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We get the strong law of large numbers, strong growth rate, and the integrability of supremum for
the partial sums of asymptotically almost negatively associated sequence. In addition, the complete
convergence for weighted sums of asymptotically almost negatively associated sequences is also
studied.

1. Introduction

Definition 1.1. A finite collection of random variables X1, X2, . . . , Xn is said to be negatively
associated (NA) if, for every pair of disjoint subsets A1, A2 of {1, 2, . . . , n},

Cov
{
f(Xi : i ∈ A1), g

(
Xj : j ∈ A2

)} ≤ 0, (1.1)

whenever f and g are coordinate-wise nondecreasing such that this covariance exists. An
infinite sequence {Xn, n ≥ 1} is NA if every finite subcollection is NA.

The concept of negative association was introduced by Joag-Dev and Proschan [1] and
Block et al. [2]. By inspecting the proof of maximal inequality for the NA random variables
in Matuła [3], one also can allow negative correlations provided they are small. Primarily
motivated by this, Chandra and Ghosal [4, 5] introduced the following dependence.

Definition 1.2. A sequence {Xn, n ≥ 1} of random variables is called asymptotically almost
negatively associated (AANA) if there exists a nonnegative sequence q(n) → 0 as n → ∞
such that

Cov
(
f(Xn), g(Xn+1, Xn+2, . . . , Xn+k)

) ≤ q(n)[Var(f(Xn)
)
Var

(
g(Xn+1, Xn+2, . . . , Xn+k)

)]1/2

(1.2)
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for all n, k ≥ 1 and for all coordinate-wise nondecreasing continuous functions f and g
whenever the variances exist.

The family of AANA sequence contains NA (in particular, independent) sequences
(with q(n) = 0, n ≥ 1) and some more sequences of random variables which are not much
deviated from being negatively associated. An example of an AANA sequence which is not
NA was constructed by Chandra and Ghosal [4].

Since the concept of AANA sequence was introduced by Chandra and Ghosal
[4], many applications have been found. For example, Chandra and Ghosal [4] derived
the Kolmogorov-type inequality and the strong law of large numbers of Marcinkiewicz-
Zygmund, Chandra and Ghosal [5] obtained the almost sure convergence of weighted
averages, Ko et al. [6] studied the Hájek-Rényi-type inequality, and Wang et al. [7]
established the law of the iterated logarithm for product sums. Recently, Yuan and An [8]
established some Rosenthal-type inequalities for maximum partial sums of AANA sequence.
As applications of these inequalities, they derived some results on Lp convergence, where
1 < p < 2, and complete convergence. In addition, they estimated the rate of convergence
in Marcinkiewicz-Zygmund strong law for partial sums of identically distributed random
variables.

The main purpose of the paper is to study the strong law of large numbers, strong
growth rate, and the integrability of supremum for AANA sequence. In addition, the
complete convergence for weighted sums of AANA sequence is also studied.

Throughout the paper, we let {Xn, n ≥ 1} be a sequence of AANA random variables
defined on a fixed probability space (Ω,F, P). Denote Sn

.=
∑n

i=1Xi. Let X(a) = −aI(X <
−a) + XI(|X| ≤ a) + aI(X > a) for some a > 0, and let I(A) be the indicator function
of the set A. For p > 1, let q .= p/(p − 1) be the dual number of p. We assume that
φ(x) is a positive increasing function on (0,∞) satisfying φ(x) ↑ ∞ as x → ∞ and
ψ(x) is the inverse function of φ(x). Since φ(x) ↑ ∞, it follows that ψ(x) ↑ ∞. For easy
notation, we let φ(0) = 0 and ψ(0) = 0. The an = O(bn) denotes that there exists a
positive constant C such that |an/bn| ≤ C. C denotes a positive constant which may be
different in various places. The main results of this paper are dependent on the following
lemmas.

Lemma 1.3 (cf. Yuan and An [8, Lemma 2.1]). Let {Xn, n ≥ 1} be a sequence of AANA
random variables with mixing coefficients {q(n), n ≥ 1}, and let f1, f2, . . . be all nondecreasing (or
nonincreasing) functions, then {fn(Xn), n ≥ 1} is still a sequence of AANA random variables with
mixing coefficients {q(n), n ≥ 1}.

