
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2010, Article ID 162371, 11 pages
doi:10.1155/2010/162371

Research Article
Generalized Hyers-Ulam-Rassias Theorem in
Menger Probabilistic Normed Spaces

M. Eshaghi Gordji,1 M. B. Ghaemi,2 and H. Majani2

1 Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
2 Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

Correspondence should be addressed to M. Eshaghi Gordji, madjid.eshaghi@gmail.com

Received 24 September 2009; Accepted 22 January 2010

Academic Editor: Yong Zhou

Copyright q 2010 M. Eshaghi Gordji et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We introduce two reasonable versions of approximately additive functions in a Šerstnev
probabilistic normed space endowed with ΠM triangle function. More precisely, we show under
some suitable conditions that an approximately additive function can be approximated by an
additive mapping in above mentioned spaces.

1. Introduction and Preliminaries

Menger proposed transferring the probabilistic notions of quantum mechanic from physics
to the underlying geometry. The theory of probabilistic normed spaces (briefly, PN spaces) is
important as a generalization of deterministic result of linear normed spaces and also in the
study of random operator equations. The theory of probabilistic metric spaces introduced
in 1942 by Menger [1], as well as by the authors in [2, 3]. The notion of a probabilistic
normed space was introduced by Šerstnev [4]. Alsina, Schweizer and Skalar gave a general
definition of probabilistic normed space based on the definition of Menger for probabilistic
metric spaces in [5, 6].

It can be defined, in some way, the class of approximate solutions of the given
functional equation one can ask whether each mapping from this class can be somehow
approximated by an exact solution of the considered equation. Such a problem was
formulated by Ulam in 1940 (cf., [7]) and solved the next year for the Cauchy functional
equation by Hyers [8]. In 1950, Aoki [9] and in 1978, Rassias [10] proved a generalization of
Hyers’ theorem for additive and linear mappings, respectively.
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Theorem 1.1. Let f be an approximately additive mapping from a normed vector space E into a
Banach space F, that is, f satisfies the inequality

∥
∥f
(

x + y
) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥∥y∥∥p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and 0 ≤ p < 1. Then the mapping L : E → F
defined by L(x) = limn→∞2−nf(2nx) is the unique additive mapping which satisfies

∥
∥f(x) − L(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.2)

for all x ∈ E.

The result of Rassias has influenced the development of what is now called the Hyers-
Ulam-Rassias stability theory for functional equations. In 1994, a generalization of Rassias’
theorem was obtained by Găvruţa [11] by replacing the bound ε(‖x‖p + ‖y‖p) by a general
control function ϕ(x, y). Several stability results have been recently obtained for various
equations, also for mapping with more general domains and ranges (see [12–18]).

PN spaces were first defined by Šerstnev in 1962 (see [4]). Their definition was
generalized in [5]. We recall and apply the definition of probabilistic space briefly as given in
[2], together with the notation that will be needed (see [2]). A distance distribution function
(briefly, a d.d.f.) is a nondecreasing function F from R

+
into [0, 1] that satisfies F(0) = 0 and

F(+∞) = 1, and is left-continuous on (0,+∞); here as usual, R
+
:= [0,+∞]. The space of

d.d.f.’s will be denoted by Δ+; and the set of all F in Δ+ for which limt→+∞−F(t) = 1 by D+.
The space Δ+ is partially ordered by the usual pointwise ordering of functions, that is, F ≤ G
if and only if F(x) ≤ G(x) for all x in R

+
. For any a ≥ 0, ε+a is the d.d.f. given by

ε+a(t) =

⎧

⎨

⎩

0, if t ≤ a,
1, if t > a.

(1.3)

The space Δ+ can be metrized in several ways [2], but we will here adopt the Sibley metric
dS. If F,G are d.f.’s and h is in ]0, 1[, let (F,G;h) denote the condition:

G(x) ≤ F(x + h) + h ∀x ∈
]

0,
1
h

[

. (1.4)

Then the Sibley metric dS is defined by

dS(F,G) := inf{h ∈]0, 1[: both (F,G;h) and (G,F;h) hold}. (1.5)

In particular, under the usual pointwise ordering of functions, ε0 is the maximal element of
Δ+. A triangle function is a binary operation on Δ+, namely a function τ : Δ+ ×Δ+ → Δ+ that
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is associative, commutative, nondecreasing in each place and has ε0 as identity, that is, for all
F,G andH in Δ+:

(TF1) τ(τ(F,G),H) = τ(F, τ(G,H)),

(TF2) τ(F,G) = τ(G,F),

(TF3) F ≤ G⇒ τ(F,H) ≤ τ(G,H),

(TF4) τ(F, ε0) = τ(ε0, F) = F.

