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1. Introduction

Let N,Z,R be the set of all natural numbers, integers, and real numbers, respectively. For
a, b ∈ Z, note that Z[a, b] = {a, a + 1, . . . , b}, where a ≤ b.

In this paper, we consider the existence of periodic solutions for the system of
difference equations of the form

Δ
(
pn1
(
Δx(n−1)1

)δ) + qn1
(
xn1
)δ = f1

(
n,Xn

)
,

Δ
(
pn2
(
Δx(n−1)2

)δ) + qn2
(
xn2
)δ = f2

(
n,Xn

)
,

...

Δ
(
pnk
(
Δx(n−1)k

)δ) + qnk
(
xnk

)δ = fk
(
n,Xn

)
,

(1.1)

which can be recorded as

Δ
(
Pn

(
ΔXT

n−1
)δ)

+Qn

(
XT

n

)δ
= f
(
n,Xn

)
, n ∈ Z, (1.2)



2 Discrete Dynamics in Nature and Society

where k is a positive integer,

Pn =

⎛

⎜
⎜
⎜
⎜
⎝

pn1 0 · · · 0

0 pn2 · · · 0

· · ·
0 0 · · · pnk

⎞

⎟
⎟
⎟
⎟
⎠

, Qn =

⎛

⎜
⎜
⎜
⎜
⎝

qn1 0 · · · 0

0 qn2 · · · 0

· · ·
0 0 · · · qnk

⎞

⎟
⎟
⎟
⎟
⎠

, (1.3)

and Pn+ω = Pn > 0 (i.e., pn1 > 0, pn2 > 0, . . . , pnk > 0), Qn+ω = Qn, f = (f1, f2, . . . , fk)
T ,

fi = fi(n,Xn) = fi(n, xn1, xn2, . . . , xnk), f(n + ω,U) = f(n,U) for any (n,U) ∈ Z × R
k,

ω > 0 is a positive integer, (−1)δ = −1, δ is the ratio of odd positive integers, ΔXT
n =

XT
n+1−XT

n = (x(n+1)1 − xn1, x(n+1)2 − xn2, . . . , x(n+1)k − xnk)
T ,Δ2XT

n−1 = Δ(ΔXT
n−1) = ΔXT

n −ΔXT
n−1.

For U = (u1, u2, . . . , uk) ∈ R
k, define Uδ = (uδ

1 , u
δ
2 , . . . , u

δ
k
). |U| = (|u1|, |u2|, . . . , |uk|), |U|δ =

(|u1|δ, |u2|δ, . . . , |uk|δ). A sequence X = {Xn}n∈Z
is a ω-periodic solution of (1.2) if substitution

of it into (1.2) yields an identity for all n ∈ Z.
In [1, 2], the qualitative behavior of linear difference equations

Δ
(
pnΔxn

)
+ qnxn = 0 (1.4)

has been investigated. In [3], the nonlinear difference equation

Δ
(
pnΔxn−1

)
+ qnxn = f

(
n, xn

)
(1.5)

has been considered. In [4], by critical point method, the existence of periodic and
subharmonic solutions of equation

Δ2xn−1 + f
(
n, xn

)
= 0, n ∈ Z (1.6)

has been studied. Other interesting results can been found in [5–8]. In [9], the authors
consider the existence of periodic solutions for second-order nonlinear difference equation

Δ
(
pn
(
Δxn−1

)δ) + qnx
δ
n = f

(
n, xn

)
, n ∈ Z, (1.7)

using critical point theory, obtaining some new results. It is a discrete analogues of differential
equation

(
p(t)φ

(
u′))′ + f(t, u) = 0. (1.8)

They do have physical applications in the study of nuclear physics, gas aerodynamics, and so
on (see [10, 11]). In this paper, we obtain some new results of existence of periodic solution
for the second-order nonlinear system of difference equations by using critical point theory.
We remark, however, the result in [9] is only good for (1.7) which is much less general than
our results in what follows.
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2. Some Basic Lemmas

Let E be a real Hilbert space, I ∈ C1(E,R) mean that I is continuously Fréchet differentiable
functional defined on E. I is said to be satisfying Palais-Smale condition (P-S condition) if
any bounded sequence {I(un)} and I

′
(un) → 0 (n → ∞) possess a convergent subsequence

in E. Let Bρ be the open ball in E with radius ρ and centered at θ, and let ∂Bρ denote its
boundary, θ is null element of E.

