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We discuss the strictly decreasing solutions of a class of iterative equations on the unit circle T
1.

The conditions for the existence, uniqueness, and stability of such solutions are presented.

1. Introduction

Let C0(X,X) be the set of all continuous self-mappings on a topological space X. Let f ∈
C0(X,X). For integer n ≥ 0, define the nth iterate of f by fn = f ◦ fn−1 and f0 = id, where id
denotes the identity mapping on X and ◦ denotes the composition of mappings. An equation
with iteration as its main operation is simply called an iterative equation. Founded on the
problem of iterative roots, the problem of invariant curves and some problems originating
from dynamical systems, and the iterative equation

Φ
(
f(x), f2(x), . . . , fn(x)

)
= F(x), x ∈ X, (1.1)

where F and Φ are given functions and f is the unknown function, have been investigated
extensively [1, 2].

Let T
1 = {z ∈ C : z = e2πit, t ∈ R} denote the unit circle and C0(T1,T1) denote the set

of all continuous maps from T
1 to itself. Let 1 denote the point (1, 0) in the complex plane C

so as to distinguish it from 1 ∈ R. The iteration on the unit circle T
1 is also important. Many

scholars had got a lot of results on iterative roots and iteration groups, such as [3–7]. In 2007,
Zdun and Zhang [8] discussed the solutions of (1.1) on T

1, that is, the equation

Φ
(
f(z), f2(z), . . . , fn(z)

)
= F(z), z ∈ T

1, (1.2)
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in the class of homeomorphisms

H0
1

(
T
1,T1

)
=
{
f ∈ C0

(
T
1,T1

)
: f
(
T
1
)
= T

1 homeomorphically and f(1) = 1
}
. (1.3)

In [8], the authors lift F from the circle T
1 to R and Φ from the n-dimensional torus T

n to
R

n. They apply ingenious techniques of restricting and extending to these lifts so that the
problem can be reduced and discussed on the compact interval [0, 1]. However, they only
discussed the strictly increasing solutions of (1.2). In this paper, we will discuss the strictly
decreasing solutions of a special form of (1.2), that is, the following equation:

Φ
(
f(z), f3(z), . . . , f2n−1(z)

)
= F(z), z ∈ T

1. (1.4)

2. Basic Definitions and Lemmas

As in [8], let h : t ∈ R �→ e2πit ∈ T
1. If v,w, z ∈ T

1, there exist unique t1, t2 ∈ [0, 1) such that
wh(t1) = z and wh(t2) = v. The cyclic order on T

1 is defined in [9], that is,

v ≺ w ≺ z ⇐⇒ 0 < t1 < t2, (2.1)

v 
 w 
 z ⇐⇒ t1 ≤ t2 or t2 = 0. (2.2)

Obviously, the relations v ≺ w ≺ z, w ≺ z ≺ v and z ≺ v ≺ w are equivalent.
Considering a nonempty subset A ⊆ T

1, a map f : A → T
1 is called to be increasing

(strictly increasing) if f(v) 
 f(w) 
 f(z) (f(v) ≺ f(w) ≺ f(z), resp.) for all v,w, z ∈ A
with v ≺ w ≺ z. Similarly, a map f : A → T

1 is called to be decreasing (strictly decreasing)
if f(z) 
 f(w) 
 f(v) (f(z) ≺ f(w) ≺ f(v), resp.) for all v,w, z ∈ A with v ≺ w ≺ z. A
homeomorphism h : T

1 → T
1 is said to be orientation preserving (orientation reversing) if it

is strictly increasing (strictly decreasing, resp.).
If v, z ∈ T

1 with v /= z, there exist tv, tz ∈ R with tv < tz < tv + 1 and h(tv) = v, h(tz) = z.
Define the oriented arc

−−−−−→
(v, z) = {w = h(t) : t ∈ (tv, tz)}. (2.3)

Obviously, the map f is strictly increasing (strictly decreasing) if w ∈ −−−−−→
(v, z) yields f(w) ∈−−−−−−−−−−−−→

(f(v), f(z)) (f(w) ∈ −−−−−−−−−−−−→
(f(z), f(v)), resp.).

