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1. Introductionn

In recent years, recurrent neural networks (see [1-7]), such as Hopfield neural networks,
cellular neural networks, and other networks have been widely investigated and successfully
applied in all kinds of science areas such as pattern recognition, image processing, and
fixed-point computation. However, because of the finite switching speed of neurons and
amplifiers, time delay is unavoidable in nature and technology. It can make important effects
on the stability of dynamic systems. Thus, the studies on stability are of great significance.
There has been a growing research interest on the stability analysis problems for delayed
neural networks, and many excellent papers and monographs have been available. On the
other hand, during the design of neural network and its hardware implementation, the
convergence of a neural network may often be destroyed by its unavoidable uncertainty due
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to the existence of modeling error, the deviation of vital data, and so on. Therefore, the studies
on robust convergence of delayed neural network have been a hot research direction. Up to
now, many sufficient conditions, either delay-dependent or delay-independent, have been
proposed to guarantee the global robust asymptotic or exponential stability for different class
of delayed neural networks (see [8-13]).

It is worth pointing out that most neural networks have been assumed to be in
continuous time, but few in discrete time. In practice, the discrete-time neural networks are
more applicable to problems that are inherently temporal in nature or related to biological
realities. And they can ideally keep the dynamic characteristics, functional similarity, and
even the physical or biological reality of the continuous-time networks under mild restriction.
Thus, the stability analysis problems for discrete-time neural networks have received more
and more interest, and some stability criteria have been proposed in literature (see [14-
25]). In [14], Liu et al. researched a class of discrete-time RNNs with time-varying delay,
and proposed a delay-dependent condition guaranteeing the global exponential stability. By
using a similar technique to that in [21], the result obtained in [14] has been improved by
Song and Wang in [15]. The results in [15] are further improved by Zhang et al. in [16] by
introducing some useful terms. In [17], Yu et al. proposed a new less conservative result than
that obtained in [16] via constructing a new augment Lyapunov-Krasovskii functional.

In this paper, the connection weight matrix C is decomposed, and some new
Lyapunov-Krasovskii functionals are constructed. Combined with linear matrix inequality
(LMI) technique, serial new improved stability criteria are derived. Numerical examples
show that these new criteria are less conservative than those obtained in [14-17].

Notation 1. The notations are used in our paper except where otherwise specified. || - || denotes
a vector or a matrix norm; R, R” are real and n-dimension real number sets, respectively; N*
is nonnegative integer set. I is identity matrix; * represents the elements below the main
diagonal of a symmetric block matrix; Real matrix P > 0 < (0) denotes that P is a positive
definite (negative definite) matrix; N[a, b] = {a,a+1,...,b}; Amin(Amax) denotes the minimum
and maximum eigenvalue of a real matrix.

2. Preliminaries

Consider a discrete-time recurrent neural network with time-varying delays [17] described

by

Six(k+1)=C(k)x(k)+AK) f(x(k)+BK) fxk-T®))+], k=12,..., (2.1)

where x(k) = [xl(k),xz(k),...,xn(k)]T € R" denotes the neural state vector; f(x(k)) =

[1(x1(K)), f2 (a(K)), -, fulen D], flx(k = 7(k) = [flxa(k = 7(k)), falxa(k —
T(k))), oo fu(xn(k - 7(k)))]" are the neuron activation functions; J = [J1, J2, ..., Ju]" is the
external input vector; Positive integer 7(k) represents the transmission delay that satisfies
0 < 7, £ 7(k) £ T7m, Where 7, Tp are known positive integers representing the lower
and upper bounds of the delay. C(k) = C + AC(k), A(k) = A+ AA(k), B(k) = B + AB(k).
C = diag(cy, ¢, ..., cn) with |¢j| < 1 describes the rate with which the ith neuron will reset its
potential to the resting state in isolation when disconnected from the networks and external
inputs; C,A,B € R™" represent the weighting matrices; AC(k), AA(k), AB(k) denote the
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time-varying structured uncertainties which are of the following form:
[AC(k),AA(k),AB (k)] = KF (k) [Ec, Ea, Eb], (2.2)

where K, E., E,, Ep are known real constant matrices with appropriate dimensions, F(k) is
unknown time-varying matrix function satisfying F' (k)F(k) < I, for all k € N*.
The nominal X of X can be defined as

Se:x(k+1)=Cx(k)+ Af (x (k) + Bf (x (k=T () +], k=1,2,...,  (2.3)

To obtain our main results, we need to introduce the following assumption, definition
and lemmas.

Assumption 1. Forany x,y € R, x #v,

G{SMSG;', i=1,2,...,n, (2.4)
xX-y
where o], 0] are known constant scalars.

As pointed out in [16] under Assumption 1, system (2.3) has equilibrium points.
Assume that x* = [x],x3, .. .,xfl]T is an equilibrium point of (2.3) and let y;(k) = x;(k) — x},
Si(yi(k)) = fi(yi(k) + x7) — fi(x]). Then, system (2.3), can be transformed into the following
form:

y(k+1)=Cy(k)+ Ag (v (k)) + Bg (y (k-7 (k))), k=12,..., (2.5)

where y(k) = [y1(k),12(k),..., (O], gW(K) = [&1(y1(K)), 22(y2(k)), -, gu(yn (k)T
gyl - 1) = [gi@ik-7(0), sk —T(K)), ..., g(yu(k —7(k))]". From
Assumption 1, for any x,y € R, x#y, functions g;(-) satisfy o; < (gi(x) - gi(y))/(x —y) <
o/, i=1,2,...,n,and g(0) = 0.