Lemma 2.1 (see [12]). Let E be a real Hilbert space, and assume that I ∈ C1(E,R) satisfies the P-S
condition and the following conditions:

(I1) there exist constants ρ > 0 and a > 0 such that I(x) ≥ a for all x ∈ ∂Bρ, where Bρ = {x ∈
E : ‖x‖ < ρ};

(I2) I(0) ≤ 0 and there exists x0/∈Bρ such that I(x0) ≤ 0.

Then c = infh∈Γsups∈[0,1]I(h(s)) is a positive critical value of I, where

Γ = {h ∈ C([0, 1], X) : h(0) = θ, h(1) = x0}. (2.1)

Let Ω∗ be the set of sequences

X =
{
Xn

}
n∈Z

=
{
. . . , X−n, . . . , X−1, X0, X1, . . . , Xn, . . .

}
, (2.2)

where Xn = (xn1, xn2, . . . , xnk) ∈ R
k, that is,

Ω∗ =
{
X =

{
Xn

}
n∈Z

: Xn ∈ R
k, n ∈ Z

}
. (2.3)

For any X,Y ∈ Ω∗, a, b ∈ R, aX + bY is defined by

aX + bY =
{
aXn + bYn

}+∞
n=−∞, (2.4)

then Ω∗ is a vector space. For given positive integer ω, Eω is defined as a subspace of Ω∗ by

Eω =
{
X =

{
Xn

} ∈ Ω∗ : Xn+ω = Xn, n ∈ Z
}
. (2.5)

Obviously, Eω is isomorphic to R
kω, for any X,Y ∈ Eω, defined inner product

〈X,Y〉 =
ω∑

i=1

〈
Xi, Yi

〉
, (2.6)

by which the norm ‖·‖ can be induced by

‖X‖ =

(
ω∑

i=1

∥∥Xi

∥∥2
)1/2

, X ∈ Eω. (2.7)
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where ‖Xi‖ = (
∑k

j=1|xij |2)
1/2

. It is obvious that Eω with the inner product defined by (2.6) is a
finite-dimensional Hilbert space and linearly homeomorphic to R

kω. Define the functional J
on Eω as follows:

J(X) =
1

δ + 1

ω∑

n=1

〈
Pn,
(
ΔXn−1

)δ+1〉 − 1
δ + 1

ω∑

n=1

〈
Qn,X

δ+1
n

〉
+

ω∑

n=1

F
(
n,Xn

)
, X ∈ Eω, (2.8)

where F(n,Xn) such that ∇UF(n,U) = f(n,U), that is,

fi(n,U) = fi
(
n, u1, u2, . . . , uk

)
=

∂

∂ui
F
(
n, u1, u2, . . . , uk

)
(2.9)

for any (n,U) ∈ Z[1, ω] × R
k, Pn = (pn1, pn2, . . . , pnk), Qn = (qn1, qn2, . . . , qnk). Clearly J ∈

C1(Eω,R), and for any X = {Xn}n∈Z
∈ Eω, by X0 = Xω and X1 = Xω+1, we have

∂J(X)
∂xnl

= −Δ(pnl
(
Δx(n−1)l

)δ) − qnl
(
xnl

)δ + fl
(
n,Xn

)
, l ∈ Z[1, k], n ∈ Z[1, ω]. (2.10)

Thus X = {Xn}n∈Z
is a critical point of J on Eω (J

′
(X) = 0) if and only if

Δ
(
pnl
(
Δx(n−1)l

)δ) + qnl
(
xnl

)δ = fl
(
n,Xn

)
, l ∈ Z[1, k], n ∈ Z[1, ω]. (2.11)

That is,

Δ
(
Pn

(
ΔXT

n−1
)δ)

+Qn

(
XT

n

)δ
= f
(
n,Xn

)
, n ∈ Z. (2.12)

