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1. Introduction

The dynamic relationship between predators and their prey has long been and will continue
to be one of the dominant themes in both ecology and mathematical ecology due to its
universal existence and importance [1]. The most popular predator-prey model is the one
with Holling type II functional response [2]:

dx

dt
= ax

(
1 − x

k

)
− cxy

m + x
,

dy

dt
= y
(
−d +

fx

m + x

)
,

x(0) > 0, y(0) > 0,

(1.1)

where x, y denote the density of prey and predator species at time t, respectively. The
constants a, k, c, m, f , d are all positive constants that stand for prey intrinsic growth rate,
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carrying capacity of prey species, capturing rate, half saturation constant, maximal predator
growth rate, predator death rate, respectively.

Standard Lotka-Volterra type models, on which a large body of existing predator-prey
theory is built, assume that the per capita rate of predation depends on the prey numbers only.
There is growing explicit biological and physiological evidence [3–8] that in many situations,
especially when predators have to search and share or compete for food, a more suitable
general predator-prey model should be based on the “ratio-dependent” theory.

Arditi and Ginzburg [9] proposed the following predator-prey model with ratio-
dependent type functional response:

dx

dt
= ax

(
1 − x

k

)
− cxy

my + x
,

dy

dt
= y
(
−d +

fx

my + x

)
,

x(0) > 0, y(0) > 0.

(1.2)

It was known that the functional response can depend on predator density in other
ways. One of the more widely known ones is due to Hassell and Varley [10]. A general
predator-prey model with Hassell-Varley tape functional response may take the following
form:

dx

dt
= x
(
a − x

k

)
− cxy

myr + x
,

dy

dt
= y
(
−d +

fx

myr + x

)
, r ∈ (0, 1),

x(0) > 0, y(0) > 0.

(1.3)

This model is appropriate for interactions, where predators form groups and have
applications in biological control. System (1.3) can display richer and more plausible
dynamics. In a typical predator-prey interaction where predators do not form groups, one
can assume that γ = 1, producing the so-called ratio-dependent predator-prey dynamics [11].
For terrestrial predators that form a fixed number of tight groups, it is often reasonable to
assume that γ = 1/2. For aquatic predators that form a fixed number of tight groups, γ = 1/3
may be more appropriate. Recently, Hsu [11] presents a systematic analysis on the above
system.

On the other hand, when the size of the population is rarely small or the population
has nonoverlapping generation, the discrete time models are more appropriate than the
continuous ones [12–24]. This motivated us to propose and study the discrete analogous of
predator-prey system (1.3):

x(k + 1) = x(k) exp
{
a(k) − b(k)x(k) − c(k)y(k)

m(k)yr(k) + x(k)

}
,

y(k + 1) = y(k) exp
{
−d(k) + f(k)x(k)

m(k)yr(k) + x(k)

}
,

(1.4)
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where r ∈ (0, 1); {a(k)}, {b(k)}, {c(k)}, {d(k)}, {m(k)}, {f(k)} are all bounded nonnegative
sequences. For the rest of the paper, we use the following notations: for any bounded
sequence {g(k)}, set

gu = sup
k∈N

g(k), gl = inf
k∈N

g(k). (1.5)

By the biological meaning, we will focus our discussion on the positive solution of
system of (1.3). Thus, we require that

x(0) > 0, y(0) > 0. (1.6)

2. Permanence

In order to establish the persistent result for system (1.4), we make some preparations.

Definition 2.1. System (1.4) said to be permanent if there exist positive constants m and M,
which are independent of the solution of system (1.4), such that for any positive solution
{x(k), y(k)} of system (1.4) satisfies

m ≤ lim inf
k→+∞

{
x(k), y(k)

} ≤ lim sup
k→+∞

{
x(k), y(k)

} ≤M. (2.1)

Lemma 2.2 (see [23]). Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)} (2.2)

for k ∈ N, where a(k) and b(k) are all nonnegative sequences bounded above and below by positive
constants. Then

lim sup
k→+∞

x(k) ≤ 1
bl

exp(au − 1). (2.3)

