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We consider a birth-pulses single-species model with restricted toxin input and pulse harvesting
in a polluted environment. Pollution accumulates as a slowly decaying stock and is assumed
to affect the growth of the renewable resource population. Firstly, by using the discrete
dynamical system determined by the stroboscopic map, we obtain an exact 1-period solution
of system whose birth function is Ricker function or Beverton-Holt function and obtain the
threshold conditions for their stability. Furthermore, we show that the timing of harvesting
has a strong impact on the maximum annual sustainable yield. The best timing of harvesting
is immediately after the birth pulses. Finally, we investigate the effect of the amount of toxin
input on the stable resource population size. We find that when the birth rate is comparatively
lower, the population size is decreasing with the increase of toxin input; that when the birth
rate is high, the population size may begin to rise and then drop with the increase of toxin
input.

1. Introduction

One of the most important results in the economics of natural resources explains why
natural biological stocks are often overexploited. An excessively high harvest rate is a
consequence of the common property nature of these resources. Because the reproduction
rate depends on the size of the stock, open access harvesting leads to unoptimally low stock
levels and in some cases to the extinction of the population. Therefore, it is very realistic
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for decision makers to plan practicable scheme which sustains renewable resources at a
good level of productivity and meets economic goals. Economic and biological aspects of
renewable resources management have been considered by Clark [1] and other authors
[2–4].

However, human production and consumption activities may also affect the
environment in which natural populations are regenerating. Many different industrial and
agricultural effluents enter aquatic environments and pose a potential threat to the different
organisms. It is reported that China’s Three Gorges Dam reservoir has been fouled by
pesticides, fertilizers, and sewage, and more than two kilometers of the Yangtze river are
critically polluted. The economic importance of the pollution problem is compounded by
the fact that, in contrast with overexploitation, it affects both common and private property
resource stocks. Such environmental uncertainty also affects the incentive to harvest a
resource. The toxin input may be restricted if necessary, in a number of ways, including area
of emitting toxin, timing of year. Time-area closures are used extensively to control human
activity.

Most existing theories on harvest strategies largely ignore the effects of seasonality
and environmental pollution. In 2005, Xu et al. [4] investigated harvesting in seasonal
environments and focused on maximum annual yield (M.A.Y.) and population persistence
under five commonly used harvest strategies. It concluded that pulse harvesting was
the best amongst all the strategies that they had explored with much larger M.A.Y. and
mean population size but smaller population variability at M.A.Y. Also they obtained that
harvest timing was of large importance to annual yield and population persistence for pulse
harvesting. Harvesting too late may overexploit a population risking extinction with much
smaller M.A.Y. as well.

The nature of optimal exploitation and its effects on the dynamics of biological
populations when the growth process of a specie is subject to random environmental
shocks are not very well understood. So in this paper, considering the results in [4],
we will study an optimal pulse harvesting problem of a single birth-pulse population
in a polluted environment and see how the timing of pulse harvesting affects the
maximum annual-sustainable yield? Can we obtain the similar results to those in [4]?
How does a birth pulse proportional to the population affect the dynamics of the
population? How does the amount of toxin input affect the volume of renewable resource
stock?

For these purposes, we suggest an impulsive equation (see [5, 6]) to model
the process of birth pulses and pulse harvesting at different fixed times in a pol-
luted environment in Section 2. Since pollution has harmful effects on the growth and
quality of resource population stock, here we assume the toxin input is restricted
by a certain time. To our knowledge, there have been no results on this problem
in the literature. Impulsive equations are found in almost every domain of applied
science and have been studied in many investigations [7–33]. In Section 3, we inves-
tigate the dynamics of such a system by using the stroboscopic map for different
density-dependent birth pulses, that is, we choose Ricker function and Beverton-Holt
function as birth rate function. Recently, the Ricker equation and Beverton-Holt equa-
tion and their generalizations have received much attention in the last years [31–
36]. In Section 4, we study the effects of pulse harvesting time on the maximum
annual-sustainable yield. In Section 5, we will see how the amount of toxin input
affects the size of stable resource population. In the last section, we conclude our
results.
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2. Model Formulation

In the absence of pollution, we assume that the size of single species changes according to the
following population growth equation:

ẋ(t) = B(x)x(t) − dx(t), (2.1)

where d > 0 is the death rate constant, and B(x)x is a birth rate function with B(x) satisfying
the following basic assumptions forN ∈ (0,∞):

(A1) B(x) > 0;

(A2) B(x) is continuously differentiable with B′(x) < 0;

(A3) B(0+) > d > B(∞).

Note that (A1)–(A3) imply that B−1(x) exists for x ∈ (B(∞), B(0+)), and (A3) gives the
existence of a carrying capacity K such that B(x) > d for x < K, and B(x) < d for x > K.
Under these assumptions, nontrivial solutions of (2.1) approach B−1(d) as t → ∞.