Lemma 1.4. Let 1 < p ≤ 2, and let {Xn, n ≥ 1} be a sequence of AANA random
variables with mixing coefficients {q(n), n ≥ 1} and EXn = 0 for each n ≥ 1. If∑∞

n=1 q
2(n) < ∞, then there exists a positive constant Cp depending only on p such

that

E

(
max
1≤i≤n

|Si|p
)

≤ Cp

n∑

i=1

E|Xi|p (1.3)

for all n ≥ 1, where Cp = 2p[22−pp + (6p)p(
∑∞

n=1 q
2(n))p/q].
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Proof. We use the same notations as that in the study by Yuan and An [8]. They proved that

E

∣
∣
∣
∣max
1≤i≤n

Si

∣
∣
∣
∣

p

≤ 22−pp
n∑

i=1

‖Xi‖pp +
(
6p
)p
(

n−1∑

i=1

q2/q(i)‖Xi‖p
)p

,

E

∣∣
∣
∣max
1≤i≤n

(−Si)
∣∣
∣
∣

p

≤ 22−pp
n∑

i=1

‖Xi‖pp +
(
6p
)p
(

n−1∑

i=1

q2/q(i)‖Xi‖p
)p

,

max
1≤i≤n

|Si|p ≤ 2p−1
∣
∣
∣∣max
1≤i≤n

Si

∣
∣
∣∣

p

+ 2p−1
∣
∣
∣∣max
1≤i≤n

(−Si)
∣
∣
∣∣

p

.

(1.4)

By (1.4) and Hölder’s inequality, we have

E

(
max
1≤i≤n

|Si|p
)

≤ 2p−1E
∣
∣∣∣max
1≤i≤n

Si

∣
∣∣∣

p

+ 2p−1E
∣
∣∣∣max
1≤i≤n

(−Si)
∣
∣∣∣

p

≤ 2p
[

22−pp
n∑

i=1

E|Xi|p +
(
6p
)p
(

n∑

i=1

q2/q(i)‖Xi‖p
)p]

≤ 2p
⎡

⎣22−pp
n∑

i=1

E|Xi|p +
(
6p
)p
(

n∑

i=1

q2(i)

)p/q n∑

i=1

E|Xi|p
⎤

⎦

≤ 2p
⎡

⎣22−pp +
(
6p
)p
( ∞∑

n=1

q2(n)

)p/q
⎤

⎦
n∑

i=1

E|Xi|p = Cp

n∑

i=1

E|Xi|p.

(1.5)

This completes the proof of the lemma.

We point out that Lemma 1.4 has been studied by Yuan and An [8]. But here we give
the accurate coefficient Cp. And Lemma 1.4 generalizes and improves the result of Lemma
2.2 in the study by Ko et al. [6].

Lemma 1.5 (cf. Fazekas and Klesov [9, Theorem 2.1] and Hu et al. [10, Lemma 1.5]). Let
{Xn, n ≥ 1} be a sequence of random variables. Let b1, b2, . . . be a nondecreasing unbounded sequence
of positive numbers, and let α1, α2, . . . be nonnegative numbers. Let r and C be fixed positive numbers.
Assume that, for each n ≥ 1,

E

(
max
1≤l≤n

|Sl|r
)

≤ C
n∑

l=1

αl, (1.6)

∞∑

l=1

αl
brl

<∞, (1.7)

then

lim
n→∞

Sn
bn

= 0 a.s., (1.8)
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and with the growth rate

Sn
bn

= O
(
βn
bn

)
a.s., (1.9)

where

βn = max
1≤k≤n

bkv
δ/r
k

, ∀0 < δ < 1, vn =
∞∑

k=n

αk
br
k

, lim
n→∞

βn
bn

= 0,

E

(
max
1≤l≤n

∣
∣
∣
∣
Sl
bl

∣
∣
∣
∣

r)
≤ 4C

n∑

l=1

αl
br
l

<∞,

E

(

sup
l≥1

∣∣∣∣
Sl
bl

∣∣∣∣

r
)

≤ 4C
∞∑

l=1

αl
brl

<∞.