Moreover, a triangle function is continuous if it is continuous in the metric space (Δ+, dS).
Typical continuous triangle functions are ΠT (F,G)(x) = sups+t=xT(F(s), G(t)), and

ΠT∗(F,G) = infs+t=xT ∗(F(s), G(t)). Here T is a continuous t-norm, that is, a continuous binary
operation on [0, 1] that is commutative, associative, nondecreasing in each variable and has
1 as identity; T ∗ is a continuous t-conorm, namely a continuous binary operation on [0, 1]
which is related to the continuous t-norm T through T ∗(x, y) = 1−T(1−x, 1−y). For example
T(x, y) = min(x, y) = M(x, y) and T ∗(x, y) = max(x, y) or T(x, y) = π(x, y) = xy and
T ∗(x, y) = π∗(x, y) = x + y − xy.

Definition 1.2. A Probabilistic Normed space (briefly, PN space) is a quadruple (X, ν, τ, τ∗),
where X is a real vector space, τ and τ∗ are continuous triangle functions with τ ≤ τ∗ and ν
is a mapping (the probabilistic norm) from V into Δ+, such that for every choice of p and q in
V the following hold:

(N1) νp = ε0 if and only if p = θ (θ is the null vector in X);

(N2) ν−p = νp;

(N3) νp+q ≥ τ(νp, νq);
(N4) νp ≤ τ∗(νλp, ν(1−λ)p) for every λ ∈ [0, 1].

A PN space is called a Šerstnev space if it satisfies (N1), (N3) and the following
condition:

ναp(x) = νp
(
x

|α|
)

, (1.6)

holds for every α/= 0 ∈ R and x > 0. When here is a continuous t-norm T such that τ = ΠT

and τ∗ = ΠT∗ , the PN space (X, ν, τ, τ∗) is called Menger PN space (briefly, MPN space), and
is denoted by (X, ν, τ).

Let (X, ν, τ) be an MPN space let {xn} be a sequence in X. Then {xn} is said to be
convergent if there exists x ∈ X such that

lim
n→∞

ν(xn − x)(t) = 1 (1.7)

for all t > 0. In this case x is called the limit of {xn}.
The sequence xn in MPN space (X, ν, τ) is called Cauchy if for each ε > 0 and δ > 0,

there exists some n0 such that ν(xn − xm)(δ) > 1 − ε for allm,n ≥ n0.
Clearly, every convergent sequence in a MPN space is Cauchy. If each Cauchy

sequence is convergent in a MPN space (X, ν, τ), then (X, ν, τ) is called Menger probabilistic
Banach space (briefly, MPB space).
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Recently, the stability of functional equations on PN spaces and MPN spaces have
been investigated by some authors; see [19–23] and references therein. In this paper, we
investigate the stability of additive functional equations on Šerstnev probabilistic normed
space endowed withΠM triangle function.

2. Main Results

We begin our work with uniform version of the Hyers-Ulam-Rassias stability in a Šerstnev PN
space in which we uniformly approximate a uniform approximate additive mapping.

Theorem 2.1. LetX be a linear space and (Y, ν,ΠM) be a Šerstnev PB space. Let ϕ : X×X → [0,∞)
be a control function such that

ϕ̃n
(

x, y
)

=
{

2−n−1ϕ
(

2nx, 2ny
)} (

x, y ∈ X) (2.1)

converges to zero. Let f : X → Y be a uniformly approximately additive function with respect to ϕ in
the sense that

lim
t→∞

ν
(

f
(

x + y
) − f(x) − f(y))(tϕ(x, y)) = 1 (2.2)

uniformly on X × X. Then T(x) := limn→∞2−nf(2nx) for any x ∈ X exists and defines an additive
mapping T : X → Y such that if for some δ > 0, α > 0

ν
(

f
(

x + y
) − f(x) − f(y))(δϕ(x, y)) > α (

x, y ∈ X) (2.3)

then

ν
(

T(x) − f(x))(δϕ̃n(x, x)
)

> α (x ∈ X). (2.4)