Remark 2.1. Assumption 1 is widely used for dealing with the stability problem for neural
networks. As pointed out in [13, 14, 16, 17, 26, 27], constants o;,0; (i = 1,2,...,n) can be
positive, negative, and zero. Thus, this assumption is less restrictive than traditional Lipschitz
condition.

Definition 2.2. The delayed discrete-time recurrent neural network in (2.5) is said to be
globally exponentially stable if there exist two positive scalars &« > 0 and 0 < < 1 such
that

ly (k)| <a-p* sup |y(s)ll, Vk>1. (2.6)

seN[-7p1,0]
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Lemma 2.3 (Tchebychev Inequality [28]). For any given vectors v; € R", i = 1,2,...,n, the
following inequality holds:

[iv,]T [zn:v] < nzn:vf ;. (2.7)

Lemma 2.4 (see [29]). For given matrices Q = QT, H, E and R = RT > 0 of appropriate dimensions,
then

Q+HFE+ETFTHT <0, (2.8)
for all F satisfying FTF < R, if and only if there is an & > 0, such that
Q+e'HHT +¢ETRE < 0. (2.9)

Lemma 2.5 (see [16]). If Assumption 1 holds, then for any positive-definite diagonal matrix D =
diag(ds, da, ..., d,) > 0, the following inequality holds:

g(y(k)) ' Dg (y (k) - y" (k) D <H + H> gly®)+y" ) IP] Iy k) <0, keN,
1 2 1 2
(2.10)

where [ = diag(oy,05,...,0,), ] = diag(o],05,...,05).
1 2

Lemma 2.6 (see [30]). Given constant symmetric matrices X1, %5, X3 where Z{ =21and0< 3 =
37, then 3y + 333555 < 0 if and only if

Zl Z:],; _ZZ ZS
<0, or, <0. (2.11)
33 -3 Zg 2

Lemma 2.7 (see [13]). Let N and E be real constant matrices with appropriate dimensions, matrix
F(k) satisfying FT(k)F (k) < I, then, for any e > 0, EF(k)N + NTFT(k)ET < e 'EET + eNTN,
k € N*.

3. Main Results

To obtain our main results, we decompose the connection weight matrix C as follows:

C=C1+0(Co. (31)

Then, we can get the following stability results.
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Theorem 3.1. For any given positive scalars 0 < Ty, < Ta, then, under Assumption 1, system (2.5)
without uncertainty is globally exponentially stable for any time-varying delay (k) satisfying T,, <
T(k) < T, if there exist positive-definite matrices Py, Q1, Q2, Qs, positive-definite diagonal matrices
D1, Dy, Q4,Qs, Qs, and arbitrary matrices P, H;,i = 2,3, ...,21 with appropriate dimensions, such
that the following LMI holds:

where

/511 S 213 S S5 S16 S17 218 =19 E41,10\
* Sy Soz Sp4 Zo5 So6 =7 So8 =29 =210
*  * D33 T34 T35 =36 =37 =38 =39 =310

¥ %k Ty Sd5 S4e D47 S48 D49 =410

* % % *x o5 Tse S5y oS58 59 95,10

(1>

0]

<0, (3.2)
* * * * * D66 D67 =68 =69 6,10

ok k k k k Zop Sz Zy9 Srqo
* * * * * * * ‘:88 ‘:‘89 58,10

* * * * * * * *  Zgg9 =910

\ x %k k x %k k% 510,10/

Z11 =2CT PiCy = C] P1pCy — Cy PLC1 = 2Py + H12Co + C HL, + Qo + Q3

F (T =T+ 1) Qu + (14 7) Qo+ (1 +70) Qs + (v = 7) Qs - 2] [Di ],
1

2
E1p = CH(Hy; - P3)T, E13 = C] (Py + Ppo) — Hip + C (Hys — Py — Pio)" + CI Pl
S =CIP,— Hy + CE(His - Pis)”, Si5 = ~CI'Py + Hy + CE (His - Pig)”,

Z16 = ~C] PeA + HA + CJ (Hyy ~ Piy)" + Dy <H + H) ,
1 2

Ey7 = ~CI'P»B + H;3B + CL(Hys - Pys)’, S5 = -CI'Py+ Hy + CL(Hyo — Ppo)’,
Si9 = CI'P, — Hy + CI (Ha - Py)’, S110=CI Py~ Hy + C) (Hy - Pn)’,