(1.10)

If further one assumes that αn > 0 for infinitely many n, then

E

(

sup
l≥1

∣∣∣∣
Sl
βl

∣∣∣∣

r
)

≤ 4C
∞∑

l=1

αl
βrl

<∞. (1.11)

Lemma 1.6 (cf. Fazekas and Klesov [9, Corollary 2.1] and Hu [11, Corollary 2.1.1]).
Let b1, b2, . . . be a nondecreasing unbounded sequence of positive numbers, and let α1, α2, . . . be
nonnegative numbers. Denote Λk = α1 + α2 + · · · + αk for k ≥ 1. Let r be a fixed positive number
satisfying (1.6). If

∞∑

l=1

Λl

(
1
br
l

− 1
br
l+1

)

<∞, (1.12)

Λn

brn
is bounded, (1.13)

then (1.8)–(1.11) hold.

Lemma 1.7 (cf. Yuan and An [8, Theorem 2.1]). Let {Xn, n ≥ 1} be a sequence of AANA random
variables with EXi = 0 for all i ≥ 1 and p ∈ (3 · 2k−1, 4 · 2k−1], where integer number k ≥ 1. If∑∞

n=1 q
q/p(n) < ∞, then there exists a positive constant Dp depending only on p such that, for all

n ≥ 1,

E

(
max
1≤i≤n

|Si|p
)

≤ Dp

⎧
⎨

⎩

n∑

i=1

E|Xi|p +
(

n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭
. (1.14)
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Lemma 1.8. Assume that the inverse function ψ(x) of φ(x) satisfies

ψ(n)
n∑

i=1

1
ψ(i)

= O(n). (1.15)

If E[φ(|X|)] <∞, then
∑∞

n=1(1/ψ(n))E|X|I(|X| > ψ(n)) <∞.

Proof. Since ψ(x) is an increasing function of x, we have that

∞∑

n=1

1
ψ(n)

E|X|I(|X| > ψ(n)) =
∞∑

n=1

1
ψ(n)

∞∑

i=n

E|X|I(ψ(i) < |X| ≤ ψ(i + 1)
)

=
∞∑

i=1

E|X|I(ψ(i) < |X| ≤ ψ(i + 1)
) i∑

n=1

1
ψ(n)

≤
∞∑

i=1

P
(
ψ(i) < |X| ≤ ψ(i + 1)

)
ψ(i + 1)

i∑

n=1

1
ψ(n)

≤ C
∞∑

i=1

P
(
ψ(i) < |X| ≤ ψ(i + 1)

)
i

≤ CE[φ(|X|)] <∞.

(1.16)

The proof is complete.

2. Strong Law of Large Numbers and Growth Rate for AANA Sequence

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of mean zero AANA random variables with∑∞
n=1 q

2(n) < ∞, and let {bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers;
1 < p ≤ 2. Assume that

∞∑

n=1

E|Xn|p
b
p
n

<∞, (2.1)

then

lim
n→∞

Sn
bn

= 0 a.s., (2.2)

and with the growth rate

Sn
bn

= O
(
βn
bn

)
a.s., (2.3)
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where

βn = max
1≤k≤n

bkv
δ/2
k

, ∀0 < δ < 1, vn =
∞∑

k=n

αk

b
p

k

, lim
n→∞

βn
bn

= 0,

αk = CpE|Xk|p, k ≥ 1, Cp is defined in Lemma 1.4,

E

(
max
1≤l≤n

∣
∣
∣
∣
Sl
bl

∣
∣
∣
∣

p)
≤ 4

n∑

l=1

αl

b
p

l

<∞,

E

(

sup
l≥1

∣
∣
∣
∣
Sl
bl

∣
∣
∣
∣

p
)

≤ 4
∞∑

l=1

αl

b
p

l

<∞.

