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A difference scheme of Landau-Lifshitz (LL for short) equations is studied. Their convergence and
stability are proved. Furthermore, a new solution of LL equation is given for testing our scheme.
At the end, three subcases of this LL equation are concerned about, and some properties about
these equations are shown by a numeric simulation way.

1. Introduction and the Number Scheme

The LL equation [1] has aroused considerable interest among physicists and mathematicians.
For the one-dimensional case, there have been many contributions to the study of the soliton
solution, the interaction of solitary waves, and other properties of the solitary waves [2–4].
However, we point out here that it will be a more challenging task study the high-dimensional
dynamics [5, 6] about LL equation. In the classical study of ferromagnetic chain, we often
consider the following system (vector form):

∂u

∂t
= u ×Δu + f(x, t, u), (1.1)

where “×” denotes a 3-dimensional cross product. The isotropic Heisenberg chain [2] is the
special case of (1.1). Moreover, another special case of (1.1) is the LL equation with an easy
plane

∂u

∂t
= u ×Δu + u × (Pu), P = diag{P1, P2, P3}, P1 ≤ P2 ≤ P3. (1.2)
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Equation (1.2) has been studied by the inverse scattering method in [7]. Its
integrability theories [8] are established. As far as we know, no explicit solutions of (1.2) are
given by various direct methods such as Jacobi elliptical function method [9]. Therefore, the
numerical method to study this equation and its more generalized form, which gives some of
the visual characteristics of equations, is necessary. However, we do not intend to construct
efficient (or optimal control) and high-precision algorithms [10–15] here. In this paper, we
are concerned about the convergence of the discrete scheme. Furthermore, we hope that by
means of numerical simulation, more intuitive understanding of the nature of the equation
will be obtained.

For universality, we consider the following system with the Gilbert damping term
which covers the above situations. The periodic condition is about the space variables x

∂u

∂t
= −α1u × (u ×Δu) + α2(u ×Δu) + f(x, t, u) (x, t) ∈ R × I,

u(x + 2π, t) = u(x, t) (x, t) ∈ R × I,
u(x, 0) = u0(x) x ∈ R,

(1.3)

where the spin vector u(x, t) = (u1, u2, u3)T is a 3-dimensional vector-valued unknown
function with respect to space variables x = (x1, x2, . . . , xn) and time t, and period about
u(x, t) is 2π . f(x, t, u) is continuous with respect to x, t, and u. u0(x) is the initial value
function which is also a 3-dimensional function. I = [0, T], (T > 0), Rn is the n-dimensional
real value dominion. α1 ≥ 0 is damping coefficient. α2 > 0, Laplace operator Δu =
(∂2u1/∂x2, ∂2u2/∂x2, ∂2u3/∂x2)T .

Although the existence of the global attractor of (1.3) has been proved in [16], no exact
solutions have been proposed as far as we know. In this paper, we give an exact solution of it,
which can test the property of numerical scheme of (1.3). From a physical point of view, the
value of u(x, t) is finite, just like the situation which is mentioned in [5, 16]. In this section, we
just suppose that |u(x, t)| = 1 for convenience. So the first equation of problem (1.3) is equal
to the following form:

∂u

∂t
= −α1Δu + α1|∇u|2u + α2A(u)Δu + f(x, t, u), (1.4)

where ∇u = (u1
x, u

2
x, u

3
x)
T ,

A(u) =

⎡
⎢⎣

0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤
⎥⎦ ∈ R3×3. (1.5)

Furthermore, we consider a more general type of Landau-Lifshitz equation (as the variety of
(1.4)):

∂u

∂t
= −α1Δu + α1g(∇u)u + α2A(u)Δu + f(x, t, u) (x, t) ∈ Rn × I,

u(x + 2π, t) = u(x, t) (x, t) ∈ Rn × I,
u(x, 0) = u0(x) x ∈ Rn,

(1.6)
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where g(v) : R3 → R is a continuous differential function. When g(s) = |s|2, (1.6) takes the
form of (1.4).

