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We consider a single species nonautonomous system with delays and feedback control. A general
criterion on the permanence for all positive solutions is established. The results show that the
feedback control does not influence the permanence of species.

1. Introduction

As we well know, a single species without feedback control is very important on math-
ematical ecology and has been studied in many articles. Many important results on the
permanence, extinction, global asymptotical stability, and their special cases of periodic and
almost periodic system can be found in [1–6].

However, we note that ecosystem in the real world is continuously disturbed by
unpredictable forces which can result in changes in the biological parameters such as
survival rates. Of practical interest in ecosystem is the question of whether or not an
ecosystem can withstand those unpredictable forces which persist for a finite period of
time. In the language of control variables, we call the disturbance functions as control
variables. In 1993, Gopalsamy and Weng [7] introduced a feedback control variable
into the delay logistic model and discussed the asymptotic behavior of solution in
logistic models with feedback controls, in which the control variables satisfy certain
differential equation. In the recent years, the population dynamical systems with feedback
controls have been studied in many articles, for example, see [8–13] and references cited
therein.
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Motivated by the previous works, we focus our attention on the permanence of species
for the following single specie non-autonomous systems with delays and feedback control

x′(t) = x(t)(r(t) − a(t)x(t) − b(t)P(x(t − τ1(t))) − c(t)Q(u(t − σ(t)))),
u′(t) = −d(t)u(t) + e(t)G(x(t − τ2(t))).

(1.1)

The main purpose of this paper is to establish a new general criterion for the permanence of
system (1.1), which is described by integral form and independent of feedback control. The
paper is organized as follows. In the next section, we will give some assumptions and useful
lemmas. In Section 3, some new sufficient conditions which guarantee the permanence of all
positive solutions for system (1.1) are obtained. In the last section, we will give an example
to illustrate the conclusions obtained in this paper.

2. Preliminaries

In this paper, for system (1.1) we denote that x(t) is the density of the species at time t, u(t)
is the control variable, and (x(t), u(t)) = (x(t), u(t))T , r(t), a(t) represent the intrinsic growth
rate and density-dependent coefficient of the species at time t. The function r(t) is bounded
continuous defined on R+ = [0,∞); functions a(t), b(t), c(t), d(t), e(t), σ(t), and τi(t) (i = 1, 2)
are continuous, bounded, and nonnegative defined onR+; functions P(u), Q(u), andG(u) are
nondecrease defined on R+ and satisfy P(0) = 0, Q(0) = 0, and G(0) = 0. Furthermore, there
exist positive constantsN, I, and L such that |P(u)− P(v)| ≤N|u− v||Q(u)−Q(v)| ≤ I|u− v|,
and |G(u) −G(v)| ≤ L|u − v| for all u, v ∈ R+.

Throughout this paper, we will introduce the following assumptions:

(H1) there exists constant w > 0 such that

lim inf
t→∞

∫ t+w

t

r(s)ds > 0, (2.1)

(H2) there exists constant λ > 0 such that

lim inf
t→∞

∫ t+λ

t

a(s)ds > 0, (2.2)

(H3) there exists constant γ > 0 such that

lim inf
t→∞

∫ t+γ

t

d(s)ds > 0. (2.3)

In addition, for a function g(t) defined on set I ⊂ R, we denote

gL = inf
t∈I

g(t), gM = sup
t∈I

g(t). (2.4)
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Now, we state several lemmas which will be useful in the proving of main results in
this paper.

First, we consider the following nonautonomous logistic equation:

x′(t) = x(t)(r(t) − a(t)x(t)), (2.5)

where functions a(t), r(t) are bounded and continuous on R+. Furthermore, a(t) ≥ 0 for all
t ≥ 0. We have the following result which is given in [14] by Teng and Li.

Lemma 2.1. Suppose that assumptions (H1)-(H2) hold. Then,

(a) there exist positive constantsm andM such that

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M (2.6)

for any positive solution x(t) of (2.5);

(b) limt→∞(x(1)(t) − x(2)(t)) = 0 for any two positive solutions x(1)(t) and x(2)(t) of (2.5).