(2.4)

If further one assumes that αn > 0 for infinitely many n, then

E

(

sup
l≥1

∣∣∣∣
Sl
βl

∣∣∣∣

p
)

≤ 4
∞∑

l=1

αl

β
p

l

<∞. (2.5)

Proof. By Lemma 1.4, we have

E

(
max
1≤k≤n

|Sk|p
)

≤ Cp

n∑

k=1

E|Xk|p =
n∑

k=1

αk. (2.6)

It follows from (2.1) that

∞∑

n=1

αn

b
p
n

= Cp

∞∑

n=1

E|Xn|p
b
p
n

<∞. (2.7)

Thus, (2.2)–(2.5) follow from (2.6), (2.7), and Lemma 1.5 immediately. We complete the proof
of the theorem.

Theorem 2.2. Let {Xn, n ≥ 1} be a sequence of AANA random variables with
∑∞

n=1 q
2(n) < ∞,

1 ≤ p < 2. Denote Qn = max1≤k≤nEX2
k for n ≥ 1 and Q0 = 0. Assume that

∞∑

n=1

Qn

n2/p
<∞, (2.8)

then

lim
n→∞

1
n1/p

n∑

i=1

(Xi − EXi) = 0 a.s., (2.9)
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and with the growth rate

1
n1/p

n∑

i=1

(Xi − EXi) = O
(

βn

n1/p

)
a.s., (2.10)

where

βn = max
1≤k≤n

k1/pvδ/2
k

, ∀0 < δ < 1, vn =
∞∑

k=n

αk

k2/p
, lim

n→∞
βn

n1/p
= 0,

αk = C2(kQk − (k − 1)Qk−1), k ≥ 1, C2 is defined in Lemma 1.4,

(2.11)

E

(

max
1≤l≤n

∣
∣∣∣
Sl

l1/p

∣
∣∣∣

2
)

≤ 4
n∑

l=1

αl

l2/p
<∞, (2.12)

E

(

sup
l≥1

∣∣∣∣
Sl

l1/p

∣∣∣∣

2
)

≤ 4
∞∑

l=1

αl

l2/p
<∞. (2.13)

If further one assumes that αn > 0 for infinitely many n, then

E

(

sup
l≥1

∣∣∣∣
Sl
βl

∣∣∣∣

2
)

≤ 4
∞∑

l=1

αl

β2
l

<∞. (2.14)

In addition, for any r ∈ (0, 2),

E

(

sup
l≥1

∣∣∣∣
Sl

l1/p

∣∣∣∣

r
)

≤ 1 +
4r

2 − r
∞∑

l=1

αl

l2/p
<∞. (2.15)

Proof. Assume that EXn = 0, bn = n1/p, and Λn =
∑n

l=1 αl, n ≥ 1. By Lemma 1.4, we can see
that

E

⎛

⎝max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣

2
⎞

⎠ ≤ C2

n∑

i=1

EX2
i ≤ C2nQn =

n∑

k=1

αk. (2.16)

It is a simple fact that αk ≥ 0 for all k ≥ 1. It follows from (2.8) that

∞∑

l=1

Λl

(
1
b2
l

− 1
b2
l+1

)

= C2

∞∑

l=1

lQl

(
1
l2/p

− 1

(l + 1)2/p

)

≤ 2C2

p

∞∑

l=1

Ql

l2/p
<∞. (2.17)
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That is to say that (1.12) holds. By Remark 2.1 in Fazekas and Klesov [9], (1.12) implies (1.13).
By Lemma 1.6, we can obtain (2.9)–(2.14) immediately. By (2.13), it follows that

E

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

r
)

=
∫∞

0
P

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

r

> t

)

dt ≤ 1 +
∫∞

1
P

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣ > t

1/r

)

dt

≤ 1 + E

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

2
)∫∞

1
t−2/rdt ≤ 1 +

4r
2 − r

∞∑

l=1

αl

l2/p
<∞.

(2.18)

The proof is complete.

