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Th. M. Rassias (1984) proved that the norm defined over a real vector space X is induced by an
inner product if and only if for a fixed integer n ≥ 2,

∑n
i=1 ‖xi − (1/n)

∑n
j=1 xj‖2 =

∑n
i=1 ‖xi‖2 −

n‖(1/n)∑n
i=1 xi‖2 holds for all x1, . . . , xn ∈ X. The aim of this paper is to extend the applications

of the fixed point alternative method to provide a fuzzy stability for the functional equation∑n
i=1 f(xi− (1/n)

∑n
j=1 xj) =

∑n
i=1 f(xi)−nf((1/n)

∑n
i=1 xi)which is said to be a functional equation

associated with inner product spaces.

1. Introduction

Studies on fuzzy normed linear spaces are relatively recent in the field of fuzzy functional
analysis. In 1984, Katsaras [1] first introduced the notion of fuzzy norm on a linear space
and at the same year Wu and Fang [2] also introduced a notion of fuzzy normed space and
gave the generalization of the Kolmogoroff normalized theorem for a fuzzy topological linear
space. Somemathematicians have defined fuzzy norms on a vector space from various points
of view [3–6].

Nowadays, fixed point and operator theory play an important role in different areas of
mathematics, and its applications, particularly in mathematics, physics, differential equation,
game theory and dynamic programming. Since fuzzy mathematics and fuzzy physics along
with the classical ones are constantly developing, the fuzzy type of the fixed point and
operator theory can also play an important role in the new fuzzy area and fuzzymathematical
physics. Many authors [4, 7–9] have also proved some different type of fixed point theorems
in fuzzy (probabilistic) metric spaces and fuzzy normed linear spaces. In 2003, Bag and
Samanta [10] modified the definition of Cheng and Mordeson [11] by removing a regular
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condition. They also established a decomposition theorem of a fuzzy norm into a family of
crisp norms and investigated some properties of fuzzy normed linear spaces [12].

One of the most interesting questions in the theory of functional analysis concerning
the Ulam stability problem of functional equations is as follows: when is it true that a
mapping satisfying a functional equation approximately must be close to an exact solution of
the given functional equation?

The first stability problem concerning group homomorphisms was raised by Ulam
[13] in 1940 and affirmatively solved by Hyers [14]. The result of Hyers was generalized
by Aoki [15] for approximate additive function and by Th. M. Rassias [16] for approximate
linear functions by allowing the difference Cauchy equation ‖f(x1 + x2) − f(x1) − f(x2)‖ to
be controlled by ε(‖x1‖p + ‖x2‖p). Taking into consideration a lot of influence of Ulam, Hyers
and Th. M. Rassias on the development of stability problems of functional equations, the
stability phenomenon that was proved by Th. M. Rassias is called the generalized Hyers-
Ulam stability. In 1994, a generalization of Th. M. Rassias theorem was obtained by Găvruţa
[17], who replaced ε(‖x1‖p + ‖x2‖p) by a general control function ϕ(x1, x2).

On the other hand, J. M. Rassias [18–25] considered the Cauchy difference controlled
by a product of different powers of norm. However, there was a singular case; for this
singularity a counterexample was given by Găvruţa [26]. This stability phenomen on is called
the Ulam-Găvruţa-Rassias stability (see also [27]).

Theorem 1.1 (J. M. Rassias [18]). LetX be a real normed linear space and Y a real complete normed
linear space. Assume that f : X → Y is an approximately additive mapping for which there exist
constants θ ≥ 0 and p, q ∈ R such that r = p + q /= 1 and f satisfies inequality

∥
∥f
(
x + y

) − f(x) − f
(
y
)∥
∥ ≤ θ‖x‖p∥∥y∥∥q, (1.1)

for all x, y ∈ X, then there exists a unique additive mapping L : X → Y satisfying

∥
∥f(x) − L(x)

∥
∥ ≤ θ

|2r − 2| ‖x‖
r , (1.2)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t → f(tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear mapping.