By the periodicity ofXn and f(n,Xn) in the first variable n, we know that ifX = {Xn}n∈Z
∈ Eω

is a critical point of the real functional J defined by (2.8), then it is a periodic solution of (1.2).
For X = {Xn}n∈Z

∈ Eω, Xn = (xn1, xn2, . . . , xnk) ∈ R
k, r > 1, denote

‖X‖r =
(

ω∑

i=1

∥∥Xi

∥∥r
)1/r

,
∥∥Xn

∥∥
r =

(
k∑

i=1

∥∥xni

∥∥r
)1/r

. (2.13)

Clearly, ‖X‖2 = ‖X‖, ‖Xn‖2 = ‖Xn‖. Because of ‖·‖r1 and ‖·‖r2 being equivalent when r1, r2 > 1,
so there exist constants c1, c2, c3, c4, �1, �2, �3, and �4 such that c2 ≥ c1 > 0, c4 ≥ c3 > 0, �2 ≥
�1 > 0, and �4 ≥ �3 > 0,

c1‖X‖ ≤ ‖X‖δ+1 ≤ c2‖X‖,
c3‖X‖ ≤ ‖X‖β ≤ c4‖X‖,

�1
∥∥Xn

∥∥ ≤ ∥∥Xn

∥∥
δ+1 ≤ �2

∥∥Xn

∥∥,

�3
∥∥Xn

∥∥ ≤ ∥∥Xn

∥∥
β ≤ �4

∥∥Xn

∥∥,

(2.14)

for all X ∈ Eω, δ > 0, and β > 1.
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Lemma 2.2. Suppose that

(F1) there exist constants a1 > 0, a2 > 0, β > δ + 1 such that

F(n,U) ≤ −a1‖U‖β + a2 (2.15)

for any (n,U) ∈ Z[1, ω] × Rk;

(F2)

qni ≤ 0, n ∈ Z, i ∈ Z[1, k]. (2.16)

Then

J(X) =
1

δ + 1

ω∑

n=1

〈
Pn,
(
ΔXn−1

)δ+1〉 − 1
δ + 1

ω∑

n=1

〈
Qn,X

δ+1
n

〉
+

ω∑

n=1

F
(
n,Xn

)
(2.17)

satisfies P-S condition.

Proof. For any sequence {X(l)} = {. . . , X(l)
−n, . . . , X

(l)
−1 , X

(l)
0 , X

(l)
1 , . . . , X

(l)
n , . . .} ∈ Eω, J(X(l)) is

bounded and J
′
(X(l)) → 0 (l → ∞). Then there exists a positive constant M > 0, such

that |J(X(l))| ≤ M. From (F1), we have

−M ≤ J(X(l))

=
1

δ + 1

ω∑

n=1

[〈
Pn,
(
X

(l)
n −X

(l)
n−1
)δ+1〉 −

〈
Qn,
(
X

(l)
n

)δ+1〉]

+
ω∑

n=1

F
(
n,X

(l)
n

)

≤ 1
δ + 1

ω∑

n=1

2δ+1
〈
Pn,
(∣∣X(l)

n

∣∣δ+1 +
∣∣X(l)

n−1
∣∣δ+1
)〉

− 1
δ + 1

ω∑

n=1

〈
Qn,
∣∣X(l)

n

∣∣δ+1
〉
+

ω∑

n=1

F
(
n,X

(l)
n

)

≤ 2δ+1

δ + 1

ω∑

n=1

〈
Pn + Pn+1,

∣∣X(l)
n

∣∣δ+1
〉
− 1
δ + 1

ω∑

n=1

〈
Qn,
∣∣X(l)

n

∣∣δ+1
〉

+
ω∑

n=1

F
(
n,X

(l)
n

)

≤ 2δ+1

δ + 1

ω∑

n=1

〈
Pn + Pn+1,

∣∣X(l)
n

∣∣δ+1
〉
− 1
δ + 1

ω∑

n=1

〈
Qn,
∣∣X(l)

n

∣∣δ+1
〉

− a1

ω∑

n=1

∥∥X(l)
n

∥∥β + a2ω

=
1

δ + 1

ω∑

n=1

〈
2δ+1
(
Pn + Pn+1

) −Qn,
∣∣X(l)

n

∣∣δ+1
〉
− a1
∥∥X(l)∥∥β

β + a2ω.