Theorem 2.3. Let p ∈ (3 · 2k−1, 4 · 2k−1], where integer number k ≥ 1, and let {Xn, n ≥ 1} be
a sequence of AANA random variables with EXi = 0 for all i ≥ 1 and

∑∞
n=1 q

q/p(n) < ∞. Let
{bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers. Assume that

∞∑

n=1

np/2−1

b
p
n

E|Xn|p <∞,

∞∑

k=1

E|Xk|p
∞∑

n=k+1

np/2−2

b
p
n

<∞,

(2.19)

then (1.8)–(1.11) hold (for C = 1), where

α1 = 2DpE|X1|p, αk = 2Dp

⎛

⎝kp/2−1
k∑

j=1

E
∣∣Xj

∣∣p − (k − 1)p/2−1
k−1∑

j=1

E
∣∣Xj

∣∣p
⎞

⎠, k ≥ 2, (2.20)

and Dp is defined in Lemma 1.7.

Proof. Since p > 2, 0 < 2/p < 1. By Cr ’s inequality,

(
n∑

i=1

|Xi|p
)2/p

≤
n∑

i=1

X2
i , (2.21)

which implies that

n∑

i=1

E|Xi|p ≤ E
(

n∑

i=1

X2
i

)p/2

. (2.22)

By Jensen’s inequality, we have

(
n∑

i=1

EX2
i

)p/2

≤ E
(

n∑

i=1

X2
i

)p/2

. (2.23)
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By (2.22)-(2.23) and Cr ’s inequality,

n∑

i=1

E|Xi|p +
(

n∑

i=1

EX2
i

)p/2

≤ 2E

(
n∑

i=1

X2
i

)p/2

≤ 2np/2−1
n∑

i=1

E|Xi|p. (2.24)

It follows from Lemma 1.7 and (2.24) that

E

(
max
1≤i≤n

|Si|p
)

≤ 2Dpn
p/2−1

n∑

i=1

E|Xi|p =
n∑

l=1

αl. (2.25)

It is a simple fact that

0 ≤ αk ≤ C1
(
p
)
⎛

⎝kp/2−1E|Xk|p + kp/2−2
k−1∑

j=1

E
∣∣Xj

∣∣p
⎞

⎠, (2.26)

where C1(p) is a positive number depending only on p and Dp. By (2.19),

∞∑

n=1

αn

b
p
n

≤ C1
(
p
)
( ∞∑

n=1

np/2−1

b
p
n

E|Xn|p +
∞∑

k=1

E|Xk|p
∞∑

n=k+1

np/2−2

b
p
n

)

<∞. (2.27)

The desired results follow from (2.25)–(2.27) and Lemma 1.5 immediately.

3. Complete Convergence for Weighted Sums of
AANA Random Variables

Theorem 3.1. Let {X,Xn, n ≥ 1} be a sequence of identically distributed AANA random variables
with

∑∞
n=1 q

2(n) < ∞, EX = 0, EX2 < ∞, and E[φ(|X|)] < ∞. Assume that the inverse function
ψ(x) of φ(x) satisfies (1.15). Let {ani, n ≥ 1, i ≥ 1} be a triangular array of positive constants such
that

(i) max1≤i≤nani = O(1/ψ(n)),
(ii)

∑n
i=1 a

2
ni = O(log−1−αn) for some α > 0.

Then, for any ε > 0,

∞∑

n=1

n−1P

(

max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXi

∣∣∣∣∣
> ε

)

<∞. (3.1)
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Proof. For each n ≥ 1, denote

X
(n)
j = −ψ(n)I(Xj < −ψ(n)) +XjI

(∣∣Xj

∣
∣ ≤ ψ(n)) + ψ(n)I(Xj > ψ(n)

)
, 1 ≤ j ≤ n,

T
(n)
j =

j∑

i=1

(
aniX

(n)
i − EaniX(n)

i

)
, 1 ≤ j ≤ n,

A =
n⋂

i=1

(
Xi = X

(n)
i

)
=

n⋂

i=1

(|Xi| ≤ ψ(n)
)
, B = A =

n⋃

i=1

(
Xi /=X

(n)
i

)
=

n⋃

i=1

(|Xi| > ψ(n)
)
,

En =

(

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

aniXi

∣
∣
∣
∣
∣
> ε

)

.