For convenien, we discuss our scheme in one-dimensional case which the n-
dimensional case can be discussed similarly. Firstly, we give some notion and symbol. Set Ω =
[0, 2π], J is a positive integer. We divide the region Ω × I as a discrete mesh which h = 2π/J
in its space step and k in its time step. xj = jh, tn = nk (j = 0, 1, . . . , J ;n = 0, 1, . . . , [T/k]).
Here (um)nj denotes the approximate value of um (m = 1, 2, 3) on (xj , tn). Let un denote the
layer mesh function, that is, un = (un1 , u

n
2 , . . . , u

n
J ) where unj = ((u1)nj , (u

2)nj , (u
3)nj )

T .
Define the discrete inner product and norm as follows:

(un, vn) = h
J∑
j=1

unj · v
n
j = h

J∑
j=1

3∑
m=1

(um)nj · (vm)
n
j ; ‖un‖ = (un, un)1/2. (1.7)

We define the following finite difference approximations of derivatives along the space
direction:

unjx =
unj+1 − u

n
j

h
, unjx =

unj − u
n
j−1

h
, unjx̂ =

unj+1 − u
n
j−1

2h
. (1.8)

Similarly, we can define the derivatives along the time direction and the Laplace operator:
unjt, u

n
jt
, un

jt̂
, and un

jxx
.

Under the definition and the symbol setting as above, we now define a finite difference
approximation of (1.6) by

unjt = α1u
n
jxx + α1g

(
unjx̂

)
unj + α2A

(
unj

)
unjxx + f

n
j

(
unj

)
0 ≤ j ≤ J, 0 ≤ n ≤

[
T

k

]
− 1,

unj+rJ = u
n
j , 0 ≤ j ≤ J, r ∈ Z,

u0
j = u0

(
xj
)

0 ≤ j ≤ J.

(1.9)

Obviously, according to difference approximation (1.9), we can start from the zero
layer to any layer about un (n = 1, 2, . . . , [T/k]).

2. Existence of the Solution and the Stability of the Scheme

For studying the convergence and the stability, we first introduce several lemmas.

Lemma 2.1. Considering mesh-function un, vn defined on mesh-points, one has the following
relationship:

(1) (un
xx
, vn) = −(unx, vnx),

(2) (unt , u
n) ≥ (1/2)‖un‖2

t − (k/2)‖unt ‖
2,

(3) ‖un
x̂
‖ ≤ ‖unx‖,

(4) ‖ux‖ ≤ (2/h)‖u‖.
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Lemma 2.2. Let A(u) stand for an antisymmetric matrix, v is the three-dimension vector, then the
following relationships hold:

(1) A(u)u = 0,

(2) (w,A(u)v) = −(A(u)w,v),

(3) A(u)v = −A(v)u.

Let U(x, t) denote the solution of (1.6) (here U(x, t) will be regarded as a function
with smoothness in some degree). Un

j denotes the value of U(x, t) on (xj , tn). Un =

(Un
1 , U

n
2 , . . . , U

n
j )

T denotes the value of n-layer mesh about U(x, t).

Definition 2.3. One has

C0
b

(
R3, R3×3

)
=
{
B(u) ∈ R3×3 | ‖B(u)‖ <∞, ∀u ∈ R3

}
,

C1
b

(
R3
)
=
{
f(u) ∈ R |

∥∥f(u)∥∥∞ +
∥∥f ′(u)∥∥∞ <∞, ∀u ∈ R3

}
.

(2.1)

Lemma 2.4. Assume that A(u) ∈ C0
b(R

3;R3×3) and U ∈ C0(I; (C3(0; 2π))3) are the solution of
(1.6), then for any ε > 0

α2
(
A(Un)Un

xx −A(un)unxx, e
n) ≤ ε‖enx‖2 +

α2
2M

2
1

4ε
‖en‖2, (2.2)

whereM1 = supu∈R3‖A(u)‖, and en = Un − un.

Proof. We have, by (1) of Lemma 2.2, −α2(Un
xx
,A(en)en) = 0. According to the antiproperty of

antisymmetric matrix, we have α2(enx,A(un)enx) = 0. Here, we set f ∈ C1
b(R, I), hence

(
f(x, tn)A(Un)Un

xx − f(x, tn)A(un)unxx, e
n)

=
(
A(en)Un

xx +A(un)enxx, f(x, tn)e
n)

= −
(
Un
xx, f(x, tn)A(en)en

)
−
(
enxx, f(x, tn)A(un)en

)

=
(
enx,
(
f(x, tn)A(un)en

)
x

)

= h
J−1∑
j=0

enjx

[
f
(
xj+1, tn

)
A
(
unj+1

)
enj+1 + f

(
xj , tn

)
A
(
unj

)
enj

]

h

= h
J−1∑
j=0

enjxf
(
xj+1, tn

)
A
(
unj+1

)
enjx + h

J−1∑
j=0

enjx
∂f
(
xj , tn

)

∂x
A
(
unj

)
enj+1.