Very recently, K. Ravi [28] in the inequality (1.1) replaced the bound by a mixed one
involving the product and sum of powers of norms, that is, θ{‖x‖p‖y‖p + (‖x‖2p + ‖y‖2p)}.

For more details about the results concerning such problems and mixed product-sum
stability (J. M. Rassias Stability), the reader is referred to [29–41].

Quadratic functional equations were used to characterize inner product spaces [42–
45]. A square norm on an inner product space satisfies the important parallelogram equality

‖x1 + x2‖2 + ‖x1 − x2‖2 = 2
(
‖x1‖2 + ‖x1‖2

)
. (1.3)

The functional equation

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)

(1.4)
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is related to a symmetric biadditive function [46, 47]. It is natural that this equation is called
a quadratic functional equation, and every solution of the quadratic equation (1.4) is said to
be a quadratic function.

It was shown by Th. M. Rassias [48] that the norm defined over a real vector space X
is induced by an inner product if and only if for a fixed integer n ≥ 2 as follows:

n∑

i=1

∥
∥
∥
∥
∥
∥
xi − 1

n

n∑

j=1

xj

∥
∥
∥
∥
∥
∥

2

=
n∑

i=1

‖xi‖2 − n

∥
∥
∥
∥
∥

1
n

n∑

i=1

xi

∥
∥
∥
∥
∥

2

, (1.5)

for all x1, . . . , xn ∈ X. In [49], Park proved the generalizedHyers-Ulam stability of a functional
equation associated with inner product spaces:

f

(
x − y

2

)

+ f

(
y − x

2

)

= f(x) + f
(
y
) − 2f

(
x + y

2

)

, (1.6)

in fuzzy normed spaces.
The main objective of this paper is to prove the the generalized Hyers-Ulam stability

of the following functional equation associated with inner product spaces

n∑

i=1

f

⎛

⎝xi − 1
n

n∑

j=1

xj

⎞

⎠ =
n∑

i=1

f(xi) − nf

(
1
n

n∑

i=1

xi

)

, (1.7)

in fuzzy normed spaces, based on the fixed point method. Interesting new results concerning
functional equations associated with inner product spaces have recently been obtained by
Park et al. [50–52] and Najati and Th. M. Rassias [53] as well as for the fuzzy stability of a
functional equation associated with inner product spaces by Park [49].

The stability of different functional equations in fuzzy normed spaces and random
normed spaces has been studied in [20, 21, 54–77]. In this paper, we prove the generalized
fuzzy stability of a functional equation associated with inner product spaces (1.7).

2. Preliminaries

We start our work with the following notion of fixed point theory. For the proof, refer to [78].
For an extensive theory of fixed point theorems and other nonlinear methods, the reader is
referred to the book of Hyers et al. [79].

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a Lipschitz
condition with Lipschitz constant L if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤
Ld(x, y) for all x, y ∈ X. If the Lipschitz constant L is less than 1, then the operator T is called
a strictly contractive operator. Note that the distinction between the generalized metric and
the usual metric is that the range of the former is permitted to include the infinity.

We recall the following theorem by Margolis and Diaz.



4 Discrete Dynamics in Nature and Society

Theorem 2.1. Suppose that one is given a complete generalized metric space (Ω, d) and a strictly
contractive function T : Ω → Ω with Lipschitz constant L, then for each given x ∈ Ω, either

d
(
Tmx, Tm+1x

)
= ∞ ∀m ≥ 0, (2.1)

or other exists a natural number m0 such that

(i) d(Tmx, Tm+1x) < ∞ for all m ≥ m0;

(ii) the sequence {Tmx} is convergent to a fixed point y∗ of T ;

(iii) y∗ is the unique fixed point of T in Λ = {y ∈ Ω : d(Tm0x, y) < ∞};
(iv) d(y, y∗) ≤ (1/(1 − L))d(y, Ty) for all y ∈ Λ.