Examples of birth functions B(x) found in the biological literature that satisfy (A1)–
(A3) are

(B1) B1(x) = be−x, with b > d;

(B2) B2(x) = b/(q + xn), with b, q, n > 0 and b/q > d;

(B3) B3(x) = A/x + c with A > 0, d > c > 0.

Functions B1 and B2 with n = 1 are used in fisheries and are known as the Ricker
function and Beverton-Holt function, respectively. Function B3(x)x represents a constant
immigration rate A together with a linear birth term cx.

For the population model (2.1), it can be postulated that the size of the resource
population is affected by the toxin input, and the presence of toxin in the environment
decreases the growth rate of population. These lead to the following single population model
with toxin input in the polluted environment:

dx(t)
dt

= x(t)(B(x) − rC0(t) − d),

dC0(t)
dt

= kCE(t) − gC0(t) −mC0(t),

dCE(t)
dt

= −k1CE(t)x(t) − hCE(t) + g1C0(t)x(t) + u(t),

(2.2)

where x(t) is the density of the species at time t; C0(t) is the concentration of toxin in the
organism at time t; CE(t) is the concentration of toxin in the environment at time t; B(x)x is
a birth rate function satisfying assumptions (A1)–(A3) The meanings of other parameters are
the same as those of model (2.1) in [37].

In this paper, we assume that the capacity of the environment is so large that the
change of toxin in the environment that comes from uptake and egestion by the organisms
can be ignored (k1 = 0, g1 = 0), and the toxin input is constant (u(t) = u). For the convenience
of computation, we merge −gC0(t) −mC0(t) into one term, still denoted by −gC0(t).
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Now, considering the above assumptions and the continuous harvesting policy of the
population, we construct the following system:

dx(t)
dt

= x(t)(B(x) − rC0(t) − d − E),

dC0(t)
dt

= kCE(t) − gC0(t),

dCE(t)
dt

= u − hCE(t),

(2.3)

where E denotes the harvesting effort.
Model (2.3) has invariably assumed that the population is born throughout the year,

whereas it is often the case that births are seasonal or occur in regular pulses. Many large
mammal and fish populations exhibit what Caughley [38] termed a “birth pulse” growth
pattern. That is, reproduction takes place in a relatively short period each year. In this paper,
we take pulse harvesting policy and assume the timing we take to harvest is fixed every
year. Since water pollution has harmful effects on the growth and quality of fish stock,
here we assume that the toxin input is restricted by a certain time in a closed polluted
environment. Now based on the impulsive differential equations, we will develop system
(2.3) by introducing periodic birth pulses and pulse harvesting at different fixed times in a
polluted environment in which the time of toxin input is restricted. That is, we consider the
following system:

dx(t)
dt

= −rC0(t)x(t) − dx(t),
dC0(t)
dt

= kCE(t) − gC0(t),

dCE(t)
dt

=

⎧
⎨

⎩

−hCE(t), m ≤ t < m + T1,

u − hCE(t), m + T1 ≤ t < m + 1,

t /=m + 1, t /=m + T2,

x(t+) = (1 − E)x(t),
C0(t+) = C0(t),
CE(t+) = CE(t),

t = m + T2,

x(t+) = x(t) + B(x(t))x(t),
C0(t+) = C0(t),
CE(t+) = CE(t),

t = m + 1, m ∈ Z0 = {0, 1, 2, . . .},

(2.4)

where the meanings of parameters r, d, k, g, and h are the same as model (2.3); x(t+) is the
quantities of population after the birth pulse, x(t+) = limt→ t+x(t), C0(t+) = limt→ t+C0(t),
CE(t+) = limt→ t+CE(t). For convenience, here we assume that pulse harvesting occurs only
once and the population x(t) can reproduce only once in each year; 0 ≤ T1 ≤ 1 represents the
time of beginning toxin input in each year; 0 ≤ T2 ≤ 1 represents the time of pulse harvesting
in each year; u > 0 represents the exogenous rate of toxin input into the environment at time
m + T1 ≤ t ≤ m + 1 which is assumed to be a constant; 0 < E < 1 represents pulse harvesting
effort at t = m + T2, m ∈ Z0. In the following section, we will investigate the dynamics of
model (2.4).
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3. Dynamical Behaviors of System (2.4)

3.1. Stroboscopic Maps of Model (2.4) with Ricker Function and
Beverton-Holt Function

We can easily obtain the analytical solution of system (2.4) at the interval (m,m + 1]:

(i) if 0 < T2 < T1 < 1,

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xme
−d(t−m)−(rC0m/g)(1−e−g(t−m))−(krCEm/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)

,

m ≤ t < m + T2,

(1 − E)xme
−d(t−m)−(rC0m/g)(1−e−g(t−m))−(krCEm/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)