2.1. The Lifts of Maps on T
1

Let f ∈ C0(T1,T1). A continuous map f̃ : R → R is said to be a lift of f if

h ◦ f̃ = f ◦ h. (2.4)

The following properties are well known.
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Lemma 2.1 (see [10]). (i) Each f ∈ C0(T1,T1) has a lift f̃ . (ii) There exists a constant k ∈ Z such
that each lift f̃ of f satisfies f̃(t+1)− f̃(t) = k, for all t ∈ R. The constant k is said to be the degree of
f and denoted by deg(f), that is, deg(f) = f̃(t+ 1)− f̃(t), for all t ∈ R. (iii) For f, g ∈ C0(T1,T1)
and id : T

1 → T
1, one has deg(g ◦ f) = deg(g) · deg(f) and deg(id) = 1. If f ∈ C0(T1,T1) is a

homeomorphism, then |deg(f)| = 1. (iv) If f̃ is a lift of f , then for each j ∈ Z, the map f̃ + j is a lift
of f and every lift of f can be expressed in this form, where Z denotes the set of integers.

Lemma 2.2 (see [10]). (i) If g : [0, 1] → R is a continuous map such that g(1)− g(0) is an integer
k, then g can be extended to a map g̃ : R → R with

g̃(t + 1) − g̃(t) = k, ∀t ∈ R. (2.5)

(ii) Suppose f̃ : R → R is continuous, k is an integer, and f̃(t + 1) − f̃(t) = k, for all t ∈ R.

Then there exists a unique f ∈ C0(T1,T1) such that f̃ is a lift of f .

A map f ∈ C0(T1,T1) is said to be Lipschitzian if there exists a lift f̃ of f satisfying

∣∣∣f̃(t1) − f̃(t2)
∣∣∣ ≤ M|t1 − t2|, ∀t1, t2 ∈ R (2.6)

for a constant M > 0. By (iv) of Lemma 2.1, the constant M is independent of the
choice of f̃ , and M is said to be a Lipschitzian constant of f.

In the sequel one will discuss the strictly increasing (strictly decreasing) maps f ∈
C0(T1,T1) by means of their lifts.

Lemma 2.3. A lift f̃ of f ∈ C0(T1,T1) is strictly monotonic (monotonic) if and only if there exists a
t0 ∈ R such that f̃ |[t0,t0+1) is strictly monotonic (monotonic).

The proof is trivial. So we omit it.

Lemma 2.4 (see [11]). A map f ∈ C0(T1,T1) is strictly increasing (strictly decreasing) if and only
if deg(f) = 1 (deg(f) = −1) and its lift f̃ is strictly increasing (strictly decreasing) in R.

Thus we get the following theorem.

Theorem 2.5. A map f ∈ C0(T1,T1) is strictly increasing (strictly decreasing) if and only if it is an
orientation-preserving (orientation-reversing) homeomorphism.

Proof. We only need to show that f has an inverse mapping. Let f̃ be the lift of f . The map
f−1 = h ◦ f̃−1 is the inverse mapping, where f̃−1 is the inverse function of f̃ .

2.2. Induced Maps of Maps on T
1

Firstly, we define

H0
1

(
T
1, k
)
=
{
f | f ∈ H0

1

(
T
1,T1

)
,deg

(
f
)
= k
}
, (2.7)
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where k = 1 or −1. Let h∗ := h|(0,1); the map h∗ is a homeomorphism from (0, 1) to T
1 \ {1}.

For f ∈ H0
1(T

1,−1), define f̃∗ := h−1
∗ ◦ f ◦ h∗ which is a self-map on (0, 1). We extend f̃∗ to the

compact interval I = [0, 1]. Let

G(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, t = 0,

f̃∗(t), t ∈ (0, 1),

0, t = 1.

(2.8)

For convenience, we call G the induced map of f , which is a self-map on [0, 1].