Next, we define the notion of a fuzzy normed linear space.
Let X be a real linear space. A function N : X × R → [0, 1] is said to be a fuzzy norm

on X [10] if and only if the following conditions are satisfied:

(N1) N(x, t) = 0 for all x ∈ X and t ≤ 0;

(N2) x = 0 if and only ifN(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t/|c|) if c /= 0;

(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)} for all x, y ∈ X and all s, t ∈ R;

(N5) N(x, ·) is a nondecreasing function on R and limt→∞N(x, t) = 1 for all x ∈ X.

In the following we will suppose that N(x, · ) is left continuous for every x.
A fuzzy normed linear space is a pair (X,N), where X is a real linear space andN is a

fuzzy norm on X.
Let (X, ‖ · ‖) be a normed linear space, then

N(x, t) =

⎧
⎪⎨

⎪⎩

t

t + ‖x‖ , t > 0, x ∈ X,

0, t ≤ 0, x ∈ X

(2.2)

is a fuzzy norm on X.
Let (X,N) be a fuzzy normed linear space. A sequence {xn} in X is said to be

convergent if there exists x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In that
case, x is called the limit of the sequence {xn} and we writeN − limn→∞xn = x.

A sequence {xn} in X is called Cauchy if for each ε > 0 and each δ > 0 there exists n0 ∈
N such thatN(xm −xn, δ) > 1−ε (m,n ≥ n0). If each Cauchy sequence is convergent, then the
fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

From now on, let X be a linear space, (Z,N ′) be a fuzzy normed space and (Y,N) be a
fuzzy Banach space. For convenience, we use the following abbreviation for a given function
f : X → Y :

Δf(x1, . . . , xn) =
n∑

i=1

f

⎛

⎝xi − 1
n

n∑

j=1

xj

⎞

⎠ −
n∑

i=1

f(xi) + nf

(
1
n

n∑

i=1

xi

)

, (2.3)

for all x1, . . . , xn ∈ X, where n ≥ 2 is a fixed integer.
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3. Fuzzy Approximation

In the following theorem, we prove the fuzzy stability of the functional equation (1.7) via
fixed point method, for an even case.

Theorem 3.1. Let φ : X → (Z,N ′) be a function such that, φ(2x) = αφ(x) for some real number α
with |α| < 4. Suppose that an even function f : X → (Y,N) with f(0) = 0 satisfies the inequality

N
(
Δf(x1, . . . , xn), t1 + · · · + tn

) ≥ min
{
N ′(φ(x1), t1

)
, . . . ,N ′(φ(xn), tn

)}
(3.1)

for all x1, . . . , xn ∈ X and all t1, . . . , tn > 0, then there exists a unique quadratic functionQ : X → Y
such that Q(x) = N − limm→∞(f(2mx)/4m) and

N
(
f(x) −Q(x), t

) ≥ Me(x, (4 − α)t), (3.2)

for all x ∈ X and all t > 0, where

Me(x, t) = min
{

N ′
(

φ(nx),
2n − 2
2n2 + 9n

t

)

,N ′
(

φ((n − 1)x),
2n − 2
2n2 + 9n

t

)

,

N ′
(

φ(x),
2n − 2
2n2 + 9n

t

)

,N ′
(

φ(0),
2n − 2
2n2 + 9n

t

)}

.