(2.18)
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Set

A0 = max
n∈Z[1,ω],i∈Z[1,k]

{
2δ+1
(
pni + p(n+1)i

) − qni
}
. (2.19)

Then A0 > 0, and

−M ≤ J
(
X(l))

≤ A0

δ + 1

ω∑

n=1

∥
∥X(l)

n

∥
∥δ+1
δ+1 − a1

∥
∥X(l)∥∥β

β + a2ω

≤ A0�
δ+1
2

δ + 1

ω∑

n=1

∥
∥X(l)

n

∥
∥δ+1 − a1

∥
∥X(l)∥∥β

β + a2ω

=
A0�

δ+1
2

δ + 1
∥∥X(l)∥∥δ+1

δ+1 − a1
∥∥X(l)∥∥β

β + a2ω.

(2.20)

Because of β > δ + 1, and (β − δ − 1)/β + (δ + 1)/β = 1, in view of Hölder inequality, we have

ω∑

n=1

∥∥X(l)
n

∥∥δ+1 ≤ ω(β−δ−1)/β
(

ω∑

n=1

∥∥X(l)
n

∥∥β
)(δ+1)/β

. (2.21)

Thus

∥∥X(l)∥∥β
β ≥ ω(δ+1−β)/(δ+1)∥∥X(l)∥∥β

δ+1. (2.22)

Then we have

−M ≤ J(X(l))

≤ A0�
δ+1
2

δ + 1
∥∥X(l)∥∥δ+1

δ+1 − a1
∥∥X(l)∥∥β

β + a2ω

≤ A0�
δ+1
2

δ + 1
∥∥X(l)∥∥δ+1

δ+1 − a1ω
(δ+1−β)/(δ+1)∥∥X(l)∥∥β

δ+1 + a2ω.

(2.23)

Thus, for any l ∈ N,

a1ω
(δ+1−β)/(δ+1)∥∥X(l)∥∥β

δ+1 −
A0�

δ+1
2

δ + 1
∥∥X(l)∥∥δ+1

δ+1 ≤ M + a2ω. (2.24)

Because of β > δ+1, it is easily seen that the inequality (2.24) implies that {X(l)} is a bounded
sequence in Eω. Thus {X(l)} possesses convergent subsequences. The proof is complete.
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3. Main Result

Theorem 3.1. Suppose that condition (F1) holds, and

(F3) for each n ∈ Z,

lim
‖U‖→ 0

F(n,U)

‖U‖δ+1
= 0; (3.1)

(F4) for any i ∈ Z[1, k], n ∈ Z[1, ω],

qni < 0; (3.2)

(F5) F(n, θ) = 0.

Then (1.2) has at least two nontrivial ω-periodic solutions.

Proof. By Lemma 2.2, J satisfies P-S condition. Next, we will verify the conditions (I1) and
(I2) of Lemma 2.1. By (F3), there exists ρ > 0, such that

|F(n,U)| ≤ −qmax�
δ+1
1

2(δ + 1)
‖U‖δ+1 (3.3)

for any ‖U‖ < ρ and n ∈ Z[1, ω], where qmax = maxn∈Z[1,ω], i∈Z[1,k]qni < 0. Thus

J(X) ≥ − 1
δ + 1

ω∑

n=1

〈
Qn,X

δ+1
n

〉
+

ω∑

n=1

F
(
n,Xn

)

≥ − qmax

δ + 1

ω∑

n=1

∥∥Xn

∥∥δ+1
δ+1 +

qmax�
δ+1
1

2(δ + 1)

ω∑

n=1

∥∥Xn

∥∥δ+1

≥ −qmax�
δ+1
1

δ + 1

ω∑

n=1

∥∥Xn

∥∥δ+1 +
qmax�

δ+1
1

2(δ + 1)