Lemma 2.6. The induced map G of an orientation-reversing homeomorphism f ∈ H0
1(T

1,−1) is
continuous and strictly decreasing on I. It can be extended to a lift f̃ of f . This lift satisfies f̃(0) =
1, f̃(1) = 0 and is unique on this property.

Proof. Obviously,G is continuous on the interval (0, 1). We only need to prove limt→ 0+G(t) = 1
and limt→ 1−G(t) = 0.

Concerning the continuity at 0, we note that

lim
t→ 0+

G(t) = lim
t→ 0+

h−1
∗ ◦ f ◦ h∗(t) = lim

t→ 0+
h−1
∗ ◦ f

(
e2πit

)
. (2.9)

By the continuity of f at 1,we have limt→ 0+f(e2πit) = 1. Let F̃ be any lift of f . By h ◦ F̃ = f ◦h,
we must have F̃(0) = k0 ∈ Z, where Z denotes the set of integers. By (iv) of Lemma 2.1, let F̃
be a lift of f with F̃(0) = 1. Since f ◦ h∗(t) = h∗ ◦ F̃(t), t ∈ (0, 1), we have

lim
t→ 0+

h−1
∗ ◦ f ◦ h∗(t) = lim

t→ 0+
F̃(t) = 1. (2.10)

We can easily verify limt→ 1−G(t) = 0 in the same way. Note that G is strictly decreasing on
(0, 1), so G is strictly decreasing on [0, 1].

Let t ∈ R, and k is the integer with t ∈ [k, k + 1). Define f̃ := G(t − k) + k. We can
easily get that f ◦ h = h ◦ f̃ . Suppose that g̃ is another lift of f which maps [0, 1] into itself
and g̃(0) = 1, g̃(1) = 0. By (iv) of Lemma 2.1, we have f̃ = g̃ + j for some integer j. Obviously,
j = f̃(0) − g̃(0) = 0. Then f̃ = g̃.

The following lemma is a converse of Lemma 2.6.

Lemma 2.7. Suppose that G ∈ C0(I, I) is strictly decreasing and satisfies G(0) = 1, G(1) = 0. Then
the map

f :=

⎧
⎨
⎩
h∗ ◦G ◦ h−1

∗ (z), z ∈ T
1 \ {1},

1, z = 1.
(2.11)

belongs to the classH0
1(T

1,−1). Moreover, G can be extended to a lift of f .
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Proof. Clearly, f(1) = 1, and f |
T1\{1} is an orientation-reversing homeomorphism of T

1 \ {1}.
Then f is orientation reversing on the whole T

1. We only need to show the continuity of f at
1. Let z → 1+ (z → 1−) denote z approaches to 1 in clockwise (counter-clockwise) direction.
Note that

lim
z→ 1+

f(z) = lim
t→ 0+

h∗ ◦G ◦ h−1
∗
(
e2πit

)
= lim

t→ 0+
h∗ ◦G(t) = 1. (2.12)

By the same argument, we have limz→ 1−f(z) = 1.
Given t ∈ R and integer k with t ∈ [k, k + 1), define

f̃(t) = G(t − k) + k. (2.13)

One can easily show that f ◦ h = h ◦ f̃ .

2.3. Induced Maps of Maps on T
n

For simplicity, let

T
n =

n︷ ︸︸ ︷
T
1 × · · · × T

1,

1n =

⎛
⎝

n︷ ︸︸ ︷
1, . . . , 1

⎞
⎠.

(2.14)

For f ∈ H0
1(T

1,−1), define

Hf(z) :=
(
f(z), f3(z), . . . , f2n−1(z)

)
. (2.15)

Then (1.4) can be written as

Φ ◦Hf(z) = F(z), z ∈ T
1. (2.16)

As in [8], we also have the following two remarks.

Remark 2.8. Hf maps T
1 into (T1 \ 1)n ∪ {1n}.

Remark 2.9. Let Rang(Φ) denote the range of Φ. If F ∈ H0
1(T

1,−1) and (1.4) has a solution
f ∈ H0

1(T
1,−1) on F, then RangΦ = T

1 and Φ(1n) = 1.