(3.3)

Proof. Letting x1 = nx1, xi = nx2 (i = 2, . . . , n), and ti = t (i = 1, . . . , n) in (3.1) and using the
evenness of f , we obtain

N
(
nf(x1 + (n − 1)x2) + f((n − 1)(x1 − x2)) + (n − 1)f(x1 − x2) − f(nx1) − (n − 1)f(nx2), nt

)

≥ min
{
N ′(φ(nx1), t

)
,N ′(φ(nx2), t

)}
,

(3.4)

for all x1, x2 ∈ X and all t > 0. Interchanging x1 with x2 in (3.4) and using the evenness of f ,
we obtain

N
(
nf((n − 1)x1 + x2) + f((n − 1)(x1 − x2)) + (n − 1)f(x1 − x2) − (n − 1)f(nx1) − f(nx2), nt

)

≥ min
{
N ′(φ(nx1), t

)
,N ′(φ(nx2), t

)}
,

(3.5)

for all x1, x2 ∈ X and all t > 0. It follows from (3.4) and (3.5) that

N
(
nf((n − 1)x1 + x2) + nf(x1 + (n − 1)x2) + 2f((n − 1)(x1 − x2)) + 2(n − 1)f(x1 − x2)

−nf(nx1) − nf(nx2), 2nt
) ≥ min

{
N ′(φ(nx1), t

)
,N ′(φ(nx2), t

)}
,

(3.6)
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for all x1, x2 ∈ X and all t > 0. Setting x1 = nx1, x2 = −nx2, xi = 0 (i = 3, . . . , n) and ti = t (i =
1, . . . , n) in (3.1) and using the evenness of f , we obtain

N
(
f((n − 1)x1 + x2) + f(x1 + (n − 1)x2) + 2(n − 1)f(x1 − x2) − f(nx1) − f(nx2), nt

)

≥ min
{
N ′(φ(nx1), t

)
,N ′(φ(−nx2), t

)
,N ′(φ(0), t

)}
,

(3.7)

for all x1, x2 ∈ X and all t > 0. So we obtain from (3.6) and (3.7) that

N

(

f((n − 1)(x1 − x2)) − (n − 1)2f(x1 − x2),
n2 + 2n

2
t

)

≥ min
{
N ′(φ(nx1), t

)
,N ′(φ(nx2), t

)
,N ′(φ(−nx2), t

)
,N ′(φ(0), t

)}
,

(3.8)

for all x1, x2 ∈ X and all t > 0. So

N

(

f((n − 1)x) − (n − 1)2f(x),
n2 + 2n

2
t

)

≥ min
{
N ′(φ(nx), t

)
,N ′(φ(0), t

)}
, (3.9)

for all x ∈ X and all t > 0. Putting x1 = nx, xi = 0 (i = 2, . . . , n) and ti = t (i = 1, . . . , n) in (3.1),
we get

N
(
f(nx) − f((n − 1)x) − (2n − 1)f(x), nt

) ≥ min
{
N ′(φ(nx), t

)
,N ′(φ(0), t

)}
, (3.10)

for all x ∈ X and all t > 0. It follows from (3.9) and (3.10) that

N

(

f(nx) − n2f(x),
n2 + 4n

2
t

)

≥ min
{
N ′(φ(nx), t

)
,N ′(φ(0), t

)}
, (3.11)

for all x ∈ X and all t > 0. Letting x2 = −(n − 1)x1 in (3.7) and replacing x1 by x/n in the
obtained inequality, we get

N
(
f((n − 1)x) − f((n − 2)x) − (2n − 3)f(x), nt

)

≥ min
{
N ′(φ(x), t

)
,N ′(φ((n − 1)x), t

)
,N ′(φ(0), t

)}
,

(3.12)

for all x ∈ X and all t > 0. It follows from (3.9), (3.10), (3.11) and (3.12) that

N

(

f((n − 2)x) − (n − 2)2f(x),
n2 + 4n

2
t

)

≥ min
{
N ′(φ(nx), t

)
,N ′(φ((n − 1)x), t

)
,N ′(φ(x), t

)
,N ′(φ(0), t

)}
,

(3.13)
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for all x ∈ X and all t > 0. Applying (3.11) and (3.13), we obtain

N
(
f(nx) − f((n − 2)x) − 4(n − 1)f(x),

(
n2 + 4n

)
t
)