(2.3)
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Let f(xj , tn) = 1 (j = 0, 1, . . . , J ; n = 0, 1, . . . , [T/k]). By ε-inequality, we have

α2
(
A(Un)Un

xx −A(un)unxx, e
n) ≤ |α2|‖enx‖‖A(unx)‖‖en‖

≤ ε‖enx‖
2 +

α2
2M

2
1

4ε
‖en‖2.

(2.4)

Lemma 2.5. Under the same condition of Lemma 2.4, one has

∥∥A(Un)Un
xx −A(un)unxx

∥∥ ≤M1

(
‖en‖ + 2

h
‖enx‖

)
. (2.5)

Proof. We first note that, by (3) of Lemma 2.2, we have, A(en)Un
xx

= −A(Un
xx
)en; recalling (4)

of Lemma 2.1, we have ‖en
xx
‖ ≤ (2/h)‖enx‖, then we obtain

∥∥A(Un)Un
xx −A(un)unxx

∥∥ =
∥∥A(en)Un

xx −A(un)enxx
∥∥

≤
∥∥A(en)Un

xx

∥∥ +
∥∥A(un)enxx

∥∥

≤
∥∥−A(Un

xx

)
en
∥∥ +

∥∥A(un)enxx
∥∥

≤M1

(
‖en‖ + 2

h
‖enx‖

)
.

(2.6)

Lemma 2.6. If g(u) ∈ C1
b
(R3) and U ∈ C0(I; (C3(0, 2π)))3 are the solution of (1.6), then for any

ε > 0

α1
(
g
(
Un
x̂

)
Un − g

(
unx̂
)
un, en

)
+
(
f(Un) − f(un), en

)

≤ ε‖enx‖
2 +

(
α2

1M
2
2M

2
3

4ε
+ α1M4 +

M0

α1

)
‖en‖2,

(2.7)

where

M0 = sup
1≤n≤[T/K]

∥∥∥∥
∂fn

∂u

∥∥∥∥, M2 = sup
z∈R3

∥∥∇g(z)∥∥, M3 = sup
1≤n≤[T/K]

‖Un‖∞,

M4 = sup
z∈R3

∥∥g(z)∥∥, en = Un − un.

(2.8)
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Proof. By (3) of Lemma 2.1, we have

α1
(
g
(
Un
x̂

)
Un − g

(
unx̂
)
un, en

)
+
(
f(Un) − f(un), en

)

≤ α1
[([

g
(
Un
x̂

)
− g
(
unx̂
)]
Un, en

)
+
(
g
(
unx̂
)
en, en

)]
+M0‖en‖2

≤ α1

[∥∥∇g(Un
x̂ + θe

n
x̂

)∥∥‖Un‖∞
∥∥enx̂

∥∥‖en‖ + ∥∥g(unx̂
)∥∥‖en‖2

]
+M0‖en‖2

≤ ε‖enx‖
2 +

(
α2

1M
2
2M

2
3

4ε
+ α1M4 +

M0

α1

)
‖en‖2.

(2.9)

Lemma 2.7. One has

α1
∥∥g(Un

x̂

)
Un − g

(
unx̂
)
un
∥∥ +

∥∥f(Un) − f(un)
∥∥ ≤ α1

(
2M2M3

h
+M4 +

M0

α1

)
‖en‖. (2.10)

Proof. According to (1) and (2) of Lemma 2.1, we have

α1
∥∥g(Un

x̂

)
Un − g

(
unx̂
)
un
∥∥ +

∥∥f(Un) − f(un)
∥∥

≤ α1

(∥∥∇g(Un
x̂ + θe

n
x̂

)∥∥‖Un‖∞
∥∥enx̂

∥∥‖en‖ + ∥∥g(unx̂
)∥∥‖en‖2

)
+M0‖en‖.

(2.11)

Definition 2.8. Sε(U) = {v ∈ H1
p(Ω) | ‖U − v‖H1

p(Ω) ≤ ε}.

According to the lemmas mentioned above, we now come to discuss the convergence
of difference equation (1.9).