En=-Qi-2[ D], Es=Ps-Hp,  Eu=DP-H,
1 2

o5 = —-P; + Hj, Zo6 = —PisA+ HpzA,

Zp7 = -Pi3B+ Hi3B+ D, <H + H> , s = -Ps + H3,
1 2
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Sy = P — Hj, S210 = P5 — Hj,
S35 =P+ Puy—Huu+ PL+ P, -Hl, +2P;,  EZs4=Py+Py—Hs+PL-HJ
S35 = Hy— P, - Py + Pl - H,, Zs6 = (Hua— Po — Pu) A+ P, - HJ,,
Sa = (Hyy - Py - Pu) B+ PL - HY, S =Hy—-P,-Py+ P - HE,
Ss9=Py+P,-Hy+ P -H), Zs10=Pi+P-Hy+P, -HI,
Es=Ps-Hs+P{ -Hi -Qs, Z45=Hs-DPs+P —H{,
S4 = HisA-PsA+P -H!, Z4=H;sB-PsB+P; - Hy,
Si=Hs—-Ps+P! -H!, Z4=P5-Hs+P-HI,
Zw=Ps-Hs+P}, - HJ,
Ss5=Hs— Ps+ H —PI - Qy,  Esq= HigA—PgA+H, - P,
Zs7 = HisB - PigB + Hy - Py, Sss = He— Po+ Hy — P,
Sso=Ps—He+Hl,- P},  Zs510=Ps—He+H], -P],
S = HiyA- PyA+ ATHL - ATPL - D, - DI,
Ze7 = Hi7B - PiyB+ ATH{, - ATPJ,
Ses = H; - P+ ATH|, - ATP, Ze0 = P, - H; + ATHL - ATPL,

Z610 =P, - H, + ATH,, - AP},
S77 = HigB- PigB+ B Hl, - B'P}, - D, - D],
Z7s = Hg - Ps+ B'Hl, - B'P,, =7 =DPs-Hs+B"H,, - B'Pj,

Z710 = Ps— Hs + BTH), - B'PJ,,
Sgs = Ho— Py + HY =PI — (1+7pm) 7' Qs, Sgo = Py - Hy + H], - P[,

Ss10=Py— Ho+ HI, - PI,
So9 = Pio = Hio + Pl — HI = (1+ 7,) ' Qu, So10 = Po — Hio + HY, - P},

Si010 = P11 — Hi + PL = HY — (T = 7)™ Qe
(3.3)

Proof. Construct a new augmented Lyapunov-Krasovskii functional candidate as follows:

V (k) =Vi(k)+ Va (k) + V3 (k) + Vi (k) + V5 (k) + Vi (k), (3.4)
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where
PO -0
00---0
itky=2Y"(ky| . . . . Y (k), (3.5)
00--0 10nx10n

Yi(k) = [y'(k),y"(k - 7(k)),n"(k),y"(k = Tm),y" (k = T), 8" (y(K)), 8" (y(k — TMm)),

. T . o
S, V), S, ¥ (), Zf:kj"TMH y ()] ,n(k) = y(k+1) — C1y(k); 0 is zero matrix with
appropriate dimensions:

k-1
Va(k)= D,y () Quy (),

i=k— (k)

k-1 k-1
Vak)= Dy ) Qy )+ Yy () Qay (i),

i=k-Ty, i=k—Tnm

k-1 k-1 k-1 k-1

Vi(k)= D, Dy (1) Quy (i) + y' (i) Qsy (i), (3.6)

j=k—T, i=j j=k-Tnm =]

.

k-1 k-1

Vs = D DyT () Qiy (),

jek-Ta+1 =]

k-7 k-1

Vek)=" D Dy () Qey ().

jek-Tam+1 =]

Set YT (k +1) = [y (k + 1),y" (k - T(k)), 7" (k), y" (k = Tz), y" (k = T), 87 (v (K)), " (y (k -
T™n)), Stony YT (1), S, T (), S5 2y O] = [y (CT + 77 (k), 77 (k) y" (k = Tm),

yT (k= ), 87 ((K)), 87 (y(k = Tz)), Thkry, Y7 (), Sy ¥ (@), ZE™ 1 yT ()], Define
AV (k) = V(k +1) — V(k). Then along the solution of system (2.5) we have

/pl 0 .- 0\ /pl 0 .- 0\
0 .

AVi(k)=2YT(k+1)| . . . | Y(k+D-2YT(R) [ | Y (R
\0 00/ \0 00/
/Pl 0 - o\ /P1 0 - 0\ (3.7)
- 00--0]._ 00 -0
=Y (k+ )| .. | YKR+D=2YTR) L [ Y(R)

220 - 2D,
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(3.8)

On the other hand, since 7(k) — Coy(k) — Ag(y(k)) — Bg(y(k — 7(k))) = 0, Zfzk_m y(i) -
Shkn Y@ + S (i) = YT (k = Tw) + YT (k - Tm) = 0, we have

i=k+1*TM

Cry (k) +1 (k)

y(k+1) . .
0 = Dyv@a- D v+ D y@) -y (k—Tm)+y" (k-7m) (3.9)
i=k—T, i=k—Tm i=k+1-Tp
0

1 (k) - Cay (k) - Ag (y (k) - Bg (v (k-7 (k)))
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(3.10)

(3.11)

(3.12)