≥ min
{
N ′(φ(nx), t

)
,N ′(φ((n − 1)x), t

)
,N ′(φ(x), t

)
,N ′(φ(0), t

)}
,

(3.14)

for all x ∈ X and all t > 0. Setting x1 = x2 = nx, xi = 0 (i = 3, . . . , n) and ti = t (i = 1, . . . , n) in
(3.1), we obtain

N
(
f((n − 2)x) + (n − 1)f(2x) − f(nx),

n

2
t
)
≥ min

{
N ′(φ(nx), t

)
,N ′(φ(0), t

)}
, (3.15)

for all x ∈ X and all t > 0. It follows from (3.14) and (3.15) that

N

(

f(2x) − 4f(x),
2n2 + 9n
2n − 2

t

)

≥ min
{
N ′(φ(nx), t

)
,N ′(φ((n − 1)x), t

)
,N ′(φ(x), t

)
,N ′(φ(0), t

)}
,

(3.16)

for all x ∈ X and all t > 0. Therefore

N
(
f(2x) − 4f(x), t

) ≥ Me(x, t) (3.17)

for all x ∈ X and all t > 0, which implies that

N

(
f(2x)

4
− f(x), t

)

≥ Me(x, 4t), (3.18)

for all x ∈ X and all t > 0. Let S be the set of all even functions h : X → Y with h(0) = 0 and
introduce a generalized metric on S as follows:

d(h, k) = inf{u ∈ R
+ : N(h(x) − k(x), ut) ≥ Me(x, t), ∀x ∈ X, ∀t > 0}, (3.19)

where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is a generalized complete metric
space [80].

Without loss of generality, we consider α > 0. Let us now consider the function J : S →
S defined by Jh(x) := h(2x)/4 for all h ∈ S and x ∈ X. Let f, g ∈ S such that d(f, g) < ε, then

N
(
Jg(x) − Jf(x),

αu

4
t
)
= N

(
g(2x) − f(2x), αut

) ≥ Me(2x, αt) = Me(x, t), (3.20)

that is, if d(f, g) < ε we have d(Jf, Jg) < (α/4)ε. This means that d(Jf, Jg) ≤ (α/4)d(f, g)
for all f, g ∈ S, that is, J is a strictly contractive self-function on Swith the Lipschitz constant
α/4.
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It follows from (3.18) that

N

(

Jf(x) − f(x),
t

4

)

≥ Me(x, t), (3.21)

for all x ∈ X and all t > 0, which implies that d(Jf, f) ≤ 1/4.
Due to Theorem 2.1, there exists a function Q : X → Y such that Q is a fixed point of

J , that is, Q(2x) = 4Q(x) for all x ∈ X.
Also, d(Jmg,Q) → 0 as m → ∞, implies the equality N − limm→∞(f(2mx)/4m) =

Q(x) for all x ∈ X. Setting xi = 2mxi (i = 1, . . . , n) and ti = t/n (i = 1, . . . , n) in (3.1), we obtain
that

N

(
Δf(2mx1, . . . , 2mxn)

4m
, t

)

≥ min
{

N ′
(

φ(2mx1), 4m
t

n

)

, . . . ,N ′
(

φ(2mxn), 4m
t

n

)}

= min
{

N ′
(

φ(2mx1), αm

(
4
α

)m t

n

)

, . . . ,N ′
(

φ(2mxn), αm

(
4
α

)m t

n

)}

= min
{

N ′
(

αmφ(x1), αm

(
4
α

)m t

n

)

, . . . ,N ′
(

αmφ(xn), αm

(
4
α

)m t

n

)}

= min
{

N ′
(

φ(x1),
(
4
α

)m t

n

)

, . . . ,N ′
(

φ(xn),
(
4
α

)m t

n

)}

(3.22)

for all x1, . . . , xn ∈ X and all t > 0. By letting m → ∞ in (3.22), we find that
N(ΔQ(x1, . . . , xn), t) = 1 for all t > 0, which implies ΔQ(x1, . . . , xn) = 0 = 0. Thus Q satisfies
(1.7). Hence the function Q : X → Y is quadratic (See Lemma 2.2 of [53]).