Let Dom(Φ) denote the domain of Φ. As in [8], Dom(Φ) is very important for (1.4).
Now, we discuss the relationship of Dom(Φ) and (1.4). The first case is that the domain of Φ
is T

n.
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2.3.1. The Case: Dom(Φ) = T
n

The following important and interesting lemma is proved in [8].

Lemma 2.10 (see [8]). If Φ : T
n → T

1 is continuous and Φ(1n) = 1, then there exists a unique
continuous function Φ̃ : R

n → R such that

Φ(h(t1), . . . , h(tn)) = e2πiΦ̃(t1,...,tn), Φ̃(0, . . . , 0) = 0. (2.17)

Moreover, for each k ∈ {1, . . . ,n}, there exists an mk ∈ Z such that

Φ̃(t1, . . . , tk + 1, . . . , tn) = Φ̃(t1, . . . , tk, . . . , tn) +mk, ∀t1, . . . , tk ∈ R. (2.18)

The map Φ̃ is said to be the lift of Φ, and (m1, . . . , mn) is defined to be the degree of Φ
and is denoted by deg(Φ).

Lemma 2.11. Let F̃ be the lift of F with F̃(1) = 0, and let Φ̃ be the lift of Φ with Φ̃(0, . . . , 0) = 0. Let
f ∈ H0

1(T
1,−1) be a solution of (1.4), and let f̃ be a lift of f with f̃(1) = 0. Then (1.4) is equivalent

to

Φ̃
(
f̃(t), f̃3(t), . . . , f̃2n−1(t)

)
= F̃(t), t ∈ I. (2.19)

Proof. Note that fj(h(t)) = h(f̃ j(t)) for all t ∈ R. For z = e2πit, t ∈ I and (1.4) is equivalent to

Φ
(
e2πif̃(t), e2πif̃

3(t), . . . , e2πif̃
2n−1(t)

)
= e2πiF̃(t). (2.20)

By Lemma 2.10, e2πiΦ̃(f̃(t),f̃3(t),...,f̃2n−1(t)) = e2πiF̃(t). This means that for each t ∈ I, we have

Φ̃
(
f̃(t), f̃3(t), . . . , f̃2n−1(t)

)
= F̃(t) + k(t), (2.21)

where k(t) ∈ Z. Since f̃(1) = 0, F̃(1) = 0, and Φ̃(0, . . . , 0) = 0, we get k(t) = 0. By the
continuity of f̃ , F̃, and Φ̃, we get that k(t) ≡ 0.

Theorem 2.12. Suppose that Φ is continuous, Φ(1n) = 1, F is continuous, F(1) = 1, and (1.4) has
a solution f ∈ H0

1(T
1,−1). Let deg(Φ) = (m1, . . . , mn). Then deg(F) = −(m1 + · · · +mn).

Proof. Let F̃ be the lift of F with F̃(1) = 0, and let Φ̃ be the lift of Φ with Φ̃(0, . . . , 0) = 0. Let
f ∈ H0

1(T
1,−1) be the solution of (1.4), and let f̃ be its lift with f̃(1) = 0. Note that

f̃(t + 1) = f̃(t) − 1, t ∈ R. (2.22)

Let H̃(t) = (f̃(t), f̃3(t), . . . , f̃2n−1(t)). Since deg(Φ) = (m1, . . . , mn), then by (2.18), we have

Φ̃(−1, . . . ,−1) = Φ̃(0, . . . , 0) −m1 − · · · −mn. (2.23)
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Thus, we get that

F̃(t + 1) = φ̃
(
H̃(t + 1)

)
= Φ̃
(
H̃(t) + (−1, . . . ,−1)

)

= Φ̃
(
H̃(t)

)
−m1 − · · · −mn

= F̃(t) −m1 − · · · −mn.

(2.24)

Definition 2.13. Suppose Φ : T
n → T

1 is continuous. Let 1 ≤ i ≤ n, and let w1, . . . , wi−1,
wi+1, . . . , wn ∈ C be fixed.