AVs (k) = y" (k) (Q2+Q3) y (k) —y" (k= Tw) Qy (k= Tm) =y (k ~ 7n) Qs (k — Ta) -

(3.13)
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From Lemma 2.3 we can obtain

k k k-1 k-1
AVi(k)= >, >y () Quy (i) - y" () Quy ()
j=k+1-1,, i=j j=k-Ty i=j
k k k-1 k-1
> Sy () Qsy (i) - Z SyT (i) Qsy (i)
j=k+1-Tp i=j j=k-t\m i=]
k-1 k -1 k-1
= > Sy Quyi) - > Sy () Q)
j=k—T i=j+1 j=k—Ty i=j
k-1 k k-1 k-1
+ D0 Dy () Qsy (i) - Dy ) Qsy (i)
j=k-Tp i=j+1 j=k-Tnm =]
k-1
- 2 (V0w m -y () Qw ()
]= —Tm
k-1 (3.14)
+ 3 (V0 Qsy () -y () Qsy (7))
j=k-Tm

k
<A+ y" ) Quy () - > y" () Quy ()

j=k=Tm

k
+(1+mm) Yy () Qsy (k)= D y" (7) Qsy ()

j=k=ma

[ kZ y(])] [kzk', y(i)]

[ kZ ]/(])] [ki y(i)]/

< (1 +7m) y" (k) Quy (k) -

+ (1 +7m) y" (k) Qsy (k) -

k+1-Tm k-1, k-1
AVs(k)= > Zy HQy @) - D, Dy ()Quy ()

j=k+2-1p7 =] j=k+1-1p i=jf

k=T k k-1, k-1
= > Syeyi- > Sy ) Qy)
j=k+1-Tp i=j+1 j=k+l-Tp i=f

(3.15)

k—Tpm,
- 3 (v k) Quy (k) - y" () Qiy ()

j=k+1-1p

k

=(tm-tw)y Q) - >, v () Qy (j)-

]‘:k+1*TM
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Similarly,
k-7
AVs (k)= (tm-Ttm) y" () Qsy () = > " (j) Qv (j)
j=k+1-Tp

(3.16)

k=Tp ’ k—Tm
s<rM—rm>yT<k>Q6y<k>—TM1_ [ 2 y(j)] Q6[ 2 y(j)]-

Tm | ikl =kt -yt

From Lemma 2.5, for any positive diagonal matrix D1, Dy, it follows that

2y" (k-7 (k)) D <H H>g(y(k (k) -28" (y (k=7 (k))) Dag (y (k — 7 (k)))

=2y (k-7 (k) [IDa] T (k=7 (k) 20
1 2

2y" (k) Dy <H + H> g (y (k) —28" (v (k) Dig (v (k) = 2y" (k) [ [D1] Jv (k) > 0.
1 2 1 2

(3.17)

Combining (3.7)-(3.17), we get

AV (k) <YT (k) ZY (k). (3.18)
If the LMI (3.2) holds, it follows that there exists a sufficient small scalar € > 0 such that

AV (k) < ¢y (k) ||>- (3.19)

On the other hand, it can easily to get that

k-1

k-1
V (k) <24 (P) 1y () 1P + dnax Q1) D ly@]” + dnax (Q2) S [y @]

i=k-7(k) i=k—Ty,

k-1 k-1

k
+ Amax (Q3) ly D7 + Lmax (Qs) Z ley(z)ll +dmax (Q5) D DMy () 1P

i=k—-Tp j=k—Tm i=j j=k-Tm i=]

k-7

k-1 k-1, k-1
+dmax Q) Y, SYD P + dmax (Qe) D, D llyv@|1?
j=k-Tn i=]

j=k+1-Tp i=j

k-1
2hmax (P) ly )|+ 12 S Iy,

i=k—TM

(3.20)
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where )\ = )tmax(Ql) + )‘max(Q2) + )‘max(Q?)) + (1 + Tm))‘max(Q4) + (1 + TM))‘maX(QS) + (1 +TMm —
T ) (Mmax (Q1) + Amax(Qg)). Choose a scalar 6 > 1 such that —€0 + 2(0 — 1) Apax(P1) + (60 = 1).A -
TM0™ = 0. Then by (3.19) and (3.20), we get

OV (k+1) — 0KV (k) = KAV (k) + 0K (8- 1) V (k)

2 - 2 (3.21)
<etly®)|° +e6* > lv@],

i:k—TM

where €1 = —€0 + 20 (P)(0 — 1), &2 = A(O — 1). Therefore, for arbitrary positive integer
N > 7p1 + 1, summing up both sides of (3.21) from 0 to N — 1, we can obtain

N-1 N-1 k-1 )
NV (N) -V (0) < &1 > 6%|ly (k) I + &2 6%y (i) |
k=0 k=0i=k-Tp

<etm(tm+1)0™ sup |y () |* + (1 + e2TMO™) ZG"”y(k)”

i€N[-7p,0]
(3.22)

Noting that

V(N) > Amin (P) ly(N)]%,  V(0) € (At + 2Amax (P1)) sup [y (3.23)

iEN[~Tp1,0]
It follows that [ly(N) < a - pNsup, ., olly@®Il, where p = Vo), a =
\/()LTM + 2 max(P) + e27m (Tp +1)0™) / Ain (P). By Definition 2.2, system (2.5) is globally
exponentially stable, which completes the proof of Theorem 3.1. O

Remark 3.2. By constructing the new augmented Lyapunov functional, free-weighting
matrices P, H;,i = 2,3,...,21 are introduced so as to reduce the conservatism of the delay-
dependent result. Moreover, the decomposition of matrix C = C; +C, makes the conservatism
of the stability criterion reduce further, since the elements of matrices C;, C; are not restricted
to (-1,1) any more.