Further, we consider the following nonautonomous linear equation:

u′(t) = r(t) − d(t)u(t), (2.7)

where functions r(t) and d(t) are bounded continuous defined on R+, and r(t) ≥ 0 for all
t ≥ 0. We have the following result.

Lemma 2.2. Suppose that assumption (H3) holds. Then,

(a) there exists a positive constant U such that lim supt→∞u(t) ≤ U for any positive solution
u(t) of (2.7);

(b) limt→∞(u(1)(t) − u(2)(t)) = 0 for any two positive solutions u(1)(t) and u(2)(t) of (2.7).

The proof of Lemma 2.2 is very simple by making a transformation with u(t) = 1/x(t).
This produces the calculations u′(t) = −(1/x2(t))x′(t) and x′(t) = x(t)(e(t) − r(t)x(t)). Then,
according to Lemma 2.1 we can obtain Lemma 2.2.

Lemma 2.3. Suppose that assumption (H3) holds. Then for any constants ε > 0 and M > 0 there
exist constants δ = δ(ε) > 0 and T = T(M) > 0 such that for any t0 ∈ R+ and u0 ∈ R with |u0| ≤M,
when |r(t)| < δ for all t ≥ t0, one has

|u(t, t0, u0)| < ε ∀t ≥ t0 + T, (2.8)

where u(t, t0, u0) is the solution of (2.7) with initial condition u(t0) = u0.

The proof of Lemma 2.3 can be found as Lemma 2.4 in [12] by Wang et al.
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3. Main Results

Let τ = sup{τ1(t), τ2(t), σ(t) : t ≥ t0}. We define C[−τ, 0] the Banach space of bounded
continuous functions φ : [−τ, 0] → R with the supremum norm defined by ‖φ‖c =
sup−τ≤s≤0|φ(s)|. By the fundamental theory of functional differential equation, we know
that for any (φ, ψ) ∈ C[−τ, 0] × C[−τ, 0], system (1.1) has a unique solution X(t, φ, ψ) =
{x(t, φ, ψ), u(t, φ, ψ)} satisfying the initial condition Xt0 = (φ, ψ).

Motivated by the biological background of system (1.1), in this paper we are only
concerned with positive solutions of system (1.1). It is not difficult to see that the solution
{x(t, φ, ψ), u(t, φ, ψ)} of system (1.1) is positive, if the initial functions satisfy φ(s) ≥ 0 and
φ(0) > 0; ψ(s) ≥ 0 and ψ(0) > 0 for all s ∈ [−τ, 0].

Theorem 3.1. Suppose that assumptions (H1)–(H3) hold. Then there exists constant M > 0 such
that

lim sup
t→∞

x(t) < M, lim sup
t→∞

u(t) < M, (3.1)

for any positive solutions (x(t), u(t)) of system (1.1).

Proof. Let {x(t), u(t)} be any positive solution of system (1.1). Since

dx(t)
dt

≤ x(t)(r(t) − a(t)x(t)) (3.2)

for all t ≥ t0,where t0 is the initial time.
Consider the following auxiliary equation:

dy(t)
dt

= y(t)
(
r(t) − a(t)y(t)) (3.3)

from assumptions (H1) and (H2) and according to Lemma 2.1, there exists constant M1 > 0
such that

lim sup
t→∞

y(t) ≤M1 (3.4)

for the solution y(t) of (3.3) with initial condition y(t0) = x(t0). By the comparison theorem,
we have

x(t) ≤ y(t) ∀t ≥ t0. (3.5)

From this, we further obtain

lim sup
t→∞

x(t) ≤M1. (3.6)
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Then, we obtain that for any constant ε > 0, there exists constant T > t0 such that

x(t) < M1 + ε ∀t ≥ T. (3.7)

From the second equation of the system (1.1), we have

du(t)
dt

≤ −d(t)u(t) + Le(t)x(t − τ2(t)). (3.8)