Theorem 2.9. Let U ∈ C2(I; (H4
p(0, 2π))

3) be the solution of (1.6), un is the solution of (1.9),
g(u) ∈ C1(R3), f(u) ∈ C(R3). For any positive integer σ, if (k/h2) ≤ (α1 − σ)/6(α1 + |α2|M1)

2,
then there exists a positive constantCi (i = 1, 2, 3, 4)which independent of h and k. If h ≤ C1, k ≤ C2,
one has

sup
0≤n≤[T/k]

‖Un − un‖ + ‖|Un
x − unx|‖ ≤ C3

(
k + h2

)
, (2.12)

furthermore,

‖Un − un‖∞ ≤ C4h, (2.13)

whereM1 = m supu∈Sε(U)‖A(u)‖(m > 1), ‖| · |‖ = (k
∑[T/k]

n=1 ‖ · ‖
2)1/2, ‖v‖∞ = max1≤j≤J |vj |.

Proof. According to the condition, the solution of (1.6) U ∈ C2(I; (H4
p(0, 2π))

3), substituting
the according part of (1.9) with U(x, t), we have

Un
t = α1U

n
xx + α2A(Un)Un

xx + α1g
(
Un
x̂

)
Un + rn, (2.14)



Discrete Dynamics in Nature and Society 7

where rn is the error estimate of (1.9). According to (2.14) and (1.9), denote en = Un − un, we
have

ent = α1e
n
xx + α2

(
A(Un)Un

xx −A(un)unxx
)
+ α1

(
g
(
Un
x̂

)
Un − g

(
unx̂
)
un
)

+ f(Un) − f(un) + rn.
(2.15)

Take the inner product of (2.15) and en, combine them with (1) and (2) of Lemma 2.1,
we have

1
2
‖en‖2

t −
k

2
∥∥ent

∥∥2 + α1‖enx‖
2 = α2

(
A(Un)Un

xx −A
(
ununxx

)
, en
)
+ α1

(
g
(
Un
x̂

)
Un − g

(
unx̂
)
un, en

)

+
(
f(Un) − f(un), en

)
+ (rn, en).

(2.16)

Just like the method mentioned in [17], we can assume that A∗(u) ∈ Cb
0(R

3, R3×3) and
g∗(u) ∈ Cb

1(R
3). Conveniently, we can denote A∗(u) as A(u) and g∗(u) as g(u). By Lemmas

2.4 and 2.6, (1.9) can change into the following form:

1
2
‖en‖2

t −
k

2
∥∥ent

∥∥2 + (α1 − 2ε)‖enx‖
2 ≤M5‖en‖2 +

1
2
‖rn‖2 +M0‖en‖2

≤M5‖en‖2 + C2
(
k + h2

)2
+M0‖en‖2,

(2.17)

where

M0 = max
1≤n≤[T/k]

∥∥∥∥
∂fn

∂u

∥∥∥∥, M5 =
α2

1M
2
2M

2
3

4ε
+ α1M4 +

α2
2M

2
1

4ε
+

1
2
. (2.18)

In the following part, we propose the estimation about ‖ent ‖ of (2.17).
By Lemmas 2.5 and 2.7 and (2.15), we have

k
∥∥ent

∥∥2 ≤ |α2|
∥∥A(Un)Un

xx̂ −A(un)unxx̂
∥∥ + α1

∥∥g(Un
x̂

)
Un − g

(
unx̂
)
un
∥∥

+
∥∥f(Un) − f(un)

∥∥ + ‖rn‖

≤ 2α1

h
‖enx‖ + α1

(
2M2M3

h
+M4

)
‖en‖ + |α2|M1

(
‖en‖ + 2

h
‖enx‖

)
+M0‖en‖ + rn

≤ M6

h
‖enx‖ +

(
M7

h
+M8 +M0

)
‖en‖ + C

(
k + h2

)
,

(2.19)

where M6 = 2(α1 + |α2M1|), M7 = 2α1M2M3, and M8 = α1M4 + |α2|M1.
So according to the inequality given above, we have

k
∥∥ent

∥∥2 ≤ 3M2
6
k

h2 ‖e
n
x‖

2 +
(

6M2
7
k

h2
+ 6M2

8k + 3kM2
0

)
‖en‖2 + 3kC2

(
k + h2

)2
. (2.20)
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Substitute (2.16) into (2.15), let ε = α1/4, according to the condition given in
Theorem 2.9, we have

1
2
‖en‖2

t +
(
α1

2
− 3M2

6
k

k2

)
‖enx‖

2 ≤M5‖en‖2 + C
(
k + h2

)2
, (2.21)

where M9 =M0 +M5 + 6M2
8T +M2

7((α1 − σ)/(α1 + |α2|M1)
2).