,

m + T2 ≤ t < m + T1,

(1 − E)xme
−d(t−m)−(rC0m/g)(1−e−g(t−m))−(krCEm/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)·

e
−(kur/gh)(t−(m+T1))−(kur/(g−h))((1−e−g(t−(m+T1)))/g2−(1−e−h(t−(m+T1)))/h2)

,

m + T1 ≤ t < m + 1,

C0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0me
−g(t−m)

+
kCEm

g − h

(
e−h(t−m) − e−g(t−m)), m ≤ t < m + T1,

C0me
−g(t−m) +

kCEm

g − h

(
e−h(t−m) − e−g(t−m)) +

ku

gh

+
ku

gh

(
e−g(t−(m+T1))

g
− e−h(t−(m+T1))

h

)

, m + T1 ≤ t < m + 1,

CE(t) =

⎧
⎪⎨

⎪⎩

CEme
−h(t−m), m ≤ t < m + T1,

CEme
−h(t−m) +

u

h

(
1 − e−h(t−(m+T1))

)
, m + T1 ≤ t < m + 1;

(3.1)

(ii) if 0 < T1 < T2 < 1,
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x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xme
−d(t−m)−(rC0m/g)(1−e−g(t−m))−(krCEm/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)

,

m ≤ t < m + T1,

xme
−d(t−m)−(rC0m/g)(1−e−g(t−m))−(krCEm/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)·

e
−(kur/gh)(t−(m+T1))−(kur/(g−h))((1−e−g(t−(m+T1)))/g2−(1−e−h(t−(m+T1))/h2))

,

m + T1 ≤ t < m + T2,

(1 − E)xme
−d(t−m)−(rC0m/g)(1−e−g(t−m))−(krCEm/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)·

e
−(kur/gh)(t−(m+T1))−(kur/(g−h))((1−e−g(t−(m+T1)))/g2−(1−e−h(t−(m+T1)))/h2)

,

m + T2 ≤ t < m + 1,

C0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0me
−g(t−m) +

kCEm

g − h

(
e−h(t−m) − e−g(t−m)), m ≤ t < m + T1,

C0me
−g(t−m) +

kCEm

g − h

(
e−h(t−m) − e−g(t−m)) +

ku

gh

+
ku

gh

(
e−g(t−(m+T1))

g
− e−h(t−(m+T1))

h

)

, m + T1 ≤ t < m + 1,

CE(t) =

⎧
⎪⎨

⎪⎩

CEme
−h(t−m), m ≤ t < m + T1,

CEme
−h(t−m) +

u

h

(
1 − e−h(t−(m+T1))

)
, m + T1 ≤ t < m + 1,

(3.2)

with xm, C0m, and CEm denoting the densities of the population, the concentration
of the toxin in the organism, and the concentration of the toxin in the environment
at time m, respectively. For the Ricker function, that is, B(x) = be−x, (3.1) (or (3.2))
holds on the interval [m,m+1). After each successive birth pulse, more populations
are added, yielding

xm+1 =
(
1 + be−f(xm)

)
f(xm),

C0m+1 = C0me
−g +

kCEm

g − h

(
e−h − e−g

)
+
ku

gh
+

ku

g − h

(
e−g(1−T1)

g
− e−h(1−T1)

h

)

,

CEm+1 = CEme
−h +

u

h

(
1 − e−h(1−T1)

)
,

(3.3)
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where

f(xm) = (1 − E)xme
A,

C∗
0 =

ku

h
(
g − h

)
1 − e−h(1−T1)

1 − e−h
− ku

g
(
g − h

)
1 − e−g(1−T1)

1 − e−g
,

C∗
E =

u

h

1 − e−h(1−T1)

1 − e−h
,

(3.4)

where A denotes −d − (kur/gh)(1 − T1) − (r/g)(1 − e−g)(C0m − C∗
0) + ((kr/g(g −

h))(1 − e−g) − (kr/h(g − h))(1 − e−h))(CEm − C∗
E).

Similarly, for the Beverton-Holt function, that is, B(N) = b/q + xn we have the
following stroboscopic map of system (3.2):

xm+1 =
(

1 +
b

q + f(xm)n

)

f(xm),

C0m+1 = C0me
−g +

kCEm

g − h

(
e−h − e−g

)
+
ku

gh
+

ku

g − h

(
e−g(1−T1)

g
− e−h(1−T1)

h

)

,

CEm+1 = CEme
−h +

u

h

(
1 − e−h(1−T1)

)
.

(3.5)

Equations (3.3) and (3.5) are difference equations. They describe the density of the
population, the concentration of the toxin in the organism, and the concentration of the
toxin in the environment at t = m + 1 in terms of values at t = m. We are, in other
words, stroboscopically sampling at its pulsing period t = m + 1, m ∈ Z+. The dynamics
of system (3.3) and system (3.5), coupled with system (3.1) (or (3.2)), determine the
dynamical behavior of model (2.4) for the Ricker function and for the Beverton-Holt function,
respectively. Thus, in the following we will focus our attention on system (3.3) and system
(3.5) and investigate the various dynamical behaviors.