According to the fixed point alterative, since Q is the unique fixed point of J in the set
Ω = {g ∈ S : d(f, g) < ∞}, Q is the unique function such that

N
(
f(x) −Q(x), ut

) ≥ Me(x, t), (3.23)

for all x1, . . . , xn ∈ X and all t > 0. Again using the fixed point alterative, we get

d
(
f,Q
) ≤ 1

1 − L
d
(
f, Jf

) ≤ 1
4(1 − L)

=
1

4(1 − α/4)
, (3.24)

which implies the inequality

N

(

f(x) −Q(x),
t

4 − α

)

≥ Me(x, t), (3.25)
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for all x ∈ X and all t > 0. So

N
(
f(x) −Q(x), t

) ≥ Me(x, (4 − α)t), (3.26)

for all x ∈ X and all t > 0. This completes the proof.

In the following theorem, we prove the fuzzy stability of the functional equation (1.7)
via fixed point method, for an odd case.

Theorem 3.2. Let φ : X → (Z,N ′) be a function such that φ(2x) = αφ(x) for some real number
α with |α| < 2. Suppose that an odd function f : X → (Y,N) satisfies the inequality (3.1) for all
x1, . . . , xn ∈ X and all t1, . . . , tn > 0, then there exists a unique additive function A : X → Y such
that A(x) = N − limm→∞(f(2mx)/2m) and

N
(
f(x) −A(x), t

) ≥ Mo(x, (2 − α)t) (3.27)

for all x ∈ X and all t > 0, where

Mo(x, t) = min
{

N ′
(

φ(2x),
2

n2 + 4n
t

)

,N ′
(

φ(x),
2

n2 + 4n
t

)

,

N ′
(

φ(−x), 2
n2 + 4n

t

)

,N ′
(

φ(0),
2

n2 + 4n
t

)}

.

(3.28)

Proof. Letting x1 = nx1, xi = nx′
1 (i = 2, . . . , n) and ti = t (i = 1, . . . , n) in (3.1) and using the

oddness of f , we obtain that

N
(
nf
(
x1 + (n − 1)x′

1

)
+ f
(
(n − 1)

(
x1 − x′

1

)) − (n − 1)f
(
x1 − x′

1

)

− f(nx1) − (n − 1)f
(
nx′

1

)
, nt
) ≥ min

{
N ′(φ(nx1), t

)
,N ′(φ

(
nx′

1

)
, t
)}

,
(3.29)

for all x1, x
′
1 ∈ X and all t > 0. Interchanging x1 with x′

1 in (3.29) and using the oddness of f ,
we get

N
(
nf
(
(n − 1)x1 + x′

1

) − f
(
(n − 1)

(
x1 − x′

1

))
+ (n − 1)f

(
x1 − x′

1

) − (n − 1)f(nx1) − f
(
nx′

1

)
, nt
)

≥ min
{
N ′(φ(nx1), t

)
,N ′(φ

(
nx′

1

)
, t
)}

,

(3.30)

for all x1, x
′
1 ∈ X and all t > 0. It follows from (3.29) and (3.30) that

N
(
nf
(
x1 + (n − 1)x′

1

) − nf
(
(n − 1)x1 + x′

1

)
+ 2f

(
(n − 1)

(
x1 − x′

1

)) − 2(n − 1)f
(
x1 − x′

1

)

+ (n − 2)f(nx1) − (n − 2)f
(
nx′

1

)
, 2nt

) ≥ min
{
N ′(φ(nx1), t

)
,N ′(φ

(
nx′

1

)
, t
)}

,

(3.31)
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for all x1, x
′
1 ∈ X and all t > 0. Setting x1 = nx1, x2 = −nx′

1, xi = 0 (i = 3, . . . , n) and ti = t (i =
1, . . . , n) in (3.1) and using the oddness of f , we get