Proof. Given ε > 0, by (2.2), we can choose some t0 such that

ν
(

f
(

x + y
) − f(x) − f(y))(tϕ(x, y)) ≥ 1 − ε (2.5)

for all x, y ∈ X and all t ≥ t0. Putting y = x in (2.5)we get

ν
(

f(2x) − 2f(x)
)(

tϕ(x, x)
) ≥ 1 − ε (2.6)

and by replacing x by 2nx, we obtain

ν
(

2−n−1f
(

2n+1x
)

− 2−nf(2nx)
)(

t2−n−1ϕ(2nx, 2nx)
)

≥ 1 − ε. (2.7)

By passing to a nonincreasing subsequence, if necessary, we may assume that
{2−n−1ϕ(2nx, 2ny)} is nonincreasing.
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Thus for each n > mwe have

ν
(

2−mf(2mx) − 2−nf(2nx)
)(

t2−m−1ϕ(2mx, 2mx)
)

= ν

(
n−1∑

k=m

(

2−kf
(

2kx
)

− 2−k−1f
(

2k+1x
))
)
(

t2−m−1ϕ(2mx, 2mx)
)

≥ ΠM

{

ν

(

2−mf(2mx) − 2−m−1f
(

2m+1x
)
)

,

ν

(
n−1∑

k=m+1

(

2−kf
(

2kx
)

− 2−k−1f
(

2k+1x
))
)}
(

t2−m−1ϕ(2mx, 2mx)
)

≥ ΠM

{

1 − ε,ΠM

{

ν

(

2−m−1f
(

2m+1x
)

− 2−m−2f
(

2m+2x
)
)

,

ν

(
n−1∑

k=m+2

(

2−kf
(

2kx
)

− 2−k−1f
(

2k+1x
))
)}
(

t2−m−2ϕ
(

2m+1x, 2m+1x
))
}

≥ 1 − ε.
(2.8)

The convergence of (2.1) implies that for given δ > 0 there is n0 ∈ N such that

t02−n−1ϕ(2nx, 2nx) < δ ∀n ≥ n0. (2.9)

Thus by (2.8)we deduce that

ν
(

2−mf(2mx) − 2−nf(2nx)
)

(δ)

≥ ν(2−mf(2mx) − 2−nf(2nx)
)(

t02−m−1ϕ(2mx, 2mx)
)

≥ 1 − ε
(2.10)

for each n ≥ n0. Hence 2−nf(2nx) is a Cauchy sequence in Y . Since (Y, ν,ΠM) is complete, this
sequence converges to some T(x) ∈ Y . Therefore, we can define a mapping T : X → Y by
T(x) := limn→∞2−nf(2nx), namely, for each t > 0, and x ∈ X,

ν
(

T(x) − 2−nf(2nx)
)

(t) = 1. (2.11)
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Next, let x, y ∈ X. Temporarily fix t > 0 and 0 < ε < 1. Since 2−n−1ϕ(2nx, 2ny) converges to
zero, there is some n1 > n0 such that t0ϕ(2nx, 2ny) < t2n+1 for all n ≥ n1. Hence for each n ≥ n1,
we have

ν
(

T
(

x + y
) − T(x) − T(y))(t)

≥ ΠM

{

ΠM

{

ν
(

T
(

x + y
) − 2−n−1f

(

2n+1
(

x + y
)))

(t), ν
(

T(x) − 2−n−1f
(

2n+1x
))

(t)
}

,

ΠM

{

ν
(

T
(

y
) − 2−n−1f

(

2n+1y
))

(t),

ν
(

f
(

2n+1
(

x + y
)) − f

(

2n+1x
)

− f
(

2n+1y
))(

2n+1t
)}}

(2.12)

but we have

lim
n→∞

ν
(

T
(

x + y
) − 2−n−1f

(

2n+1
))

(t) = 1,

lim
n→∞

ν
(

T(x) − 2−n−1f
(

2n+1x
))

(t) = 1,

lim
n→∞

ν
(

T
(

y
) − 2−n−1f

(

2n+1y
))

(t) = 1,

(2.13)

and by (2.5) and for large enough n, we have

ν
(

f
(

2n+1
(

x + y
)) − f

(

2n+1x
)

− f
(

2n+1y
))(

2n+1t
)

≥ ν
(

f
(

2n+1
(

x + y
)) − f

(

2n+1x
)

− f
(

2n+1y
))(

t0ϕ
(

2nx, 2ny
)) ≥ 1 − ε.

(2.14)

Thus

ν
(

T
(

x + y
) − T(x) − T(y))(t) ≥ 1 − ε ∀t > 0, 0 < ε < 1. (2.15)

It follows that ν(T(x + y) − T(x) − T(y))(t) = 1 for all t > 0 and by (N1), we have T(x + y) =
T(x) + T(y).