(1) One says Φ is increasing with respect to the ith variable if the map

Φ(w1, . . . , wi−1, zi, wi+1, . . . , wn) (2.25)

is increasing.

(2) One says Φ is constant with respect to the ith variable if there is a z0 ∈ T
1 such that

the map

Φ(w1, . . . , wi−1, zi, wi+1, . . . , wn) ≡ z0. (2.26)

Corollary 2.14. Let F ∈ H0
1(T

1,−1), and Φ is continuous with Φ(1n) = 1. If Φ is increasing with
respect to each variable and Φ is nonconstant in at least two variables, then (1.4) has no solutions in
H0

1(T
1,−1).

Proof. Let deg(Φ) = (m1, . . . , mn). Hence, by Lemma 2.3, we have m1 ≥ 0, . . . , mn ≥ 0 and
mk = 0 if and only if Φ is constant with respect to the kth variable. If (1.4) has a solution
f in H0

1(T
1,−1), then by Theorem 2.12, we get that deg(F) = −(m1 + · · · + mn) ≤ −2. This a

contradiction.

From the discussion above, we know that deg(F) and deg(Φ) are interrelated. This is
too severe for (1.4). So as in [8], by Remark 2.8, it is also natural to suppose that Dom(Φ) =
(T1 \ 1)n ∪ {1n}.

2.3.2. The Case Dom(Φ) = (T1 \ 1)n ∪ {1n}
The following assumptions (H1) and (A) are cited from [8].

(H1) Φ : (T1 \ {1})n ∪ {1n} → T
1 is continuous, Φ((T1 \ {1})n) = T

1 \ {1}.
(A) There exists a constant δ > 0 such that for 0 < tk < δ, k = 1, . . . , n, we have

Φ(h∗(t1), . . . , h∗(tn)) ∈ −−−−→
(1, i), and for 1 − δ < tk < 1, k = 1, . . . , n, we have

Φ(h∗(t1), . . . , h∗(tn)) ∈
−−−−−→
(−i, 1).
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Under assumptions (H1) and (A), as in [8], define

Ψ(t1, . . . , tn) := h−1
∗ (Φ(h∗(t1), . . . , h∗(tn))), tj ∈ (0, 1), j = 1, . . . , n,

Ψ(0, . . . , 0) = 0, Ψ(1, . . . , 1) = 1.
(2.27)

The function Ψ defined on (0, 1)n ∪ {(0, . . . , 0), (1, . . . , 1)} is said to be the induced map of Φ.
Let us note that

lim
tj → 0, j=1,...,n

Ψ(t1, . . . , tn) = 0, lim
tj → 1, j=1,...,n

Ψ(t1, . . . , tn) = 1. (2.28)

Lemma 2.15 (see [8]). Under assumptions (H1) and (A), the induced map Ψ of Φ is continuous.

Lemma 2.16. Let F̃ be the lift of F with F̃(1) = 0, and let Ψ be the induced map of Φ. Let f ∈
H0

1(T
1,−1) be a solution of (1.4), and let f̃ be a lift of f with f̃(1) = 0. Then (1.4) is equivalent to

Ψ
(
f̃(t), f̃3(t), . . . , f̃2n−1(t)

)
= F̃(t), t ∈ I. (2.29)

Lemma 2.16 can be proved by means of the method which is used to prove
Lemma 2.11.

As in [8], we also need the following assumption.

(H2) [8] There are nonnegative real constants αj , βj , j = 1, . . . , n with β1 ≥ α1 > 0, βj ≥
αj ≥ 0, j = 2, . . . , n, such that

n∑
j=1

αj

(
tj − sj

) ≤ Ψ(t1, . . . , tn) −Ψ(s1, . . . , sn) ≤
n∑
j=1

βj
(
tj − sj

)
(2.30)

for all tj ≥ sj in (0, 1), j = 1, . . . , n.