According to (2.17) and the condition given in Theorem 2.9,

∥∥ent
∥∥2 + σ‖enx‖

2 ≤ 2M9‖en‖2 + C
(
k + h2

)2
(2.22)

By ‖e0‖ = 0 and Gronwall inequality, we have

‖en‖ ≤ C
(
k + h2

)2
exp(M9T) ≤ C3

(
k + h2

)2
. (2.23)

By (2.22),

σk
m∑
n=1

‖enx‖
2 ≤ CT

(
k + h2

)2
+ 2M9k

m∑
n=1

‖en‖2. (2.24)

So we have

k
[T/k]∑
n=1

‖enx‖
2 ≤M2

10

(
k + h2

)2
, (2.25)

where M2
10 = (CT + 2M9TC

2
3)/σ by (2.25), hence

(
k

m∑
n=1

‖enx‖
2

)1/2

≤M10

(
k + h2

)2
. (2.26)

So by (2.23) and (2.26), when A(u) ∈ Cb(R3, R3×3), g ∈ C1
b
(R3), and f ∈ Cb(R3),

Theorem 2.9 is right. Similarly to [17], these presuppositions can be omitted according to the
finite extensive method of nonlinear function. In fact, by (2.23) and ‖enx‖ ≤ (2/h)‖en‖ ≤ Ch,
when k, h → 0, un ∈ Sε(U), according to the definition about A∗(u) and g∗(v) mentioned
in [17] (f∗(u) can be defined accordingly), we have A∗(u) = A(u) and g∗(un

x̂
) = g(un

x̂
) and

f∗(un) = f(un). So this theorem and also hold when A(u) ∈ C0(R3, R3×3), g(u) ∈ C1(R3),
f(u) ∈ C(R3). Here, we finish the proof of the first inequality of Theorem 2.9.

By discrete Sobolev’s inequality [18] and the first inequality of Theorem 2.9, the second
inequality in this theorem can be proved.

Similarly, we have the stability theorem about the difference equation.
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Theorem 2.10. Let un be the solution of (1.9), vn is the solution of (1.9) under the disturbance
u0(x) + δ(x). g(u) ∈ C1(R3). For any positive constant δ, if (k/h2) ≤ (α1 − σ)/6(α1 + |α2|M1)

2,
then there exist constant Ci (i = 5, 6, 7) which is independent on h and k. When h ≤ C5, k ≤ C6, one
has

sup
0≤n≤[T/k]

(‖un − vn‖ + ‖|unx − vnx |‖) ≤ C7‖δ0‖, (2.27)

whereM1 = m supu∈Sε(U)‖A(u)‖ (m > 1).

3. Numerical Experiment and Its Error Analysis

In this section, we propose the numerical examples and the error analysis of the solutions.
Three subcases of (1.3) mentioned in Section 1 will be performed in our simulation
respectively.

Conveniently for computation, first we rewrite (1.9) as the following form:

un+1
j = unj + k

[(
α1 + α2A

(
unj

))
unjxx̂ + α1

∣∣∣unjx̂
∣∣∣

2
unj + f

(
unj

)]
, j = 1, . . . , J ; n = 0, . . . ,

[
T

k

]
− 1,

u0
j = u0

(
xj
)
, j = 1, . . . , J,

un0 = unJ ; unJ+1 = un1 , n = 1, . . . ,
[
T

k

]
.

(3.1)

According to (3.1), in the first step, we can get the value of u0 on u0
j . Second, according

to second equation of (3.1), we can also get the solution un+1 step by step. In each step of
computation, the third equation of (3.1) will be used repeatedly.

(i) Setting α1 = α2 = 1 and f(x, t, u) = u × (0, 0, 1)T , we consider the following spin
wave of u = u(x − ct):

u =
(√

1 − s2
0 cos ξ,

√
1 − s2

0 sin ξ, s0

)T

, (3.2)

where ξ = x − t, s0 = 0. In fact, we found that (3.2) is the solution of (1.3), where ξ = ax −
bt+ c, s0 = 0. As far as we know, exact solutions of this case were still not constructed. For the
simplicity, we have omitted the details of our constructing.