To end the proof, let, for some positive δ and α, (2.3) hold. Let x ∈ X. Putting m = 0
and α = 1 − ε in (2.10), we get

ν
(

f(2nx) − 2nf(x)
)

(δ) ≥ α (2.16)

for all positive integers n ≥ n0. Thus for large enough n, we have

ν
(

f(x) − T(x))
(

δ2−n−1ϕ(2nx, 2nx)
)

≥ ΠM

{

ν
(

f(x) − 2−nf(2nx)
)

, ν
(

2−nf(2nx) − T(x))}
(

δ2−n−1ϕ(2nx, 2nx)
)

≥ α
(2.17)
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therefore

ν
(

T(x) − f(x))(δϕ̃n(x, x)
)

> α. (2.18)

Corollary 2.2. LetX be a linear space and (Y, ν,ΠM) be a Šerstnev PB space. Let ϕ : X×X → [0,∞)
be a control function satisfying (2.2). Let f : X → Y be a uniformly approximately additive function
with respect to ϕ. Then there is a unique additive mapping T : X → Y such that

lim
n→∞

ν
(

f(x) − T(x))(tϕ̃n(x, x)
)

= 1 (2.19)

uniformly on X.

Proof. The existence of uniform limit (2.19) immediately follows from Theorem 2.1. It remains
to prove the uniqueness assertion.

Let S be another additive mapping satisfying (2.19). Fix c > 0. Given ε > 0, by (2.19)
for T and S, we can find some t0 > 0 such that

ν
(

f(x) − T(x))(tϕ̃n(x, x)
) ≥ 1 − ε,

ν
(

f(x) − S(x))(tϕ̃n(x, x)
) ≥ 1 − ε

(2.20)

for all x ∈ X and t ≥ t0. Fix some x ∈ X and find some integer n0 such that

t02−nϕ
(

2n+1x, 2n+1
)

< c ∀n ≥ n0. (2.21)

Then we have

ν(S(x) − T(x))(c)
≥ ΠM

{

ν
(

2−nf(2nx) − T(x)), ν(S(x) − 2−nf(2nx)
)}

(c)

= ΠM

{

ν
(

f(2nx) − T(2nx)), ν(S(2nx) − f(2nx))}(2nc)

≥ ΠM

{

ν
(

f(2nx) − T(2nx)), ν(S(2nx) − f(2nx))}
(

t0ϕ
(

2n+1x, 2n+1x
))

≥ 1 − ε.

(2.22)

It follows that ν(S(x) − T(x))(c) = 1 for all c > 0. Thus T(x) = S(x) for all x ∈ X.

Considering the control function ϕ(x, y) = θ(‖x‖q + ‖y‖q) for some θ > 0, we obtain
the following.

Corollary 2.3. Let X be a normed linear space. Let (Y, ν,ΠM) be a Šerstnev PB space. Let θ ≥ 0 and
0 ≤ q < 1. Suppose that f : X → Y is a function such that

lim
t→∞

ν
(

f
(

x + y
) − f(x) − f(y))(tθ(‖x‖q + ∥∥y∥∥q)) = 1 (2.23)
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uniformly on X ×X. Then there is a unique additive mapping T : X → Y such that

lim
t→∞

ν
(

T(x) − f(x))
(

t2n(q−1)θ‖x‖q
)

= 1 (2.24)

uniformly on X.

We are ready to give our nonuniform version of the Hyers-Ulam-Rassias theorem in
Šerstnev PN spaces.

Theorem 2.4. LetX be a linear space. Let (Z,ω,ΠM) be a Šerstnev MPN space. Let ψ : X×X → Z
be a function such that for some 0 < α < 2,

ω
(

ψ
(

2x, 2y
))

(t) ≥ ω(αψ(x, y))(t) (2.25)

for all x, y ∈ X and t > 0. Let (Y, ν,ΠM) be a Šerstnev PB space and let f : X → Y be a ψ-
approximately additive mapping in the sense that

ν
(

f
(

x + y
) − f(x) − f(y))(t) ≥ ω(ψ(x, y))(t) (2.26)

for each t > 0 and x, y ∈ X. Then there exists unique additive mapping T : X → Y such that

ν
(

f(x) − T(x))(t) ≥ ω
(
1
2
ψ(x, x)(t)

)

(2.27)

where x ∈ X and t > 0.