Remark 3.3. Since Theorem 3.1 holds for arbitrary matrices C;, C; satisfying C1 + C, = C, then,
when C; = 0 or C; = 0, respectively, we can easily obtains the following simplified useful
corollaries.

Corollary 3.4. For any given positive scalars 0 < T,, < Tar, then, under Assumption 1, system (2.5)
is globally exponentially stable for any time-varying delay (k) satisfying T,, < T(k) < Ty, if there
exist positive-definite matrices P1, Q1, Q2, Qs, positive-definite diagonal matrices D1, D2, Qu, Qs, Qe,
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and arbitrary matrices P;, H;,i = 2,3,...,21 with appropriate dimensions, such that the following
LMI holds:

[
)
[
%

14 Z15 S16 217 18 S19 E1,10\

1
1
1

/511
*

S0 Zp3 Soa S5 S So7 Zog D29 2,10
* % Za3 S3q S35 S36 D37 238 =39 93,10
¥ %k Sy Za5 S =47 S48 D49 =410

* % % % 55 Sse D57 oS58 =59 95,10

[
>

<0, (3.24)
¥ ok ok ok ok Zge Doy D68 D69 6,10

ok ox % %k Zpyp Zzg Zpg S0
* * E3 * * * * 588 589 58,10

* * * * * * * *  Zgg9 =910

\ * * * * * * * * * 510,10/

where

éll =-2P; +H12C+CTH{2+Q2+Q3+ (TM—Tm+1)Q1

+(1+T) Qe+ (1+7m) Qs + (tm - 7) Qs = 2] [Di] [
o

Ep=Cl(Hiz - P3)T, Ei3=Cl(Hu — Py — Pip)" - Hy,

Eu=C'(His-Pis)' —Hy,  Zi5=Hy+C (His— Py)’,
E16 = HpA+C'(Hyy - Py)" + Dy <H + H> , By =HpB+C'(His-Pi)’,
T

Eis = Hy + CT(Hyo - Ppo)T, Ei9 = CT(Hy — Py)" - Ha, 110 = CT(Hy - Py)" - Ha.
(3.25)

Corollary 3.5. For any given positive scalars 0 < T,, < T, then, under Assumption 1, system (2.5)
is globally exponentially stable for any time-varying delay (k) satisfying T,, < T(k) < Ty, if there
exist positive-definite matrices Pi, Q1,Q2, Qs, positive-definite diagonal matrices D1, D2, Qu, Qs, Qe,
and arbitrary matrices P;, H;,i = 2,3,...,21 with appropriate dimensions, such that the following
LMI holds:
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19 =110 \

¥ S o3 Sog S5 S Sy S8 S29 S2,10

[y

/511 0 Zi3 Suu S5 17 Z18

-

* ok I3z T3q S35 S36 D37 D38 =39 93,10

¥ %k Ty Da5 S D47 S48 D49 Z4,10

* % % % D55 Ise 57 58 59 95,10

=2 <0, (3.26)
* * * * * Se6 67 =68 S69 6,10
¥ %k x % kx IZy7 Tgg Sy9 7,10
* ok k% % x % [Sgg Sgg Zgqp
* * * * * * * *  Zg9 =910
\ * ok k  x %k ok k kK 510,10/
where
a T
En=2CPC-2P+Qo+ Qs+ (tM~Tm +1) Q1 + (1 + Tp) Q4
+(1+73) Qs + (Tm = T) Qo — 2] [D1] [
1 2
213 =CT (P, + Ppp) — Hip +CTPT E4=C'P,—HyZ25=-C"P,+H
E3=C (P +Pp)-Hp+C P, E14=C'P-Hy E5 = » + Hp, (3.27)

216 = —CTP12A + leA + Dl <H + H> , 217 = —CTplzB + leB,
1 2
Z1s=-C'P, + Hy, S10=CT'P, - H,, S100=CT'P, — H,.

Remark 3.6. It is worth pointing out that Theorem 3.1 and Corollary 3.4 can be easily extended
to robust exponential stability conditions. As for the stability of system (2.1), according to
Lemma 2.4, we can obtain the following robust stability results.