Hence, we further have

du(t)
dt

≤ −d(t)u(t) + Le(t)(M1 + ε) (3.9)

for all t ≥ T + τ. Consider the following auxiliary equation:

dv(t)
dt

= −d(t)v(t) + Le(t)(M1 + ε), (3.10)

from assumption (H3) and the conclusions of Lemma 2.2, we can get constant M2 > 0 such
that for any ε > 0 there exists constant T1 ≥ T + τ such that

v(t) < M2 + ε (3.11)

for the solution v(t) of (3.10)with initial condition v(T1) = u(T1). By the comparison theorem,
we have

u(t) ≤ v(t) ∀t ≥ T1. (3.12)

Hence, we further obtain

lim sup
t→∞

u(t) < M2. (3.13)

Choose the constantM = max{M1,M2}, then we finally obtain

lim sup
t→∞

x(t) < M, lim sup
t→∞

u(t) < M. (3.14)

This completes the proof.

Theorem 3.2. Suppose that assumptions (H1)–(H3) hold. Then there exists constant l > 0 such that

lim inf
t→∞

x(t) > l, (3.15)

for any positive solutions (x(t), u(t)) of system (1.1).
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Proof. According to assumption (H1),we can choose constants ε0 > 0 and T0 > 0 such that for
all t ≥ T0, we have

∫ t+w

t

(r(s) − a(t)ε0 − b(t)ε0 − c(t)ε0)ds > ε0. (3.16)

We consider the following equation:

du(t)
dt

= −d(t)u(t) + e(t)α0, (3.17)

where α0 is parameter. By Lemma 2.3, for given ε0 > 0 and positive constant M > 0, there
exist constants δ0 = δ0(ε0) > 0 and T ∗ = T ∗(M) > 0 such that for any t0 ∈ R+ and 0 ≤ u0 ≤ M,
when α0e(t) < δ0 for all t ≥ t0, we have

0 ≤ u(t, t0, u0) < ε0 ∀t ≥ t0 + T ∗, (3.18)

where u(t, t0, u0) is the solution of (3.17)with initial condition u(t0) = u0.
Let α0 ≤ min{ε0, δ0/(eM + 1)} such that for all t ≥ T0

∫ t+w

t

(
r(s) − a(t)α0

L
− b(t)Nα0

L
− c(t)Iε0

)
ds > α0. (3.19)

We first prove that

lim sup
t→∞

x(t) ≥ α0
L
. (3.20)

In fact, if (3.20) is not true, then there exists a positive solution {x(t), u(t)} of system (1.1), a
constant T1 > T0 such that x(t) < α0/L for all t ≥ T1. Then for all t ≥ T1 + τ, we have

du(t)
dt

≤ −d(t)u(t) + e(t)α0. (3.21)

Let v(t) be the solution of (3.17)with initial condition v(T1+τ) = u(T1+τ), by the comparison
theorem, we have

u(t) ≤ v(t) ∀t ≥ T1 + τ. (3.22)

In (3.18), we choose t0 = T1 + τ and u0 = u(T1 + τ), since α0e(t) < δ0 for all t ≥ T1 + τ,we obtain

v(t) = v(t, T1 + τ, u(T1 + τ)) < ε0 ∀t ≥ T1 + τ + T ∗. (3.23)

Hence, from (3.22)we further obtain

u(t) < ε0 ∀t ≥ T1 + τ + T ∗. (3.24)
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Considering the first equation (1.1), for any t ≥ T1 + T ∗ + 2τ, we have

dx(t)
dt

≥ x(t)
(
r(s) − a(t)α0

L
− b(t)Nα0

L
− c(t)Iε0

)
. (3.25)

Integrating (3.25) form T1 + T ∗ + 2τ to t ≥ T1 + T ∗ + 2τ, we have

x(t) ≥ x(T1 + T ∗ + 2τ) exp
∫ t

T1+T∗+2τ

(
r(s) − a(t)α0

L
− b(t)Nα0

L
− c(t)Iε0

)
ds. (3.26)

Obviously, from (3.19) and (3.26), we obtain x(t) → ∞ as t → ∞, which leads to a
contradiction.