Proof. Put y = x in (2.26) to obtain

ν
(

f(2x) − 2f(x)
)

(t) ≥ ω(ψ(x, x))(t) (x ∈ X, t > 0). (2.28)

Using (2.25) and induction on n, one can verify that

ω
(

ψ(2nx, 2n)x
)

(t) ≥ ω(αnψ(x, x))(t) (2.29)

for all x ∈ X and t > 0. Replacing x by 2n−1x in (2.28) and using (2.29)we get

ν
(

f(2nx) − 2f
(

2n−1x
))

(t) ≥ ω
(

αn−1ψ(x, x)
)

(t) (2.30)

for all x ∈ X and t > 0. It follows from (2.30) that

ν
(

2−nf(2nx) − 2−n+1f
(

2n−1x
))(

2−nt
) ≥ ω

((
1
α

)

ψ(x, x)
)
(

α−nt
)

(2.31)
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whence

ν
(

2−nf(2nx) − 2−n+1f
(

2n−1x
))((αn

2n

)

t

)

≥ ω
((

1
α

)

ψ(x, x)
)

(t) (2.32)

for all n > m ≥ 0, x ∈ X and t > 0. So

ν
(

2−nf(2nx) − 2−mf(2mx)
)

((

αm+1

2m+1

)

t

)

= ν

(
n∑

k=m+1

2−kf
(

2kx
)

− 2−k+1f
(

2k−1x
)
)((

αm+1

2m+1

)

t

)

≥ ω
((

1
α

)

ψ(x, x)
)

(t)

(2.33)

whence

ν
(

2−nf(2nx) − 2−mf(2mx)
)

(t) ≥ ω
(
1
α
ψ(x, x)

)((

αm+1

2m+1

)

t

)

(2.34)

for all n > m ≥ 0, x ∈ X and t > 0. Fix x ∈ X. By

lim
s→∞

ω

(
1
α
ψ(x, x)

)

(s) = 1 (2.35)

we deduce that {2−nf(2nx)} is a Cauchy sequence in (Y, ν,ΠM). Since (Y, ν,ΠM) is complete,
this sequence converges to some point T(x) ∈ Y . It follows from (2.26) that

ν
(

f
(

2n
(

x + y
)) − f(2nx) − f(2ny))(t) ≥ ω(ψ(2nx, 2ny))(t)

≥ ω(αnψ(x, y))(t)
≥ ω(ψ(x, y))(α−nt)

(2.36)

whence

ν
(

2−nf
(

2n
(

x + y
)) − 2−nf(2nx) − 2−nf

(

2ny
))

(t) ≥ ω(ψ(x, y))
((

2
α

)n

t

)

. (2.37)

We have

ν
(

T
(

x + y
) − T(x) − T(y))(t)

≥ ΠM

{

ΠM

{

ν
(

T
(

x + y
) − 2−nf

(

2n
(

x + y
)))

, ν
(

T(x) − 2−nf(2nx)
)}

(t),

ΠM

{

ν
(

T
(

y
) − 2−nf

(

2ny
))

, ν
(

2−nf
(

2n
(

x + y
)) − 2−nf(2nx) − 2−nf

(

2ny
))}

(t)
}

.

(2.38)
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By (2.37) and the fact that

lim
n→∞

ν
(

T(z) − 2−nf(2nz)
)

= 1 (2.39)

for all z ∈ X and r > 0, each term on the right-hand side tends to 1 as n → ∞. Hence

ν
(

T
(

x + y
) − T(x) − T(y))(t) = 1. (2.40)

By (N1), it means that

T
(

x + y
)

= T(x) + T
(

y
)

. (2.41)

Furthermore, let x ∈ X and t > 0. Using (2.34)withm = 0 we obtain

ν
(

T(x) − f(x))(t)
≥ ΠM

{

ν
(

T(x) − 2−nf(2nx)
)

, ν
(

2−nf(2nx) − f(x))}(t)

≥ ΠM

{

ν
(

T(x) − 2−nf(2nx)
)

, ω

((
1
2

)

ψ(x, x)
)}

(t).

(2.42)

Hence

ν
(

T(x) − f(x))(t)

≥ ΠM

{

lim
n→∞

ν
(

T(x) − 2−nf(2nx)
)

, ω

((
1
2

)

ψ(x, x)
)}

(t)

= ω
((

1
2

)

ψ(x, x)
)

(t).

(2.43)

The uniqueness of T can be proved in a similar fashion as in the proof of Corollary 2.2.
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