(3.2)

It is easy to check that

j∑

i=1

aniXi = T
(n)
j +

j∑

i=1

EaniX
(n)
i +

j∑

i=1

aniXiI
(|Xi| > ψ(n)

)

+
j∑

i=1

aniψ(n)
[
I
(
Xj < −ψ(n)) − I(Xj > ψ(n)

)]
,

En = EnA + EnB =

(

max
1≤j≤n

∣∣∣∣∣
T
(n)
j +

j∑

i=1

EaniX
(n)
i

∣∣∣∣∣
> ε

)

+ EnB

⊂
(

max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε −max
1≤j≤n

∣∣∣∣∣

j∑

i=1

EaniX
(n)
i

∣∣∣∣∣

)

+ B.

(3.3)

Therefore,

P(En) ≤ P
(

max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε −max
1≤j≤n

∣∣∣∣∣

j∑

i=1

EaniX
(n)
i

∣∣∣∣∣

)

+ P(B)

≤ P
(

max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ > ε −max
1≤j≤n

∣∣∣∣∣

j∑

i=1

EaniX
(n)
i

∣∣∣∣∣

)

+
n∑

i=1

P
(|Xi| > ψ(n)

)
.

(3.4)

Firstly, we will show that

max
1≤j≤n

∣∣∣∣∣

j∑

i=1

EaniX
(n)
i

∣∣∣∣∣
−→ 0, as n −→ ∞. (3.5)
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It follows from Lemma 1.8 and Kronecker’s lemma that

1
ψ(n)

n∑

i=1

E|X|I(|X| > ψ(i)) −→ 0, as n −→ ∞. (3.6)

By EX = 0, condition (i), (3.6), and ψ(n) ↑ ∞, we can see that

max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

EaniX
(n)
i

∣
∣
∣
∣
∣
≤

n∑

i=1

∣
∣EaniXiI

(|Xi| ≤ ψ(n)
)∣∣ +

n∑

i=1

aniψ(n)EI
(|Xi| > ψ(n)

)

≤
n∑

i=1

aniE|Xi|I
(|Xi| > ψ(n)

)
+

n∑

i=1

aniE|Xi|I
(|Xi| > ψ(n)

)

≤ C

ψ(n)

n∑

i=1

E|X|I(|X| > ψ(i)) −→ 0, as n −→ ∞,

(3.7)

which implies (3.5). By (3.4) and (3.5), we can see that, for sufficiently large n,

P

(

max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXi

∣∣∣∣∣
> ε

)

≤ P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ >
ε

2

)
+

n∑

i=1

P
(|Xi| > ψ(n)

)
. (3.8)

To prove (3.1), it suffices to show that

∞∑

n=1

n−1P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ >
ε

2

)
<∞,

∞∑

n=1

n−1
n∑

i=1

P
(|Xi| > ψ(n)

)
<∞.

(3.9)

By Markov’s inequality, Lemma 1.4, Cr inequality, EX2 <∞, and condition (ii), we have

∞∑

n=1

n−1P
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣ >
ε

2

)

≤ C
∞∑

n=1

n−1E
(
max
1≤j≤n

∣∣∣T (n)
j

∣∣∣
2
)

≤ C
∞∑

n=1

n−1
n∑

i=1

E
∣∣∣aniX

(n)
i

∣∣∣
2

≤ C
∞∑

n=1

n−1
n∑

i=1

a2niEX
2I
(|X| ≤ ψ(n)) + C

∞∑

n=1

n−1
n∑

i=1

a2niψ
2(n)EI

(|X| > ψ(n))

≤ C
∞∑

n=1

n−1
n∑

i=1

a2niEX
2I
(|X| ≤ ψ(n)) + C

∞∑

n=1

n−1
n∑

i=1

a2niEX
2I
(|X| > ψ(n))

≤ C
∞∑

n=1

n−1
n∑

i=1

a2ni ≤ C
∞∑

n=1

n−1log−1−αn <∞.