Theorem 3.7. For any given positive scalars 0 < T, < Ty, then, under Assumption 1, system
(2.1) is robustly, globally, exponentially stable for any time-varying delay 7(k) satisfying T, <
T(k) < T, if there exist positive-definite matrices P, Q1,Qa, Qs, positive-definite diagonal matrices
D1, D5, Qu, Qs, Qq, arbitrary matrices P;, H;,i = 2,3,...,21 with appropriate dimensions, and a
positive scalar e such that the following LMI holds:

E & el
=4 -l 0 <0, (3.28)
*  —el

T
where &I = [KT(Hi - CTP) , KT (His - Pr3)", KT (His — Ppo — Pus)", K" (His - Pis)", KT (Hie
~Py)", KT(Hy7 - Piy)", KT (Hig — Pis)", KT (Hio — Pio)", KT (Hao - Pao)", KT (Ho1 - Po1)"],
‘;2 = [EC/ O/ 0/ 0/ 0/ Ear Eb/ O/ O/ 0]
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Proof. Replacing A, B, C; in inequality (3.2) with A+ KF(t)E,, B+ KF(t)Ep and C, + KF(t)E,
respectively, inequality (3.2) for system (2.1) is equivalent to Z + & F(£)& + & FT (£)¢] < 0.
From Lemmas 2.6 and 2.7, we can easily obtain this result, this complete the proof. Similarly,
we have. O

Theorem 3.8. For any given positive scalars 0 < T, < Tu, then, under Assumption 1, system
(2.1) is robustly, globally, exponentially stable for any time-varying delay 7(k) satisfying T, <
T(k) < Tam, if there exist positive-definite matrices P;, Q1,Q2, Qs, positive-definite diagonal matrices

D1, Dy, Qy4, Qs, Qe, arbitrary matrices P, H;,i = 2,3,...,21 with appropriate dimensions, and a
positive scalar € such that the following LMI holds:

E & el

« —el 0 |<o. (3.29)

[
(1>

* x —el

Theorem 3.9. For any given positive scalars 0 < T, < Tm, then, under Assumption 1, system
(2.1) is robustly, globally, exponentially stable for any time-varying delay 7(k) satisfying T, <
T(k) < T, if there exist positive-definite matrices Pi, Q1,Q2, Qs, positive-definite diagonal matrices
D1, D5, Q4,Q5,Qe, and arbitrary matrices P;, Hi,ﬁj,ﬁj, i=23,..2lj=12,..,6 with
appropriate dimensions, such that the following LMI holds:

Lt/ ~ ~ Lt}
S D12 S13 D14 515 D16 D17 18 =19 S0 S

= =1

* S Zpz Zoa Zos o6 Sz S8 Zpo Sp10 Shg

- - =N

* % gz Zau Zzs Za6 27 Zss Sso Z3i0 S3q

=/

* ok ox Zay Zuas Zae Sa7 Sas Sao S410 Sy

="

* ok ox x Fs5 Tse Zs7 Ssg S50 Zs500 Sy

lI>

="

* * * * * g Ze7 S8 =69 55,10 6,11 <0, (330)

[1

= = =n

E7; 78 S79 Z70 Zpqg

=

* %k x % k% [Sgg Tgg Zg1o Sg11

=

* * * * * * * *  Zg9 910 Z911

=N

* * * * * * * * *  Z10,10 Slo11

=
* * * * * * * * * * —
\ 11,11/ 13nx13n
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where
= = T = = T = = T
S =St EC E., Siep = Zigg T EgEa/ S, =S77 + Eb Ep,
= T - T/ — \T — —
Ein= (le -G P12> K+C, (H23 - P23> , S = (Hiz—Pi3) K,

— =T —T — =T —T
E511 = (His = Piy = Pia) K + Py — Hy,, Ej11 = (His = Pis) K+ Py, — Hoy,

S — o .
S5 = (Hie = Pig) K =Py~ Hy,  Egy = (Hiy - Piy) K= ATPy + ATHp,,

— —T —T — =T —T
Ep 11 = (His — Pig) K - B'Py + BTHy,, Zg11 = (Hio — Pio) K — Py + Hy,

= - =T —T —_ — =T —T
=911 = (Hao = Pa) K + Py — Hp, =1011 = (Ha1 = Pa1) K+ Py — Hy,

(3.31)
— — — —T /— — T = —
Sl = <H23 - P23> K+K <H23 - P23> -1, K=[K K K],
ﬁl ﬁ4 E1
ﬁZZ = ﬁz y ﬁ23 = ﬁs , ﬁ22 = E:Z ,
ﬁ3 ﬁé Eg
H, 100
H23 = ﬁ5 , I=]101I0
H, 001

Proof. Replacing A, B, C in system (2.5) with A + KF(t)E,, B + KF(t)Ey and C + KF(t)E,,
respectively. Then, system (2.5) can be transformed into the following equivalent form:

y(k+1)=Cy (k) + Ag (v (k)) + Bg (v (k — 7 (k))) + KF (t) Ecy (k) + KF (t) Eag (v (k))

+ KF (t) Evg (y (k-7 (k)))
= Cry (k) + Cay (k) + Ag (y (k) + Bg (y (k - 7 (k))) + KY (k),

(3.32)
where
F (t) Ecy (k)
Y (k) = F (t) Eag (v (k))
F (t) Evg (y (k-7 (k)))
(3.33)

y (k)
= diag (F (1), F (1), F (t)) diag (Ec, Eo, Ev) | g (v (K))
g (v (k-7 (k)))
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Constructing a new augmented Lyapunov-Krasovskii functional candidate as follows:

V (k) =V (k) + Vs (k) + V5 (k) + Vi (k) + Vs (k) + Vi (K), (3.34)
where
PO -0
000
Vi(k)=2Y" (k) Y (k), (3.35)
00--0 13nx13n