N
(
f
(
(n − 1)x1 + x′

1

) − f
(
x1 + (n − 1)x′

1

)
+ 2f

(
x1 − x′

1

) − f(nx1) + f
(
nx′

1

)
, nt
)

≥ min
{
N ′(φ(nx1), t

)
,N ′(φ

(−nx′
1

)
, t
)
,N ′(φ(0), t

)}
,

(3.32)

for all x1, x
′
1 ∈ X and all t > 0. So we obtain from (3.31) and (3.32) that

N

(

f
(
(n − 1)

(
x1 − x′

1

))
+ f
(
x1 − x′

1

) − f(nx1) + f
(
nx′

1

)
,
n2 + 2n

2
t

)

≥ min
{
N ′(φ(nx1), t

)
,N ′(φ

(
nx′

1

)
, t
)
,N ′(φ

(−nx′
1

)
, t
)
,N ′(φ(0), t

)}
,

(3.33)

for all x1, x
′
1 ∈ X and all t > 0. Putting x1 = n(x1 − x′

1), xi = 0 (i = 2, . . . , n) and ti = t (i =
1, . . . , n) in (3.1), we obtain

N
(
f
(
n
(
x1 − x′

1

)) − f
(
(n − 1)

(
x1 − x′

1

)) − f
((
x1 − x′

1

))
, nt
)

≥ min
{
N ′(φ

(
n
(
x1 − x′

1

))
, t
)
,N ′(φ(0), t

)}
,

(3.34)

for all x1, x
′
1 ∈ X and all t > 0. It follows from (3.33) and (3.34) that

N

(

f
(
n
(
x1 − x′

1

)) − f(nx1) + f
(
nx′

1

)
,
n2 + 4n

2
t

)

≥ min
{
N ′(φ

(
n
(
x1 − x′

1

))
, t
)
,N ′(φ(nx1), t

)
,N ′(φ

(
nx′

1

)
, t
)
,N ′(φ

(−nx′
1

)
, t
)
,N ′(φ(0), t

)}
,

(3.35)

for all x1, x
′
1 ∈ X and all t > 0. Replacing x1 and x′

1 by x/n and −x/n in (3.35), respectively,
we obtain

N

(

f(2x) − 2f(x),
n2 + 4n

2
t

)

≥ min
{
N ′(φ(2x), t

)
,N ′(φ(x), t

)
,N ′(φ(−x), t),N ′(φ(0), t

)}
,

(3.36)

for all x ∈ X and all t > 0. Therefore

N
(
f(2x) − 2f(x), t

) ≥ Mo(x, t), (3.37)

for all x ∈ X and all t > 0, which implies that

N

(
f(2x)

2
− f(x), t

)

≥ Mo(x, 2t), (3.38)
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for all x ∈ X and all t > 0. Let S be the set of all odd functions h : X → Y and introduce a
generalized metric on S as follows:

d(h, k) = inf{u ∈ R
+ : N(h(x) − k(x), ut) ≥ Mo(x, t), ∀x ∈ X, ∀t > 0}, (3.39)

where, as usual, inf ∅ = +∞. So (S, d) is a generalized complete metric space. We consider the
function J : S → S defined by Jh(x) := h(2x)/2 for all h ∈ S and x ∈ X. Let f, g ∈ S such that
d(f, g) < ε, then

N
(
Jg(x) − Jf(x),

αu

2
t
)
= N

(
g(2x) − f(2x), αut

) ≥ Mo(2x, αt) = Mo(x, t), (3.40)

that is, if d(f, g) < ε we have d(Jf, Jg) < (α/2)ε. This means that d(Jf, Jg) ≤ (α/2)d(f, g)
for all f, g ∈ S, that is, J is a strictly contractive self-function on Swith the Lipschitz constant
α/2.