In accordance with (3.2), the initial and boundary conditions of this equation can be
proposed. Let us first consider a domain x ∈ [0, 6π] with the Dirichlet boundary condition
on the spin vector. We have implemented (3.1) where k = 0.0001, h = 1/5 in numerical
resolution. Figures 1(a) and 1(b) show the numerical solutions in time t = 0.1, and t = 0.5
respectively.

From Figure 1, we observe that the numerical solutions exhibit an irregular changing
at the beginning of the space steps. This will happen in the range of probably 1–10 space steps
in Figure 1(a) as well as mainly in 1–20 steps in Figure 1(b). This can be seen more clearly in
Figure 2 which exhibit the error about the solution in Figure 1 accordingly.
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Figure 1: The solution u at (a) t = 0.1, and (b) t = 0.5; k = 0.0001, h = 1/5.
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Figure 2: The error of u at (a) t = 0.1 and (b) t = 0.5; k = 0.0001, h = 1/5.

Observed from Figures 1 and 2, probably from the 10 or 20 space steps, the numerical
solution is credible. But from then on, the creditable region about the solution is gradually
shrinking when the time increase. At space step 50, by amplifying solution error image
Figure 2, we found that the magnitude of error is approximately 10−4 which is consist with
our Theorem 2.9. These details can be seen in Figure 3.

(ii) Setting α1 = α2 = 1, and f(x, t, u) = 0 in (1.3), the solitary solution which proposed
in [19] can be written as (3.3) (here we can set δ = 2). For this case, according to (3.3),
the initial boundary conditions can be given in our numerical scheme (3.1). Furthermore,
we mention here at (3.3) is not a periodic solution, but we can extend the problem into a
periodic one. In fact, we take the truncated domain as Ω = [0, 4π]. uj(4π, t) ≈ 0 and the
smoothness of the solution ensure the extend can be done. Thus the finite difference scheme
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Figure 3: The error of u at (a) t = 0.1 and (b) t = 0.5 at space step 50; k = 0.0001, h = 1/5.

(3.1) still can be used for computation. Figure 4 shows the numerical solution in the t = 0.3
and the corresponding error image. Seen in Figure 4, we find that solution error is quite large.
Therefore, we suspect that (3.3) which is proposed in [19] is not correct. Moreover, a simple
symbol computation by Maple confirms our speculation:

u1 = sech

[(√
3x
4

)
(t + δ)−1/2

]{
tanh

[(√
3x
4

)
(t + δ)−1/2

]
sin

[(√
3x
4

)
(t + δ)−1/2

]

− cos

[(√
3x
4

)
(t + δ)−1/2

]}
,

u2 = −sech

[(√
3x
4

)
(t + δ)−1/2

]{
tanh

[(√
3x
4

)
(t + δ)−1/2

]
cos

[(√
3x
4

)
(t + δ)−1/2

]

+ sin

[(√
3x
4

)
(t + δ)−1/2

]}
,

u3 = tanh2

[(√
3x
4

)
(t + δ)−1/2

]
.

(3.3)

(iii) Let α1 = 0, α2 = 1, and f(x, t, u) = (u1, u2, u3)T × (diag(1, 2, 3) · (u1, u2, u3)T ) in (1.3).
This is special case of LL equation (1.2) with an easy plane. Under situation (3.2), we can
easily offer the initial-boundary condition about (3.1).

When α1 = 0, Theorem 2.9 obviously can not give estimate about k/h2. But when we
follow (3.2) to set initial boundary value, in addition to numerical viscosity began in the
outside of space step, solution is very irregular. Therefore, we believe that the numerical
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Figure 4: (a) Solution of u at t = 0.3, (b) error of u at t = 0.3; k = 0.0001, h = 1/5.
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Figure 5: The solution u at (a) t = 0.1 and (b) t = 0.5; k = 0.0001, h = 1/5.

solution is convergent. Nevertheless, for a better estimation, we should try to use other
methods to estimate convergence rate of the discrete form solution. From Figure 5, we found
that the evolution of u1 and u2 is similar to subcase (i) mentioned above; compared to subcase
(i), the evolution of u3 exhibits a larger undulate behavior.
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