Lemma 2.17 (see [8]). If Ψ is differentiable in (0, 1)n with respect to each variable and for every k
there exist αk, βk such that α1 > 0, 0 ≤ αk ≤ ∂Ψ/∂tk ≤ βk, then Ψ satisfies (H2).

3. Existence of Strictly Decreasing Solutions

Let C0(I) denote the set of all continuous maps on I = [0, 1]. It is well known that C0(I)
equipped with the supremum norm ‖g‖ = sup{|g(t)| : t ∈ I} is a Banach space. Let C0(I, I)
denote the set of all continuous self-mappings on I; C0(I, I) is a compact closed subset of
C0(I).

The following lemma is useful in the proof of Theorem 3.2.
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Lemma 3.1 (see [12]). Let i = 1, 2, and suppose that gi is a self-homeomorphism of I such that
|gi(x) − gi(y)| ≤ N|x − y| for all x, y ∈ I, whereN > 0 is a constant. Then

(i) ‖gn
1 − gn

2 ‖ ≤ (
n−1∑
i=0

Ni)‖g1 − g2‖ for all n ∈ Z;

(ii) ‖g1 − g2‖ ≤ N‖g−1
1 − g−1

2 ‖.

For 0 ≤ l ≤ L, define

F(I, l, L) =
{
g ∈ C0(I, I) | g(0) = 0, g(1) = 1, l(t − s) ≤ g(t) − g(s) ≤ L(t − s), ∀s ≤ t ∈ I

}
,

F′(I, l, L) =
{
g ∈ C0(I, I) | g(0) = 1, g(1) = 0, l(t − s) ≤ g(s) − g(t) ≤ L(t − s), ∀s ≤ t ∈ I

}
.

(3.1)

Both F(I, l, L) and F′(I, l, L) are compact convex subsets of C0(I) [1, 13].

Theorem 3.2. Suppose (H1), (H2) hold and F ∈ H0
1(T

1,−1) with a Lipschitz constant M > α1.
Equation (1.4) has a solution f ∈ H0

1(T
1,−1) with a Lipschitz constant M/α1.

Proof. LetG andΨ be the induced maps of F andΦ defined in Section 2. By Lemma 2.16 (1.4)
is equivalent to the following equation:

Ψ
(
g(t), g3(t), . . . , g2n−1(t)

)
= G(t), t ∈ I. (3.2)

By Lemma 2.3, the map G ∈ C0(I) is strictly decreasing G(0) = 1, and G(1) = 0. The map G
can be extended to a lift of F, and

|G(t1) −G(t2)| ≤ M|t1 − t2|, ∀t1, t2 ∈ I. (3.3)

Let M0 =
∑n

j=1 βj(α
−1
1 M)2j−2. Note that F′(I, 0, α−1

1 M)/=φ, since M > α1. Define an
operator

L : F′
(
I, 0, α−1

1 M
)
−→ C0(I) (3.4)
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by g �→ Lg , where

Lg(t) = Ψ
(
t, g2(t), . . . , g2n−2(t)

)
, t ∈ I. (3.5)

By (H2), we have for any t ≥ s ∈ I,

Lg(t) − Lg(s) = Ψ
(
t, g2(t), . . . , g2n−2(t)

)
−Ψ
(
s, g2(s), . . . , g2n−2(s)

)

≥ α1(t − s) +
n∑
j=2

αj

(
g2j−2(t) − g2j−2(s)

)

≥ α1(t − s),

Lg(t) − Lg(s) = Ψ
(
t, g2(t), . . . , g2n−2(t)

)
−Ψ
(
s, g2(s), . . . , g2n−2(s)

)

≤ β1(t − s) +
n∑
j=2

βj
(
g2j−2(t) − g2j−2(s)

)

≤ M0(t − s).

(3.6)

Hence, Lg is increasing, Lg(0) = 0, Lg(1) = 1, and Lg ∈ F(I, α1,M0). Thus L−1
g ∈ F(I,M−1

0 ,

α−1
1 ).