The dynamics of these nonlinear models can be studied as a function of any of the
parameters. Here we will focus on b for the Ricker function and the Beverton-Holt function
and expound the changes in the qualitative dynamics of models (3.3) and (3.5) as b varies.

3.2. Stability of Nonnegative Equilibria of System (3.3) and System (3.5)

The system (3.3) (or (3.5)) leads to a trivial equilibrium E0(0, C∗
0, C

∗
E) and a unique positive

equilibrium E∗ = (x∗, C∗
0, C

∗
E) if R0 > 1, which is listed in Table 1.

In the neighborhood of E0 (E∗), the dynamics of (3.3) and (3.5) are controlled by the
linearization

Ym+1 = HYm (3.6)



8 Discrete Dynamics in Nature and Society

Table 1: Nontrivial equilibria of the two models with birth pulses.

Function Equilibrium R0 = RR
0 (or RB

0 )

Ricker
x∗ = (1/(1 − E))ed+(kur/gh)(1−T1) lnRR

0

RR
0 = b((1/(1 − E))ed+(kur/gh)(1−T1) − 1)

−1
C∗

0 = (ku/h(g − h))(1 − e−h(1−T1)/1 − e−h) −
(ku/g(g − h))(1 − e−g(1−T1)/1 − e−g)
C∗

E = (u/h)(1 − e−h(1−T1)/1 − e−h)

Beverton-
Holt

x∗ = (1/1 − E)ed+(kur/gh)(1−T1) n

√

q(RB
0 − 1)

RB
0 = (b/q)((1/(1 − E))ed+(kur/gh)(1−T1) − 1)

−1
C∗

0 = (ku/h(g − h))(1 − e−h(1−T1)/1 − e−h) −
(ku/g(g − h))(1 − e−g(1−T1)/1 − e−g)
C∗

E = (u/h)(1 − e−h(1−T1)/1 − e−h)

with H equal to the linearization counterpart of (3.3) or (3.5) and Y = (x,C0, CE). E0 (or E∗)
is stable when the absolute values of eigenvalues of H are all less than one.

For the trivial equilibrium E0(0, C∗
0, C

∗
E) of (3.3),

HR
E0

=

⎛

⎜
⎜
⎜
⎜
⎝

1 + b

β
∗ ∗

0 e−g
k

g − h

(
e−h − e−g

)

0 0 e−h

⎞

⎟
⎟
⎟
⎟
⎠

, (3.7)

where β = (1/(1 − E))ed+(kur/gh)(1−T1) > 1, and there is no need to calculate the exact form of
(∗) as they are not required in the analysis that follows.

The eigenvalues ofHR
E0

are λ1 = (1 + b)/β, λ2 = e−g < 1, and λ3 = e−h < 1; if

1 + b

β
< 1, (3.8)

then E0 is locally asymptotically stable. In terms of the model parameters, and after a bit of
rearranging, for (3.3), inequality (3.8) reads

b < β − 1 ≡ bR0 . (3.9)

Similarly, for the trivial equilibrium E0(0, C∗
0, C

∗
E) of (3.5),

HB
E0

=

⎛

⎜
⎜
⎜
⎜
⎝

1
β

(

1 +
b

q

)

∗ ∗

0 e−g
k

g − h

(
e−h − e−g

)

0 0 e−h

⎞

⎟
⎟
⎟
⎟
⎠

. (3.10)

So if

b < q
(
β − 1

) ≡ bB0 , (3.11)
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then E0 is locally asymptotically stable.
Thus if inequality (3.9) (or (3.11)) holds true, E0(0, C∗

0, C
∗
E) is stable. For this range of

b, the population will be extinct. Otherwise, E0(0, C∗
0, C

∗
E) is unstable, and a small population

will be increased from E0 = (0, C∗
0, C

∗
E).

For the difference equations (3.3) and (3.5), we can also define the intrinsic net
reproductive number R0 (the average number of offspring which an individual produces
over the course of its lifetime). For (3.3), R0 is given by

RR
0 = b(β − 1)−1. (3.12)

For (3.5), R0 is given by

RB
0 =

b

q
(β − 1)−1. (3.13)

Inequality (3.9) (3.11) can be rewritten as RR
0 < 1 (RB

0 < 1). That is, if on average,
individuals do not replace themselves before they die, then the population is doomed.

Note that when b = b0 (i.e., RR
0 = RB

0 = 1), then E∗ = (0, C∗
0, C

∗
E) = E0. Thus as b

increases through b0, E∗ passes through the equilibrium at E0 and exchanges stability with it
in a transcritical bifurcation.