Now, we prove the conclusion of Theorem 3.2. In fact, if it is not true, then there
exists a sequence {φ(m), ψ(m)} of initial functions such that, for the solution {x(t, φ(m),
ψ(m)), u(t, φ(m), ψ(m))} of the system (1.1)

lim inf
t→∞

x
(
t, φ(m), ψ(m)

)
<

β

m2
∀m = 1, 2, . . . , (3.27)

where β = α0/L and {x(t, φ(m), ψ(m)), u(t, φ(m), ψ(m))} satisfies the initial condition

x(s) = φ(m)(s), u(s) = ψ(m)(s) ∀t ∈ [−τ, 0]. (3.28)

From (3.20) and (3.27), for every m there are two time sequences {s(m)
q } and {t(m)

q }, satisfying
0 < s(m)

1 < t
(m)
1 < s

(m)
2 < t

(m)
2 < · · · < s(m)

q < t
(m)
q < · · · and limq→∞s

(m)
q = ∞, such that

x
(
s
(m)
q , φ(m), ψ(m)

)
=
β

m
, x

(
t
(m)
q , φ(m), ψ(m)

)
=

β

m2
, (3.29)

β

m2
≤ x

(
t, φ(m), ψ(m)

)
≤ β

m
∀t ∈

(
s
(m)
q , t

(m)
q

)
. (3.30)

From Theorem 3.1, we can choose a positive constant T (m) such that x(t, φ(m), ψ(m)) <
M, and u(t, φ(m), ψ(m)) < M for all t > T (m). Further, there is an integer K(m)

1 > 0 such that
s
(m)
q > T (m) + τ for all q ≥ K(m)

1 . Let q ≥ K(m)
1 , for any t ∈ (s(m)

q , t
(m)
q )we have

dx
(
t, φ(m), ψ(m))

dt
≥ x

(
t, φ(m), ψ(m)

)
[r(t) − a(t)M − b(t)NM − c(t)IM]

≥ −γx
(
t, φ(m), ψ(m)

)
,

(3.31)
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where γ = supt∈R+
{|r(t)| + a(t)M + b(t)NM + c(t)IM}. Integrating the above inequality from

s
(m)
q to t(m)

q , we further have

β

m2
= x

(
t
(m)
q , φ(m), ψ(m)

)
≥ x

(
s
(m)
q , φ(m), ψ(m)

)
exp

[
−γ

(
t
(m)
q − s(m)

q

)]

=
β

m
exp

[
−γ

(
t
(m)
q − s(m)

q

)]
.

(3.32)

Consequently,

t
(m)
q − s(m)

q ≥ lnm
γ

∀q ≥ K(m)
1 , m = 1, 2, . . . (3.33)

We can choose a large enoughN0 such that

t
(m)
q − s(m)

q ≥ T ∗ + τ +w ∀m ≥N0, q ≥ K(m)
1 . (3.34)

For anym ≥N0, q ≥ K(m)
1 and t ∈ [s(m)

q + τ, t(m)
q ], from (3.30) we can obtain

du
(
t, φ(m), ψ(m))

dt
= −d(t)u

(
t, φ(m), ψ(m)

)
+ e(t)Lx

(
(t − τ2), φ(m), ψ(m)

)

≤ −d(t)u
(
t, φ(m), ψ(m)

)
+ e(t)L

β

m

≤ −d(t)u
(
t, φ(m), ψ(m)

)
+ e(t)α0.