(3.10)
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It follows from E[φ(|X|)] <∞ that

∞∑

n=1

n−1
n∑

i=1

P
(|Xi| > ψ(n)

)
=

∞∑

n=1

P
(|X| > ψ(n)) =

∞∑

n=1

P
(
φ(|X|) > n)

≤ CE[φ(|X|)] <∞.

(3.11)

Theorem 3.2. Let {Xn, n ≥ 1} be a sequence of AANA random variables, and let {ani, n ≥ 1, i ≥ 1}
be an array of positive numbers. Let {bn, n ≥ 1} be an increasing sequence of positive integers, and
let {cn, n ≥ 1} be a sequence of positive numbers. If, for some p ∈ (3 · 2k−1, 4 · 2k−1], where integer
number k ≥ 1, 0 < t < 2, and for any ε > 0, the following conditions are satisfied:

∞∑

n=1

cn

bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
<∞,

∞∑

n=1

cnb
−p/t
n

bn∑

i=1

|ani|pE|Xi|pI
(
|aniXi| < εb1/tn

)
<∞,

∞∑

n=1

cnb
−p/t
n

[
bn∑

i=1

a2niEX
2
i I
(
|aniXi| < εb1/tn

)]p/2

<∞,

(3.12)

and
∑∞

n=1 q
q/p(n) <∞, then

∞∑

n=1

cnP

⎧
⎨

⎩
max
1≤i≤bn

∣∣∣∣∣∣

i∑

j=1

[
anjXj − anjEXjI

(∣∣anjXj

∣∣ < εb1/tn

)]
∣∣∣∣∣∣
≥ εb1/tn

⎫
⎬

⎭
<∞. (3.13)

Proof. Note that if the series
∑∞

n=1 cn is convergent, then (3.13) holds. Therefore, we will
consider only such sequences {cn, n ≥ 1} for which the series

∑∞
n=1 cn is divergent.

Let

Y
(n)
i = −εb1/tn I

(
aniXi < −εb1/tn

)
+ aniXiI

(
|aniXi| < εb1/tn

)
+ εb1/tn I

(
aniXi > εb

1/t
n

)
,

S′
ni =

i∑

j=1

Y
(n)
j , n ≥ 1, i ≥ 1.

(3.14)

Note that

P

⎧
⎨

⎩
max
1≤i≤bn

∣∣∣∣∣∣

i∑

j=1

[
anjXnj − anjEXjI

(∣∣anjXj

∣∣ < εb1/tn

)]
∣∣∣∣∣∣
≥ εb1/tn

⎫
⎬

⎭

≤ C
bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
+ 2pε−pb−p/tn E

(
max
1≤i≤bn

|S′
ni − ES′

ni|
)p

.

(3.15)
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Using the Cr inequality and Jensen’s inequality, we can estimate E|Y (n)
i − EY (n)

i |p in the
following way:

E
∣
∣
∣Y (n)

i − EY (n)
i

∣
∣
∣
p ≤ C|ani|pE|Xi|pI

(
|aniXi| < εb1/tn

)
+ Cbp/tn P

(
|aniXi| ≥ εb1/tn

)
. (3.16)

By (3.15), (3.16), and Lemma 1.7, we can get

P

⎧
⎨

⎩
max
1≤i≤bn

∣
∣∣∣∣∣

i∑

j=1

[
anjXj − anjEXjI

(∣∣anjXj

∣∣ < εb1/tn

)]
∣
∣∣∣∣∣
≥ εb1/tn

⎫
⎬

⎭

≤ C
bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
+ Cb−p/tn

bn∑

i=1

|ani|pE|Xi|pI
(
|aniXi| < εb1/tn

)

+ Cb−p/tn

[
bn∑

i=1

a2niEX
2
i I
(
|aniXi| < εb1/tn

)]p/2

.

(3.17)

Therefore, we can conclude that (3.13) holds by (3.12) and (3.17).