If RR
0 > 1, for the linearization H of (3.3) about this positive equilibrium E∗,

HR
E∗ =

⎛

⎜
⎜
⎜
⎜
⎝

1 −
(

1 − 1
β

)

ln
(

RR
0

)

∗ ∗

0 e−g
k

g − h

(
e−h − e−g

)

0 0 e−h

⎞

⎟
⎟
⎟
⎟
⎠

. (3.14)

There is no need to calculate the exact form of (∗) as it is not required in the analysis that
follows.

The eigenvalues ofHR
E∗ are λ′1 = 1−(1−1/β) lnRR

0 < 1, 0 < λ′2 = e−g < 1, 0 < λ′3 = e−h < 1;
if

1 −
(

1 − 1
β

)

lnRR
0 > −1, (3.15)

then E∗ is locally asymptotically stable.
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Figure 1: Bifurcation diagrams of (3.3) and (3.5) for the population x(t). Shown is the effect of parameter
b on the dynamical behavior. Parameter values are k = 1, g = 1.2, h = 2, r = 1, d = 0.4, u = 0.5, T1 =
0.25, T2 = 0.5, E = 0.5, q = 3, and n = 10. (a) Ricker function, b ∈ [0, 280]. (b) Beverton-Holt function,
b ∈ [0, 80].

Table 2: Critical value bc of the parameter b for each model. b must be less than bc for stability.

Function bc Interval of stability Type of bifurcation

Ricker bRc = (β − 1)e2β/(β−1) bR0 < b < bRc Flip bifurcation
Beverton-Holt bBc = q(β − 1)/(1 − 2/n(1 − 1/β)) bB0 < b < bBc Flip bifurcation

Similarly, the linearization H of (3.5) about this positive equilibrium E∗ is

HB
E∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − n

(

1 − 1
β

)(

1 − 1
RB

0

)

∗ ∗

0 e−g
k

g − h

(
e−h − e−g

)

0 0 e−h

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3.16)

If

1 − n

(

1 − 1
β

)(

1 − 1
RB

0

)

> −1, (3.17)

then E∗ is locally asymptotically stable.
The stability of E∗ is lost in only one way as b increases. Condition (3.15) or (3.17) is

violated for b > bc. The critical values are listed in Table 2 for each model. A flip bifurcation
occurs and the equilibrium loses stability to stable two cycles (see Figure 1).

For b < b0, equilibrium E0(0, C∗
0, C

∗
E) of system (3.3) (or system (3.5)) is stable. For this

range of b, trajectories of model (2.4) approach the origin.
For b0 < b < bc, the equilibrium E∗ of system (3.3) (or system (3.5)) is stable.

For this range of b, trajectories of model (3.3) and (3.5) approach the 1-period solution
(x̃(t), C̃0(t)), C̃E(t)) of model (2.4),
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Figure 2: Continued.
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Figure 2: Time series of population x(t) in model (2.4) with parameter values k = 1, g = 1.2, h = 2, r =
1, d = 0.4, u = 0.5, T1 = 0.25, E = 0.5, q = 3, and n = 10. (a)–(e) correspond to extinct solution, 1-period
solution, 2-period solution, 4-period solution, and chaos for Ricker function, and b = 2, 25, 100, 160, and
270 respectively; (a’)–(e’) correspond to extinct solution, 1-period solution, 2-period solution, 4-period
solution, and chaos for Beverton-Holt function, and b = 6, 9, 11, 12, and 17, respectively.
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Figure 3: The annual-sustainable yield of (3.3) and (3.5), showing the relationship between the maximum
annual-sustainable and the harvesting timing. Parameter values are k = 1, g = 1.2, h = 2, r = 1, d =
0.4, u = 0.5, and T1 = 0.5. (a) Ricker function, b = 25. (b) Beverton-Holt function, b = 50, c = 3, and n = 9.
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Figure 4: Bifurcation diagrams of (3.3) and (3.5) for the population x(t). Shown is the effect of parameter u
on the dynamical behavior. Parameter values are k = 1, g = 1.2, h = 2, r = 1, d = 0.4, E = 0.5, and T1 =
0.25, T2 = 0.5. (a) Ricker function, b = 200. (b) Beverton-Holt function, b = 50, q = 3, and n = 10.
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(i) If 0 < T2 < T1 < 1,

x̃(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗e−d(t−m)−(rC∗
0/g)(1−e−g(t−m))−(krC∗

E/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g),

m ≤ t < m + T2,

(1 − E)x∗e−d(t−m)−(rC∗
0/g)(1−e−g(t−m))−(krC∗

E/(g−h))(1−e−h(t−m)/h−(1−e−g(t−m))/g),

m + T2 ≤ t < m + T1,

(1 − E)x∗e−d(t−m)−(rC∗
0/g)(1−e−g(t−m))−(krC∗

E/(g−h))(1−e−h(t−m)/h−(1−e−g(t−m))/g)·
e−(kur/gh)(t−(m+T1))−(kur/(g−h))(1−e−g(t−(m+T1))/g2−(1−e−h(t−(m+T1)))/h2),

m + T1 ≤ t < m + 1,

C̃0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C∗
0e

−g(t−m) +
kC∗

E

g − h

(
e−h(t−m) − e−g(t−m)), m ≤ t < m + T1,

C∗
0e

−g(t−m) +
kC∗

E

g − h

(
e−h(t−m) − e−g(t−m)) +

ku

gh

+
ku

gh

(
e−g(t−(m+T1))

g
− e−h(t−(m+T1))

h

)