Y = [0,y (k - ()7 (K),y" (k = 7a0),y" (k - ), g7 (y(K)), &7 (y(k — 1)),
S e ¥ @, Y6, S5 T @Y1, (k) = y(k + 1) — Ciy(K); Va(k), Va(k),
..., Vg(k) are the same as in Theorem 3.1.
—T
SetY (k+1) = [y (k+1),y" (k—-7(k)),n" (k), y" (k=7m), y" (k=7n), 8" (y(K)), &" (y (k-
™)), Sikry Y 0 S, ¥ @), T 0 T DR = [y (K)CT + 0" (), 0" (), y" (k -

™), YT (k=T), 8T (y(K)), &7 (y(k—Ta)), Zhkr, ¥ (), Sk, y7 (@), Iy (), YT ()T
Define AV (k) = V(k + 1) — V (k). Then along the solution of system (3.32) we have

PO -0 P00
AV, (k) =2Y (k+1) Y (k+1)-2Y (k) Y (k)
000 00--0
P,O -0 P,O -0 (3.36)
. 00--0]_ 000
=Y (k+1) Y (k+1)-2Y (k) Y (k)
00--0 000

227, - 2I,.
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0\ /Pl P, Pu\

P; Py
Py Py
Ps D5
Ps Pig | /y(k+1)

p; Py 0 ) (3.37)

N\
Q)
=

Py Py
Py Py /

o O O O O O O O o ~ ©
o O O O O O O O ~N O O
o O O O O O O ~ O o o
o O O O O O N O O o ©
o O O O O ~N O O o o o
o O O O N O O O O o O
o O O N O O O O o o o
o O ~ O O O O O o o o
S N O O O O O O o o o
~l O O O O O O o o o

\

SO O O O O O O O ~N O
o O O O O O o o o o
o~
s
@
o

Vs
Vs

On the other hand, since 1(k) - Coy (k) -Ag(y(k))-Bg(y(k—7(k))) -KY(k) =0, Zf:k_m y(i)—
Zf:k—m y(@) + Zf:_,:fl_m y(i) —y' (k= Tm) + y* (k = T;m) = 0, we have

Ciy (k) +1 (k)

y(k+1) k k k-7
0 - i_kZT y (@) —i_kZT y (i) +,--k§T y (@) —y" (k=) +y" (k- 7m)
' 1 (k) - Cay (k) = Ag (y (k) - Bg (v (k -7 (k))) = KY (k) (3.38)
CC 0I00 0 0 000 O
=l 0o 0o0I-r 0o 0 -ITI 0 |Y(k),
-C, 0100 -A-B 0 00 -K
/Pl H, Hy \
0 H; Hyp
0 Hy; Hyuy
0 Hs His
0 Hy Hi I 0000 0O O 000 O
L=Y k| 0 H, Hy 0 00I-I 0 0 -ITTI 0 |Y(k). (339
0 Hs His -C,b 0I 00 -A-B 000 -K
0 Hy Hy
0 Hi Hx
0 Hu Hn
\0 Hy Hy /
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Table 1: Allowable upper bounds Tas for given T,,.

Cases Ty =2 T =4 Ty =6 T =8 T, =10 Ty =20
By [15] 11 11 12 13 14 21
By [16] 11 12 13 14 16 23
By [17] 13 13 17 19 21 31
By Theorem 3.1 ™ >0 ™ >0 ™ >0 ™ >0 ™ >0 ™ >0
Noting that

Y)Y (k) < [y (), 8 (k). "y (k — ()]
ETE. 0 0 y (k) (3.40)
x| 0 EE. 0 8 (v (k)
0 0 EE/ \gyk-7k)

Combining (3.12)-(3.17), (3.36)—(3.40), similar to the proof of Theorem 3.1, one can easily
obtain this result, which completes the proof. O

Remark 3.10. Compared with the augmented Lyapunov functional constructed in
Theorem 3.1, this new augmented Lyapunov functional include the term Y(k), which
makes the conservatism of the stability criterion be reduced further (details for more, see
Example 4.2).

4. Numerical Examples

In this section, three numerical examples will be presented to show the validity of the main
results derived above.

Example 4.1. For the convenience of comparison, let us consider a delayed discrete-time
recurrent neural network in (2.5) with parameters given by

08 0 0.001 0 -0.1 0.01
C= , A= p B = . (41)

0 09 0 0.005 -0.2 -0.1
The activation functions are given by gi1(x) = g(x) = tanh(x). It is easy to see that the
activation functions satisfy Assumption1 with o] = o, = 0, 0 = o5 = 1. For 7, =

2,4,6,8,10,20, references [15-17] gave out the allowable upper bound 7 of the time-varying
delay, respectively. Decompose matrix C as C = C; + C,, where

04 0 04 0
Ci= . C= : (4.2)
0 05 0 04

Table 1 shows that our results are less conservative than these previous results.
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Table 2: Allowable upper bounds Tas for given T,,.