ω∑

n=1

∥∥Xn

∥∥δ+1

= −qmax�
δ+1
1

2(δ + 1)
∥∥X
∥∥δ+1
δ+1

≥ −qmax�
δ+1
1 cδ+11

2(δ + 1)
‖X‖δ+1

(3.4)

for any X ∈ Eω with ‖X‖ ≤ ρ. We choose a = −�
δ+1
1 cδ+11 (qmax/2(δ + 1))ρδ+1, then we have

J(X)|∂Bρ
≥ a > 0, (3.5)

that is, the condition (I1) of Lemma 2.1 holds.
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Obviously, J(0) = 0. For any given V ∈ Eω with ‖V ‖ = 1 and constant α > 0,

J(αV ) =
1

δ + 1

ω∑

n=1

〈
Pn,
(
αVn − αVn−1

)δ+1〉 − 1
δ + 1

ω∑

n=1

〈Qn, (αVn)
δ+1〉 +

ω∑

n=1

F(n, αVn)

=
1

δ + 1

ω∑

n=1

{
pn1
(
αvn1 − αv(n−1)1

)δ+1 + pn2
(
αvn2 − αv(n−1)2

)δ+1

+ · · · + pnk
(
αvnk − αv(n−1)k

)δ+1}

− 1
δ + 1

ω∑

n=1

{
qn1
(
αvn1

)δ+1 + qn2
(
αvn2

)δ+1 + · · · + qnk
(
αvnk

)δ+1}

+
ω∑

n=1

F
(
n, αVn

)

≤ 1
δ + 1

ω∑

n=1

{
pn1(2α)

δ+1 + pn2(2α)
δ+1 + · · · + pnk(2α)

δ+1}

− 1
δ + 1

ω∑

n=1

{
qn1α

δ+1 + qn2α
δ+1 + · · · + qnkα

δ+1}

− a1

ω∑

n=1

∥∥αVn

∥∥β + a2ω

≤ 1
δ + 1

ω∑

n=1

{
2δ+1
∥∥Pn

∥∥
1 +
∥∥Qn

∥∥
1

}
αδ+1 − a1α

β
ω∑

n=1

∥∥Vn

∥∥β + a2ω

≤ 1
δ + 1

ω∑

n=1

{
2δ+1
∥∥Pn

∥∥
1 +
∥∥Qn

∥∥
1

}
αδ+1 − a1α

β‖V ‖β
β
+ a2ω

≤ 1
δ + 1

ω∑

n=1

{
2δ+1
∥∥Pn

∥∥
1 +
∥∥Qn

∥∥
1

}
αδ+1 − a1c

β

3α
β + a2ω

−→ −∞, (α −→ +∞).

(3.6)

Thus we can choose a sufficiently large α such that α > ρ, and X = αV ∈ Eω, J(X) < 0.
According to Lemma 2.1, there exists at least one critical value c ≥ a > 0. We suppose that X∗

is a critical point corresponding to c, then J(X∗) = c and J ′(X∗) = 0.
By similar argument of Lemma 2.2, we know that J(X) is bounded from above, so

there exists X∗∗ ∈ Eω such that J(X) ≤ J(X∗∗) = cmax for any X ∈ Eω. Obviously, X∗∗ /= 0. If
X∗∗ /=X∗, then the proof is complete. Otherwise, X∗∗ = X∗, c = cmax. In view of Lemma 2.1,

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)), (3.7)

where Γ = {h ∈ C([0, 1], Eω) : h(0) = θ, h(1) = X}. Then cmax = maxs∈[0,1]J(h(s)) for any h ∈ Γ
holds. In view of the continuity of J(h(s)) in s, J(θ) ≤ 0, and J(X) < 0, we know that there
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exists some s0 ∈ (0, 1) such that J(h(s0)) = cmax. If we choose h1, h2 ∈ Γ such that

{h1(s) : s ∈ (0, 1)} ∩ {h2(s) : s ∈ (0, 1)} = φ, (3.8)

then there exist s1, s2 ∈ (0, 1) such that J(h1(s1)) = J(h2(s2)) = cmax. Then J possesses
two different critical points Ŷ = h1(s1) and Ž= h2(s2) in Eω, hence, we obtain at least two
nontrivial critical points which correspond to the critical value cmax. Thus (1.2) possesses at
least two nontrivial ω-periodic solutions. The proof is complete.
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