, m + T1 ≤ t < m + 1,

C̃E(t) =

⎧
⎪⎨

⎪⎩

C∗
Ee

−h(t−m), m ≤ t < m + T1,

C∗
Ee

−h(t−m) +
u

h

(
1 − e−h(t−(m+T1))

)
, m + T1 ≤ t < m + 1.

(3.18)

(ii) if 0 < T1 < T2 < 1,

x̃(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗e−d(t−m)−(rC∗
0/g)(1−e−g(t−m))−(krC∗

E/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g),

m ≤ t < m + T1,

x∗e−d(t−m)−(rC∗
0/g)(1−e−g(t−m))−(krC∗

E/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)·
e−(kur/gh)(t−(m+T1))−(kur/(g−h))((1−e−g(t−(m+T1))/g2)−(1−e−h(t−(m+T1))/h2)),

m + T1 ≤ t < m + T2,

(1 − E)x∗e−d(t−m)−(rC∗
0/g)(1−e−g(t−m))−(krC∗

E/(g−h))((1−e−h(t−m))/h−(1−e−g(t−m))/g)·
e−(kur/gh)(t−(m+T1))−(kur/(g−h))((1−e−g(t−(m+T1)))/g2−(1−e−h(t−(m+T1)))/h2),

m + T2 ≤ t < m + 1,

C̃0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C∗
0e

−g(t−m) +
kC∗

E

g − h

(
e−h(t−m) − e−g(t−m)), m ≤ t < m + T1,

C∗
0e

−g(t−m) +
kC∗

E

g − h

(
e−h(t−m) − e−g(t−m)) +

ku

gh

+
ku

gh

(
e−g(t−(m+T1))

g
− e−h(t−(m+T1))

h

)

, m + T1 ≤ t < m + 1
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C̃E(t) =

⎧
⎪⎨

⎪⎩

C∗
Ee

−h(t−m), m ≤ t < m + T1,

C∗
Ee

−h(t−m) +
u

h

(
1 − e−h(t−(m+T1))

)
, m + T1 ≤ t < m + 1.

(3.19)

That is, 1-period solution (3.18) (or (3.19))of model (2.4) is locally asymptotically
stable. Right at b = b0, there is a transcritical bifurcation of periodic solutions. (0, 0, 0) and
(x̃(t), C̃0(t, C̃E(t)) pass through each other and exchange stability.

As b increases beyond bc, it passes through a cascade of period-doubling bifurcations
that eventually lead to chaotic dynamics and many other complexities, and so 2-period
solutions, 4-period solutions,. . ., chaotic strange attractors occur in model (2.4).

Figure 2 gives extinct solution, 1-period solution, 2-period solutions, 4-period
solutions, and chaotic strange attractors of model (2.4) for Ricker function and Beverton-
Holt function, respectively, and they correspond to trivial equilibrium E0, unique positive
equilibrium E∗, 2-period points, 4-period points, and chaos of model (3.3) and model (3.5),
respectively.

4. The Effects of Pulse Harvesting Time on the Maximum
Annual-Sustainable Yield

Many authors are interested in studying the optimal management of renewable resources,
which has a direct relationship to sustainable development. From the point of view of
ecological managers, it may be desirable to have a unique positive equilibrium which
is asymptotically stable, in order to plan harvesting strategies and keep sustainable
development of system. In this section, we will study how the pulse harvesting affects the
maximum annual-sustainable yield.

For b0 < b < bc, the equilibrium E∗(x∗, C∗
0, C

∗
E) of system (3.3) (or system (3.5))

is stable. For this range of b, trajectories of model (2.4) approach the periodic solution
(x̃(t), C̃0(t), C̃E(t)) with period 1, that is, periodic solution (3.18) (or (3.19)) of system (2.4)
is locally asymptotically stable.

Since we only need to consider the annual-sustainable yield in one period, without
loss of generality we can choose m = 0, and the annual-sustainable yield is

X(E) = EX(m + T2)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ex∗e−dT2−(rC
∗
0/g)(1−e−gT2 )−(krC∗

E/(g−h))((1−e−hT2 )/h−(1−e−gT2 )/g),

if T2 < T1,

Ex∗e−dT2−(rC
∗
0/g)(1−e−gT2 )−(krC∗

E/(g−h))((1−e−hT2 )/h−(1−e−gT2 )/g)·
e−(kur/gh)(T2−T1)−(kur/(g−h))((1−e

−g(T2−T1))/g2−(1−e−h(T2−T1))/h2)

if T1 < T2.