Cases Ty =2 Tn =4 Ty =6 T =8 T, =10
By [16] 6 8 10 12 14
By [17] 10 12 14 16 18
By Theorem 3.7 17 19 21 23 25
By Theorem 3.9 22 24 26 28 30

Example 4.2. Consider an uncertain delayed discrete-time recurrent neural network in (2.1)
with parameters given by

025 0 0.12 0.24 -0.25 0.1 02 0
C — y A — ’ B —3 ’ K — y
0 01 -0.15 0.2 0.02 0.09 0 0.3
0.15 0.1 0.1 03 0.13 0.06 0
E.= ’ E, = ’ E, = , ] = .
0 -0.7 -0.2 0.05 -0.05 0.15 0
4.3)

The activation functions are given by f1(x) = tanh(0.55x) + sin(0.45x), f2(x) = tanh(0.65x) +
sin(0.45x). It is easy to see that the activation functions satisfy Assumption 1 with o] =
0.1,05 =0.2,0f =1,0, = 1.1. For 7,,, = 2,4,6,8, 10, references [16, 17] gave out the allowable
upper bound 7, of the time-varying delay, respectively. Decompose matrix C as C = C;1 + Cy,

where
02 -1 0.05 1
C = , C, = . (4.4)
0.012 0.05 -0.012 0.05

Set € = 50, by using the MATLAB toolbox, the allowable upper bounds 7 for given 7, are
showed in Table 2. Obviously, our results are less conservative than these previous results.

Example 4.3. Consider an uncertain delayed discrete-time recurrent neural network in (2.1)
with parameters given by

0.8 0 0.07 0.1 -0.1 0.01 0.02 0
C= . A= . B= . K= ,
0 09 0 0.05 -0.2 -0.1 0 0.03
0.15 0.1 0.1 03 0.13 0.06 0
EC = ’ Eu = ’ Eb = ’ ] = .
0 -07 -0.2 0.05 -0.05 0.15 0

(4.5)

And the activation functions are the same as given in Example 4.2. Decompose matrix C as

C = C; + Cy, where
04 0 04 0
Ci = , C, = . (4.6)
0 0.5 0 04
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Table 3: Allowable upper bounds Tas for given T,,.

Cases Ty =2 Tn=4 T =6 T =8 Tm =10 T =20
By Theorem 3.7 88 90 92 94 96 105

Set € = 50, by using the MATLAB toolbox, the allowable upper bounds 7 for given 7, are
showed in Table 3.
The free-weighting matrices are obtained as follows when 7, = 2, Tp1 = 60:

0 0.0074 —0.0002 0 0.0627 —0.0191
"7 \-0.0002 0.0007 /’ 27\ —0.0191 00094 /"

0.0627 -0.0191 0.8703 0
Q3= , D = ,
-0.0191 0.0094 0 0.2672

1

0.0079 0 0.2326 0
Qs = ,  Qs=1.0e-003 ,
0  0.0012 0  0.0303

02493 0 6.3936 —0.9854
Qs =1.0e - 003 , P, = ,
0 0.0320 —-0.9854 0.2599

-304.8096 -16.0366 0.0612 0
b5 = , D, = ,
—131.0952 -930.9992 0 0.0083

1.1931 0.1097 -1.4764 -0.1509
Ps =1.0e + 003 , Py =1.0e + 003 ,
0.3365 0.0269 —0.0791 1.0626

350.0434 —852.4925
7N 268470 9042654 )7

-0.5682 —-0.0257 —0.6548 -1.6295
Py =1.0e + 003 , P, = 1.0e + 004 ,
—-0.0413 1.1255 0.9399 4.7692

22001 -3.7370
Pi5 = 1.0 + 003 ,

-0.3034 -0.3479

Pi7 =

—-0.4972 -2.3726

0.3186 0.7851
Py, =1.0e + 004 ,
-165.3251 -31.3854

< 273.4789 —200.5789>

P18 = 1.0e + 003 <

-304.4622 -16.0335 1.1927 0.1097
Hs = , H¢ =1.0e + 003 ,

0.0888 —3.8454
1.6080 4.3515 /)~

—-131.0922 -930.6433 0.3365 0.0265
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-1.4768 -0.1509
Hy =1.0e + 003 ,
—-0.0791 1.0622

Hj =

-26.8478 904.6230

~349.6840 —852.4933
’ ~0.0413 1.1259

-0.5678 —-0.0257
H11 =1.0e + 003 ,

-0.2616 -0.6522
le =1.0e + 004 ,

0.4698 2.3832

2.2001 -3.7370
H13 =1.0e + 003 < > ,

—-0.3034 -0.3479

274.5315 -200.9016 0.0893 -3.8440
H;7 =1.0e + 004 , His =1.0e + 003 ,

-0.3344 -0.8443
H14 =1.0e + 004 ,

0.4422  2.4005

-167.3579 -33.2092 1.5970 4.3553
Po=P3=Py=P; =P =Pi5=Pg=Piog=Py=Pn

=H, =H3=Hy;=H7;=Hg=H5s=Hs=Hi9=Hy = H> =0.
4.7)

5. Conclusion

By decomposing some connection weight matrices , combined with linear matrix inequality
(LMI) technique, some new augmented Lyapunov-Krasovskii functionals are constructed,
and serial new improved sufficient conditions ensuring exponential stability or robust
exponential stability are obtained. Numerical examples show that the new criteria derived
in this paper are less conservative than some previous results obtained in the references cited
therein.
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