Theorem 3.3. Let 1 ≤ r ≤ 2 and let {Xn, n ≥ 1} be a sequence of AANA random variables with
EXn = 0 and E|Xn|r < ∞ for n ≥ 1. Let {ani, n ≥ 1, i ≥ 1} be an array of real numbers satisfying the
condition

n∑

i=1

|ani|rE|Xi|r = O
(
nδ
)

as n −→ ∞ (3.18)

and
∑∞

n=1 q
q/p(n) <∞ for some 0 < δ ≤ 2/p and p ∈ (3 · 2k−1, 4 · 2k−1], where integer number k ≥ 1.

Then, for any ε > 0 and αr ≥ 1,

∞∑

n=1

nαr−2P

⎛

⎝max
1≤i≤n

∣∣∣∣∣∣

i∑

j=1

anjXj

∣∣∣∣∣∣
≥ εnα

⎞

⎠ <∞. (3.19)
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Proof. Take cn = nαr−2, bn = n, and 1/t = α in Theorem 3.2. By (3.18), we have

∞∑

n=1

cn

bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
≤ C

∞∑

n=1

nαr−2
n∑

i=1

|ani|rE|Xi|r
nαr

≤ C
∞∑

n=1

n−2+δ <∞,

∞∑

n=1

cnb
−p/t
n

bn∑

i=1

|ani|pE|Xi|pI
(
|aniXi| < εb1/tn

)
≤

∞∑

n=1

n−2
n∑

i=1

|ani|rE|Xi|r ≤ C
∞∑

n=1

n−2+δ <∞,

∞∑

n=1

cnb
−p/t
n

[
bn∑

i=1

a2niEX
2
i I
(
|aniXi| < εb1/tn

)]p/2

≤ C
∞∑

n=1

nαr−2−(αrp/2)
(

n∑

i=1

|ani|rE|Xi|r
)p/2

≤ C
∞∑

n=1

nαr−2−(αrp/2)+(δp/2) ≤ C
∞∑

n=1

nαr(1−p/2)−1 <∞

(3.20)

following from δp/2 ≤ 1. By the assumption EXn = 0 for n ≥ 1 and (3.18), we get

1
nα

max
1≤i≤n

∣∣∣∣∣∣

i∑

j=1

anjEXjI
(∣∣anjXj

∣∣ < εnα
)
∣∣∣∣∣∣

≤ 1
nα

n∑

j=1

∣∣anjEXjI
(∣∣anjXj

∣∣ < εnα
)∣∣ =

1
nα

n∑

j=1

∣∣anjEXjI
(∣∣anjXj

∣∣ ≥ εnα)∣∣

≤ 1
nαr

n∑

j=1

∣∣anj
∣∣rE

∣∣Xj

∣∣r ≤ Cnδ−αr −→ 0, as n −→ ∞

(3.21)

following from δ < 1 and αr ≥ 1. We get the desired result from Theorem 3.2 immediately.
The proof is complete.

Theorem 3.4. Let {Xn, n ≥ 1} be a sequence of AANA random variables satisfying
∑∞

n=1 q
2(n) <∞,

and let {ani, n ≥ 1, i ≥ 1} be an array of positive numbers. Let {bn, n ≥ 1} be an increasing sequence
of positive integers, and let {cn, n ≥ 1} be a sequence of positive numbers. If, for some 1 < p ≤ 2,
0 < t < 2, and for any ε > 0, the following conditions are satisfied:

∞∑

n=1

cn

bn∑

i=1

P
(
|aniXi| ≥ εb1/tn

)
<∞,

∞∑

n=1

cnb
−p/t
n

bn∑

i=1

|ani|pE|Xi|pI
(
|aniXi| < εb1/tn

)
<∞,

(3.22)

then

∞∑

n=1

cnP

⎧
⎨

⎩
max
1≤i≤bn

∣∣∣∣∣∣

i∑

j=1

[
anjXj − anjEXjI

(∣∣anjXj

∣∣ < εb1/tn

)]
∣∣∣∣∣∣
≥ εb1/tn

⎫
⎬

⎭
<∞. (3.23)

Proof. The proof is similar to that of Theorem 3.2, so we omit it.
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