(4.1)

Our main purpose is to get an E such that X(E) reaches its maximum at E and
study how the maximum annual- sustainable yield X(E) changes as T2 varies. Numerical
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analysis implies that there exists a unique E such that X(E) reaches its maximum for each
fixed T1 and T2 (see Figure 3. for Figure 3(a), X(E) reaches its maximum at E = 0.84; For
Figure 3(b), X(E) reaches its maximum at E = 0.89). Also from Figure 3 we can observe that
the maximum annual-sustainable yield dramatically depends on the pulse harvesting time,
and the maximum annual-sustainable harvest yield is the largest at T = 0.1 and the smallest
at T = 0.9. It shows that if we harvest immediately after the birth pulse, the largest maximum
annual-sustainable harvest yield is obtained and that if we harvest near the time of birth
pulse, the maximum annual-sustainable yield is the smallest.

5. The Effect of the Amount of Toxin Input on the Size of Population

From Figure 4, we can see that when the positive equilibrium is stable for each model, the
population size x∗ begins to rise and then drops with the increase of toxin input. In the
following, we will study how the amount u of toxin input influences the population size
x∗ when the equilibrium is stable.

For Ricker function, define P = (kr/gh)(1 − T1). R0 > 1 is equivalent to u < (ln(1 −
E)(1 + b) − d)/P ≡ u0. So if u < u0, there exists a unique positive equilibrium of system
(3.3). From Figure 4(a), we know if the amount of toxicant input u is larger than a threshold
uc < u0, then this positive equilibrium is stable.

Lemma 5.1. For any x ∈ R, one has xe−x < e−1

Proof. Let f(x) = xe−x, then f ′(x) = (1 − x)e−x, f ′′(x) = (−2 + x)e−x; so we have f ′(1) =
0, f ′′(1) = −e−1 < 0, which implies that x = 1 is the maximum of f(x). This completes the
proof.

Definition 5.2. The Lambert W-function is defined to be a multivalued inverse of the function
z 	→ z exp(z) satisfying W(z) exp(W(z)) = z.

For convenience, we denote it by W. First of all, the function z exp z has the positive
derivative (z + 1)ez if z > 1. Define the inverse function of z exp(z)) restricted to the interval
[−1,∞) as W(0, z) which is monotonic increasing. Similarly, we define the inverse function
of z exp(z) restricted to the interval (−∞,−1] as W(−1, z) which is monotonic decreasing.
In view of the nature of this study, both W(0, z) and W(−1, z) will be employed only for
z ∈ (− exp(−1), 0) because both functions are real value for z in this interval. For more details
of the concepts and properties of the Lambert W-function, see [39–41].

Theorem 5.3. Assume uc < u < u0.

(i) If b < e2, the population size x∗ will be decreasing with the increase of toxin input.

(ii) If b > e2 and

(A) max{(ln(1 − E)(1 − 1/W(−1,−e/b)) − d)/P, uc} < u < (ln(1 − E)(1 −
1/W(0,−e/b))− d)/P , the population size x∗ will be increasing with the increase of
toxin input.

(B) (ln(1 − E)(1 − (1/W(0,−e/b)) − d)/P < u < u0, the population size x∗ will be
decreasing with the increase of toxin input.
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Proof. Since

x∗ =
1

1 − E
ed+(kur/gh)(1−T1) ln

b

(1/(1 − E))ed+(kur/gh)(1−T1) − 1

=
1

1 − E
ed+Pu ln

b

(1/(1 − E))ed+Pu − 1
,

(5.1)

we have

∂x∗

∂u
= − 1

1 − E
Ped+Pu

(

ln
(1/(1 − E))ed+Pu − 1

b
+

(1/(1 − E))ed+Pu

(1/(1 − E))ed+Pu − 1

)

. (5.2)

(i) If b < e2, from Lemma 5.1, we have

1
(1/(1 − E))ed+Pu − 1

e−1/((1/(1−E))e
d+Pu−1) < e−1 <

e

b
. (5.3)

So

(1/1 − E)ed+Pu − 1
b

> e−(1/(1−E))e
d+Pu/((1/(1−E))ed+Pu−1) (5.4)

which implies that

ln
(1/(1 − E))ed+Pu − 1

b
+

(1/(1 − E))ed+Pu

(1/(1 − E))ed+Pu − 1
> 0. (5.5)

Thus, we have ∂x∗/∂u < 0 which means that the population size x∗ will be
decreasing with the increase of toxin input.

(ii) If b > e2, we have −e/b ∈ (−e−1, 0). Both W(−1,−e/b)and W(0,−e/b) are
meaningful.