Define T : F′(I, 0, α−1
1 M) → C0(I) by

T
(
g
)
= L−1

g ◦G, (3.7)

where Lg is defined in (3.5) and G is the induced map of F. For convenience, denote T(g) =
Tg. Then, we have Tg(0) = 1,Tg(1) = 0. Since L−1

g is increasing, we have that for all s, t ∈ I
with t ≥ s,

0 ≤ Tg(s) − Tg(t) = L−1
g ◦G(s) − L−1

g ◦G(t)

≤ α−1
1 (G(s) −G(t)) ≤ α−1

1 M(t − s).
(3.8)

Hence, T(g) ∈ F′(I, 0, α−1
1 M).
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Furthermore, for any g1, g2 ∈ F′(I, 0, α−1
1 M), we have

∥∥Tg1 − Tg2

∥∥ =
∥∥∥L−1

g1 ◦G − L−1
g2 ◦G

∥∥∥

=
∥∥∥L−1

g1 − L−1
g2

∥∥∥

≤ α−1
1

∥∥Lg1 − Lg2

∥∥,

∥∥Lg1 − Lg2

∥∥ ≤ sup
t∈I

∣∣∣Ψ
(
t, g2

1(t), . . . , g
2n−2
1 (t)

)
−Ψ
(
t, g2

2(t), . . . , g
2n−2
2 (t)

)∣∣∣

≤
n∑
j=2

βj
∥∥∥g2j−2

1 − g
2j−2
2

∥∥∥

≤
n∑
j=2

βj

2j−2∑
i=1

(
α−1
1 M

)i−1∥∥g1 − g2
∥∥,

(3.9)

where Lemma 3.1 and (H2) are applied. Finally we get that

∥∥Tg1 − Tg2

∥∥ ≤
n∑
j=2

βj

2j−2∑
i=1

α−i
1 M

i−1∥∥g1 − g2
∥∥. (3.10)

Hence T maps F′(I, 0, α−1
1 M) continuously into itself. By Schauder’s fixed point theorem, T

has a fixed g ∈ F′(I, 0, α−1
1 M). By Lemma 2.2, the map g can be extended to a map g̃ such that

g̃(t + 1) − g̃(t) = −1, for all t ∈ R, and there exists a unique f ∈ C0(T1,T1) such that g̃ is a lift
of f . Note that for any t, s ∈ R with t < s, there is an integer k and a nonnegative integer m
such that t ∈ [k, k + 1) and s ∈ [k +m, k +m + 1). Thus

∣∣g̃(t) − g̃(s)
∣∣ ≤ ∣∣g̃(t) − g̃(k + 1)

∣∣ +
m∑
j=1

∣∣g̃(k + j
) − g̃

(
k + j + 1

)∣∣ + ∣∣g̃(s) − g̃(k +m)
∣∣

≤ ∣∣g̃(t − k) − g̃(1)
∣∣ + (m − 1)

∣∣g̃(0) − g̃(1)
∣∣ + ∣∣g̃(s − k −m) − g̃(0)

∣∣

≤ M

α1
[1 − (t − k) +m − 1 + s − k −m] =

M

α1
(s − t).

(3.11)

Obviously f ∈ H0
1(T

1,−1) and f is a solution of (1.4) with a Lipschitz constant M/α1.
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4. Uniqueness and Stability

Let F1, F2 ∈ C0(T1,T1) and F̃1, F̃2 be their lifts, respectively. By (iv) of Lemma 2.1, we can
define

‖F1 − F2‖R
:= sup

t∈R

∣∣∣F̃1(t1) − F̃2(t2)
∣∣∣. (4.1)

Definition 4.1. For a given small constant ε > 0, one says that F1 is ε − C0—close to F2 if

‖F1 − F2‖R
< ε. (4.2)

Now as in [8], we give the definition that (1.4) is stable.

Definition 4.2. Let F1, F2 ∈ C0(T1,T1) and f1, f2 be corresponding solutions of (1.4) on F1, F2.
One says that (1.4) is stable if for all ε > 0 there is a δ > 0 such that if F1 is δ −C0—close to F2,
then f1 is ε − C0— close to f2.