(3.35)

Assume that ũ(t) is the solution of (3.17)with the initial condition ũ(s(m)
q +τ) = u(s(m)

q +
τ), then we have

u
(
t, φ(m), ψ(m)

)
≤ ũ(t) ∀t ∈

[
s
(m)
q + τ, t(m)

q

]
, m ≥N0, q ≥ K(m)

1 . (3.36)

In (3.18), we choose t0 = s
(m)
q + τ and u0 = u(s

(m)
q + τ), since α0e(t) < δ0 for all t ≥ s(m)

q + τ, we
have

ũ(t) = ũ
(
t, s

(m)
q + τ, u

(
s
(m)
q + τ

))
< ε0 (3.37)

for all t ∈ [s(m)
q + τ + T ∗, t(m)

q ]. Using the comparison theorem it follows that

u
(
t, φ(m), ψ(m)

)
< ε0 (3.38)

for all t ∈ [s(m)
q + τ + T ∗, t(m)

q ], q ≥ K(m)
1 andm ≥N0.
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So, for any m ≥ N0, q ≥ K
(m)
1 and t ∈ [s(m)

q + τ + T ∗, t(m)
q ], from (3.30) and (3.38), it

follows

dx
(
t, φ(m), ψ(m))

dt
= x

(
t, φ(m), ψ(m)

)(
r(t) − a(t)x

(
t, φ(m), ψ(m)

)

−b(t)N
(
x
(
t − τ1(t), φ(m), ψ(m)

))
− c(t)I

(
u
(
t − σ(t), φ(m), ψ(m)

)))

≥ x
(
t, φ(m), ψ(m)

)(
r(t) − a(t)α0

L
− b(t)Nα0

L
− c(t)Iε0

)
.

(3.39)

Integrating the above inequality from t
(m)
q − ω to t

(m)
q , then from (3.19), (3.29), and (3.30),

we obtain

β

m2
= x

(
t
(m)
q , φ(m), ψ(m)

)

≥ x
(
t
(m)
q −ω,φ(m), ψ(m)

)
exp

∫ t
(m)
q

t
(m)
q −ω

(
r(t) − a(t)α0

L
− b(t)Nα0

L
− c(t)Iε0

)
dt

≥ β

m2
exp(α0) >

β

m2

(3.40)

which leads to a contradiction. Therefore, this contradiction shows that there exists constant
l > 0 such that

lim inf
t→∞

x(t) > l, (3.41)

for any positive solutions (x(t), u(t)) of system (1.1). This completes the proof.

Remark 3.3. In Theorem 3.2, we note that (H1)–(H3) decided by (1.1), which is independent
of the feedback controls. So, the feedback controls have no influence on the permanence of
system (1.1). That is, there is the permanence of the species as long as feedback controls
(human activities) should be kept in a certain range. In the range, the permanence of the
species will not be influenced by the controls.

4. An Example

In this section we will give an example to illustrate the conclusion obtained in the above
section. We will consider the following single species system with delays and feedback
control:

x′(t) = x(t)(r(t) − a(t)x(t) − b(t)P(x(t − τ1(t))) − c(t)Q(u(t − σ(t)))),
u′(t) = −d(t)u(t) + e(t)G(x(t − τ2(t))),

(4.1)
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where we have

r(t) =
1
2
+ sin t, a(t) = 1 + cos 2t, b(t) = 3 + cos2t,

c(t) =
1
4
+ cos2t, d(t) = 2 + sin 2t, e(t) =

1
3
+
1
3
cos2t,

P(t) = Q(t) = G(t) = t.

(4.2)

Obviously, a(t), b(t), c(t), d(t), e(t) are continuous, bounded, and nonnegative defined on R+;
functions P(t), Q(t) and G(t) are nondecrease defined on R+ and satisfy P(0) = 0, Q(0) = 0
and G(0) = 0. Choose the constants ω, λ, γ : ω = λ = γ = 2π, then we easily obtain

lim inf
t→∞

∫ t+2π

t

r(s)ds > 0, lim inf
t→∞

∫ t+2π

t

a(s)ds > 0, lim inf
t→∞

∫ t+2π

t

d(s)ds > 0. (4.3)

Therefore, assumptions (H1)–(H3) hold, we obtain that the species x(t) is persistent.
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