(A) If max{(ln(1 − E)(1 − 1/W(−1,−e/b)) − d)/P, uc} < u < (ln 2(1 − E) − d)/P ,
then −1/((1/(1 − E))ed+Pu − 1) < −1 and

−1/
(
(1/(1 − E))ed+Pu − 1

)
> W(−1,−e/b). (5.6)

So,

− 1
(1/(1 − E))ed+Pu − 1

e−1/(1/(1−E)e
d+Pu−1) < −e

b
(5.7)
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which implies that

ln
(1/(1 − E))ed+Pu − 1

b
+

(1/(1 − E))ed+Pu

(1/(1 − E))ed+Pu − 1
< 0 (5.8)

and ∂x∗/∂u > 0.
(B) If (ln 2(1−E)−d)/P < u < (ln(1−E)(1−1/W(0,−e/b))−d)/P , then −1/(1/(1−

E))ed+Pu − 1 > −1 and −1/(1/(1 − E))ed+Pu − 1 < W(0,−e/b). So,

− 1
(1/(1 − E))ed+Pu − 1

e1/(1/(1−E))e
d+Pu−1 < −e

b
(5.9)

which implies that

ln
(1/(1 − E))ed+Pu − 1

b
+

(1/(1 − E))ed+Pu

(1/(1 − E))ed+Pu − 1
< 0 (5.10)

and ∂x∗/∂u > 0. So if max{(ln(1 − E)(1 − 1/W(−1,−e/b)) − d)/P, uc} < u <
(ln(1 − E)(1 − 1/W(0,−e/b)) − d)/P , the population size x∗ will be increasing
with the increase of toxin input.

(C) If (ln(1 − E)(1 − 1/W(0,−e/b)) − d)/P < u < (ln(1 − E)(1 + b) − d)/P , then
−1/((1/(1 − E))ed+Pu − 1) > W(0,−e/b). So,

− 1
(1/(1 − E))ed+Pu − 1

e−(1/(1/(1−E))e
d+Pu−1) > −e

b
(5.11)

which implies that

ln
(1/(1 − E))ed+Pu − 1

b
+

(1/(1 − E))ed+Pu

(1/(1 − E))ed+Pu − 1
> 0 (5.12)

and ∂x∗/∂u < 0. So if (ln(1 − E)(1 − 1/W(−1,−e/b)) − d)/P < u < u0, the
population size x∗ will be decreasing with the increase of toxin input.

This completes the proof.

By similar analysis, we can obtain similar conclusions for Beverton-Holt model.
For Theorem 5.3, we give the following biological implication.

Remark 5.4. When the birth rate of resource population is comparatively lower, resources
will be relatively abundant, and the size of the population will decrease with the increase
of the amount of toxin input. That will make the pulse birth rate (B(x) = b exp(−x) for Ricker
function and B(x) = b/(q+xn) for the Beverton-Holt function) of the population grow and the
internal competition harsh. At this moment, the increase of the number of toxin will weaken
the internal competition and prompt the size of the population to expand. However, when the
number of toxin increases to some degree, the number of the population born in an impulsive
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period will be smaller than the total of the number of natural death and death resulting from
toxin, and so the size of the population will decline.

6. Conclusion

Environmental pollution in the last decades has received a great deal of attention from several
researchers. The main objective of the present paper is to study the dynamics of a birth-
pulse single-species model with the restricted toxin input and pulse harvesting in a closed
polluted environment. We have obtained the complete expression for the 1-period solution
and the threshold conditions for their stability. We show the relationship both between pulse
harvesting time and the maximum annual-sustainable yield and between the amount of toxin
input and the stable equilibrium population size. Our results show that the best time of
harvesting is immediately after the birth pulse and that when the birth rate of the population
is comparatively lower, the population size will be decreasing with the increase of the amount
of toxin input; they also show that then with the increase of birth rate, the stable population
size may begin to rise and then drop with the increase of toxin input. From the viewpoint of
biology, the mathematical results are full of biological meanings and can be used to provide
reliable foundations for making decisions. To protect the population from extinction and
maintain the quality of the recourse population, human activity must be controlled to restrict
the toxin input to a certain extent. Numerical simulations which we have performed also
show that birth pulse and pulse harvesting make the single-species model in a restricted
polluted environment we consider more complex and dominated by periodic and chaotic
solutions.

Our results about harvesting and those in [4] all conclude that harvest timing is of
large importance to annual yield, whether it is pulse harvesting or open/closed piecewise
continuous-time harvesting. Harvesting too late may overexploit a population with much
smaller maximum annual yield.

There is still a tremendous amount of work to do. From the point of reality, it would
be interesting to study the emerging dynamical behavior of a stage structure birth-pulse
single-species model with restricted toxin input and pulse harvesting for mature resource
population. But it is very difficult to discuss this system, because the stage-structure makes
the dynamics of the system very complicate. We hope this issue will be well addressed in the
near future, and we leave it for the subject matter of our future research.
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