Theorem 4.3. Suppose that the conditions in Theorem 3.2 still hold, and

r =
n∑
j=2

βj

2j−2∑
i=1

α−i
1 M

i−1 < 1. (4.3)

Then (1.4) has a unique solution f ∈ H0
1(T

1,−1) with a Lipschitz constant M/α1. Moreover, (1.4)
is stable.

Proof. By Banach contraction theorem and (3.10), the solution f is unique.
Suppose that F1, F2 ∈ H0

1(T
1,−1) both satisfy the conditions in Theorem 3.2 and f1, f2

are the unique solutions of (1.4) corresponding to the given Fj, j = 1, 2, respectively. Assume
that F̃i, f̃ i be the lifts of Fi, fi, i = 1, 2, respectively. Let Gi, gi be the restrictions on [0, 1] of
F̃i, f̃i, i = 1, 2. Let Ψ be the induced map of Φ defined in (2.27). By the proof of Theorem 3.2,
we have

gi = L−1
gi ◦Gi, i = 1, 2, (4.4)

where Lgi is defined as (3.5) and L−1
gi ∈ F(I,M−1

0 , α−1
1 ), i = 1, 2. By (3.10), we have

∥∥g1 − g2
∥∥ =
∥∥∥L−1

g1 ◦G1 − L−1
g2 ◦G2

∥∥∥

≤
∥∥∥L−1

g1 ◦G1 − L−1
g1 ◦G2

∥∥∥ +
∥∥∥L−1

g1 ◦G2 − L−1
g2 ◦G2

∥∥∥

≤ α−1
1 ‖G1 −G2‖ + r

∥∥g1 − g2
∥∥.

(4.5)

Thus

∥∥g1 − g2
∥∥ ≤ [(1 − r)α1]−1‖G1 −G2‖. (4.6)
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For any t ∈ R, there is an integer k with t ∈ [k, k + 1) such that

∣∣∣f̃1(t) − f̃2(t)
∣∣∣ =
∣∣∣f̃1(t − k) + k − f̃2(t − k) − k

∣∣∣ =
∣∣g1(t − k) − g2(t − k)

∣∣. (4.7)

This means that

∥∥∥f̃1 − f̃2
∥∥∥

R

=
∥∥g1 − g2

∥∥. (4.8)

By the same argument, we have

∥∥∥F̃1 − F̃2

∥∥∥
R

= ‖G1 −G2‖. (4.9)

Thus

∥∥∥f̃1 − f̃2
∥∥∥

R

≤ [(1 − r)α1]−1
∥∥∥F̃1 − F̃2

∥∥∥
R

. (4.10)

By the discussion above, we know that (1.4) is stable.

5. Example

Example 5.1. Consider the equation

(
f(z)

)359/360(
f3(z)

)(1/720πi) ln(f3(z))
= exp

(
2πi
(
e − z1/2πi

)

e − 1

)
. (5.1)

Obviously

F(z) = exp

(
2πi
(
e − z1/2πi

)

e − 1

)
,

Φ(z1, z2) = z359/3601 z
(1/720πi) ln(z2)
2 .

(5.2)

The map F has a lift F̃ and F̃|[0,1] = (e − et)/(e − 1). Moreover, F has a Lipschitz constant 2.
The induced map of Φ is

Ψ(t1, t2) =
359
360

t1 +
1

360
t22, 0 < tj < 1, j = 1, 2,

Ψ(0, 0) = 0, Ψ(1, 1) = 1.
(5.3)

It is easy to verify that both (H1) and (H2) hold. The constants are α1 = β1 = 359/360, α2 =
0, β2 = 1/180. By Theorem 3.2, (5.1) has a solution f ∈ H0

1(T
1,−1) with a Lipschitz constant

720/359.
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Note that α−1
1 = 359/360 < 1. We have

r = β2
2∑
i=1

α−i
1 M

i−1 <
1

180

2∑
i=1

2i−1 =
1
60

. (5.4)

Thus by Theorem 4.3, the solution is unique and the equation is stable.
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