βcrit.

∼= 5.264.
(8.12)

For a small interval of α > αcrit. the Hopf bifurcation curve continues to intersect the upper
branch of the flip bifurcation curve. But for α being sufficiently larger than αcrit. (specifically
α > 3.361 for δ = 0.4 and α > 2.406 for δ = 0.8), there is no longer any intersection of the two
curves. For such high values of α, the entire boundary of the stability region is formed by the
flip bifurcation curve, and Hopf bifurcations are impossible for any value of γ.

9. Effect of the State Parameter Z

We now explore briefly the effect of varying the value of the state parameterZ. To this end we
employ the same techniques as in the previous sections. We note that this parameter involves
the quantities Gi, i = 1, 2, of real public expenditure in the two economic regions; therefore,
the effects of varying Z may also be of interest with regard to questions of economic policy.
The stability regions in the (β, α) plane for Z = 35 are shown in Figure 13.

We find that in this case the locus of intersections of the flip bifurcation curve with the
Hopf bifurcation curve begins to exist (for β → ∞) at δ = δ∞ ∼= 0.1778, α = α∞ ∼= 1.1721, and
attains its minimum with respect to β at β = βmin

∼= 114.53, α ∼= 0.6754 for δ ∼= 0.4059. The final
locus point is at β ∼= 166.61, α ∼= 0.3255 (for δ = 1).

Based on the same arguments as in the previous sections, we may reach the conclusion
that when Z is reduced from Z = 75 to Z = 35, the threshold restriction for the occurrence of
cycles is relaxed with respect to the relevant value of the parameter δ and is now described
by the inequalities: δ > 0.1778 and α < 1.1721 (instead of the previous inequalities δ > 0.2991,
α < 1.2231), while cycles now occur for considerably lower values of the parameter β of
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Figure 13: Regions of stability for Z = 35, γ = 1.2.

capital movement: β > 114.53 (instead of β > 249.13). Also, that in a global sense (for all
values of δ) period doubling does not occur when exiting the stability region at points in
parameter space satisfying the inequalities β > 166.61 and α < 0.3255, only cycles may occur
on exit at such points.

The emergence of period doubling when exiting the stability region through the
flip bifurcation curve is illustrated in Figure 14 for δ = 0.4, α = 1, by means of
bifurcation and Lyapunov exponent diagrams, and the emergence of cycles when exiting
the stability region through the Hopf bifurcation curve is shown in the same Figure for
δ = 0.7, α = 0.2. In the present case, the period doubling process leads directly to
chaos without going through a phase of second generation cycles. Details of the period
doubling process to chaos are shown in Figure 15, while the actual cycles occurring
when exiting the stability region through the Hopf bifurcation curve are shown in some
two-dimensional projections in Figure 16. Counter synchronization of regional incomes is
observed again.



26 Discrete Dynamics in Nature and Society

95

100

105

110

115
Y

1

20 25 30

β

98

100

102

104

Y
1

300 305 310 315

β

878.5

879

879.5

880

K
1

20 25 30

β

879

879.5

880

K
1

300 305 310 315

β

1

1.2

1.4

1.6

E
R

20 25 30

β

0.8

1

1.2

1.4

E
R

300 305 310 315

β

−0.2

0

0.2

L
E

20 25 30

β

−0.1

0

0.1

L
E

300 305 310 315

β

Figure 14: Left: Period doubling process for Z = 35, δ = 0.4, α = 1. Right: Cycles occurring for Z = 35,
δ = 0.7, α = 0.2.
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10. Summary: Conclusions

We presented a five-dimensional discrete two-regional Kaldorian macrodynamic model with
flexible exchange rates, assuming similar economies of the two regions, and carried out a
numerical exploration of its dynamical behavior, considering the effects of variation of the
three basic parameters, namely, the common speed of adaptation of the goods markets α, the
degree of capital mobility β, and the level of trade transactions between the regions δ. Further,
we considered the effects of variation of two additional parameters, namely, the speed of
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adaptation γ of the expected exchange rate, incorporated in our model according to the
adaptive expectation hypothesis, and a state parameterZ involving government expenditure.

We employed as our basic tools a grid search method and analytical coefficient criteria
for the determination of the stability of equilibrium region and its boundary curves, the
flip bifurcation curve and the Hopf bifurcation curve, in two-dimensional subsections of the
parameter space. We considered in some detail the geometrical aspects of these boundary
curves and of the curve-locus of their intersections, and the implications of these aspects on
the stability region and the occurrence of period doubling or cycles in the parameter space.
Our main findings are as follows.

Compared to the corresponding model of fixed exchange rates considered in a
previous paper, our present model of flexible exchange rates is characterized by enhanced
stability of equilibrium. High levels of capital movement β do not induce instability of the
system for low levels of the speed of adjustment of the goods markets α (i.e., for prudent
reactions by firms), although high levels of α induce instability even at relatively low levels
of β. For prudent reactions by firms (α < 1), equilibrium remains stable at high levels of
capital movement even for high levels of trade transactions δ.

Business cycles are generally scarce and short-lived in parameter space, and occur
at large values of the degree of capital movement β. We determined the threshold for
the occurrence of cycles in the form of restrictions described by inequalities that must be
satisfied by the parameters δ, α, and β.A characteristic difference between our present flexible
exchange rates system and the corresponding fixed exchange rates system studied in Asada
et al. [10] is that in our present system for cycles to occur sufficient amount of trade is required
together with high levels of capital movement. The importance of trade as a generating factor
for business cycles is significantly reduced by the flexibility of exchange rates.

Furthermore, it was demonstrated that the above threshold for the occurrence of cycles
is relaxed, in the sense that cycles occur for larger regions in the basic parameters space
(α, β, δ),when the speed of adaptation γ of the expected exchange rate is increased, and that it
is similarly relaxed in the space of the economic interaction parameters (β, δ) when the state
parameter Z is decreased. A plausible interpretation of these results is that rapid changes in
exchange rates expectations and decreased government expenditure are factors contributing
to the creation of Hopf bifurcations and interregional business cycles.

Concerning the plausibility of the above results and their economic interpretations, it
may be commented that these do not contradict intuition and experience and are therefore
suggestive of a degree of real world relevance of our formulation of the present model of
Kaldorian interregional Macrodynamics under flexible exchange rates.

We also explored the asymptotic dynamical behavior of our system outside the
stability of equilibrium region by means of numerical simulations resulting in bifurcation and
Lyapunov exponent diagrams, and found that in several cases of the period doubling process
occurring when exiting the stability region in parameter space through flip bifurcation, the
process first develops into second generation (period 2) cycles. It was noted that when
exiting the stability region through Hopf bifurcation the occurring cycles exhibit counter
synchronization of regional incomes. Some examples of the occurring first and second
generation cycles, and an example of the development of second generation cycles into
chaotic attractors, were given in terms of two-dimensional projection diagrams.

We finally note that although our present model, like the corresponding model with
fixed exchange rates studied in Asada et al. [10], achieves an extension of the Kaldorian
model of business cycles by introducing some important and economically meaningful
generalizations, and is complex enough compared to other variants of the Kaldorian model,
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it is still simple in the sense that all prices other than the exchange rate are assumed fixed.
Thus, the financial aspect of this model would be inadequate to explain global economic
phenomena such as, for example, the current financial crisis. To include the missing factors
in the analysis will require a higher dimensional model and the numerical treatment will be
much more difficult. The construction and exploration of such an extended model is a theme
left for study in the future.
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