It follows from (3.38) that

N

(

Jf(x) − f(x),
t

2

)

≥ Mo(x, t), (3.41)

for all x ∈ X and all t > 0, which implies that d(Jf, f) ≤ 1/2.
Due to Theorem 2.1, there exists a function A : X → Y such that A is a fixed point of

J , that is, A(2x) = 2A(x) for all x ∈ X.
Also, d(Jmg,A) → 0 asm → ∞, implies the equalityN−limm→∞(f(2mx)/2m) = A(x)

for all x ∈ X. Setting xi = 2mxi (i = 1, . . . , n) and ti = (t/n) (i = 1, . . . , n) in (3.1), we obtain
that

N

(
Δf(2mx1, . . . , 2mxn)

2m
, t

)

≥ min
{

N ′
(

φ(2mx1), 2m
t

n

)

, . . . ,N ′
(

φ(2mxn), 2m
t

n

)}

= min
{

N ′
(

φ(2mx1), αm

(
2
α

)m t

n

)

, . . . ,N ′
(

φ(2mxn), αm

(
2
α

)m t

n

)}

= min
{

N ′
(

αmφ(x1), αm

(
2
α

)m t

n

)

, . . . ,N ′
(

αmφ(xn), αm

(
2
α

)m t

n

)}

= min
{

N ′
(

φ(x1),
(
2
α

)m t

n

)

, . . . ,N ′
(

φ(xn),
(
2
α

)m t

n

)}

,

(3.42)

for all x1, . . . , xn ∈ X and all t > 0. By letting m → ∞ in (3.42), we find that
N(ΔA(x1, . . . , xn), t) = 1 for all t > 0, which implies ΔA(x1, . . . , xn) = 0. Thus A satisfies
(1.7). Hence the function A : X → Y is additive (see Lemma 2.1 of [53]).

The rest of the proof is similar to the proof of Theorem 3.1.

The main result of the paper is the following.
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Theorem 3.3. Let φ : X → (Z,N ′) be a function such that, φ(2x) = αφ(x) for some real number α
with |α| < 2. Suppose that a function f : X → Y with f(0) = 0 satisfies (3.1) for all x1, . . . , xn ∈ X
and all t > 0, then there exist a unique quadratic functionQ : X → Y and a unique additive function
A : X → Y such that

N
(
f(x) −Q(x) −A(x), t

)

≥ min{Me(x, (4 − α)t),Me(−x, (4 − α)t),Mo(x, (2 − α)t),Mo(−x, (2 − α)t)},
(3.43)

for all x ∈ X and all t > 0, where Me(x, t) and Mo(x, t) are defined as in Theorems 3.1 and 3.2.

Proof. Let fe(x) = (1/2)(f(x) + f(−x)) for all x ∈ X, then

N
(
Δfe(x1, . . . , xn), t1 + · · · + tn

)
= N

(
Δf(x1, . . . , xn) + Δf(−x1, . . . ,−xn), 2t1 + · · · + 2tn

)

≥ min
{
N ′(φ(x1), t1

)
,N ′(φ(−x1), t1

)
, . . . ,N ′(φ(xn), tn

)
,N ′(φ(−xn), tn

)}
,

(3.44)

for all x1, . . . , xn ∈ X and t > 0.Hence, in view of Theorem 3.1, there exists a unique quadratic
function Q : X → Y such that

N
(
fe(x) −Q(x), t

) ≥ min{Me(x, (4 − α)t),Me(−x, (4 − α)t)}, (3.45)

for all x ∈ X and t > 0. On the other hand, let fo(x) = (1/2)(f(x) − f(−x)) for all x ∈ X,
then, by using the above method from Theorem 3.2, there exists a unique additive function
A : X → Y such that

N
(
fo(x) −A(x), t

) ≥ min{Mo(x, (2 − α)t),Mo(−x, (2 − α)t)}, (3.46)

for all x ∈ X and t > 0. Hence, (3.43) follows from (3.45) and (3.46).
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