Lemma 2.3 (see [23]). Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp{a(k) − b(k)x(k)}, k ≥N0, (2.4)

lim supk→+∞x(k) ≤ x∗ and x(N0) > 0, where a(k) and b(k) are all nonnegative sequences bounded
above and below by positive constants andN0 ∈N. Then

lim inf
k→+∞

x(k) ≥ al exp
{
al − bux∗}
bu

. (2.5)
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Theorem 2.4. Assume that

al − cuM1−r
2

ml
> 0, (H1)

fl > du (H2)

hold, then system (1.4) is permanent, that is, for any positive solution {x(k), y(k)} of system (1.4),
one has

m1 ≤ lim inf
k→+∞

x(k) ≤ lim sup
k→+∞

x(k) ≤M1,

m2 ≤ lim inf
k→+∞

x(k) ≤ lim sup
k→+∞

y(k) ≤M2,
(2.6)

where

m1 =
al − (cuM1−r

2 /ml
)

bu
exp

{
al − cuM1−r

2

ml
− buM1

}
,

m2 = min

⎧⎨
⎩
{(

fl − du)m1

mudu

}1/r

,

{(
fl − du)m1

mudu

}1/r

exp

{
−du + flm1

muMr
2 +m1

}⎫⎬
⎭,

M1 =
1
bl

exp(au − 1),

M2 =
{
fuM1

mldl

}1/r

exp
{
−dl + fu

}
.

(2.7)

Proof. We divided the proof into four claims.
Claim 1. From the first equation of (1.4), we have

x(k + 1) ≤ x(k) exp{a(k) − b(k)x(k)}. (2.8)

By Lemma 2.2, we have

lim sup
k→+∞

x(k) ≤ 1
bl

exp(au − 1) def= M1. (2.9)

Above inequality shows that for any ε > 0, there exists a k1 > 0, such that

x(k + 1) ≤M1 + ε, ∀k ≥ k1. (2.10)
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Claim 2. We divide it into two cases to prove that

lim sup
k→+∞

y(k) ≤M2. (2.11)

Case (i)

There exists an l0 ≥ k1, such that y(l0 + 1) ≥ y(l0). Then by the second equation of system
(1.4), we have

−d(l0) +
f(l0)x(l0)

m(l0)yr(l0) + x(l0)
≥ 0. (2.12)

Hence,

−d(l0) +
f(l0)x(l0)
m(l0)yr(l0)

≥ 0, (2.13)

therefore,

yr(l0) ≤ (l0)x(l0)
m(l0)d(l0)

≤ fu(M1 + ε)
mldl

, (2.14)

and so,

y(l0) ≤
{
fu(M1 + ε)

mldl

}1/r

. (2.15)

It follows that

y(l0 + 1) = y(l0) exp
{
−d(l0) +

f(l0)x(l0)
m(l0)yr(l0) + x(l0)

}

≤
{
fu(M1 + ε)

mldl

}1/r

exp
{
−dl + fu

}
def= M2ε.

(2.16)

We claim that

y(k) ≤M2ε ∀k ≥ l0. (2.17)

By a way of contradiction, assume that there exists a p0 > l0 such that y(p0) > M2ε. Then p0 ≥
l0 + 2. Let y(p̃0) ≥ l0 + 2 be the smallest integer such that y(p̃0) ≥M2ε. Then y(p̃0) > y(p̃0 − 1).
The above argument produces that y(p̃0) ≤M2ε, a contradiction. This prove the claim.
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Case (ii)

We assume that y(k + 1) < y(k) for all K ≥ K1. Since y(k) is nonincreasing and has a lower
bound 0, we know that limk→+∞y(k) exists, denoted by y, then

lim
k→+∞

y(k) = y. (2.18)

We claim that

y ≤
{
fu(M1 + ε)

mldl

}1/r

. (2.19)

By a way of contradiction, assume that y > {fu(M1 + ε)/mldl}1/r . Taking limit in the second
equation in system (1.4) gives

lim
k→+∞

{
−d(k) + f(k)x(k)

m(k)yr(k) + x(k)

}
= 0, (2.20)

which is a contradiction since for K > K1

−d(k) + f(k)x(k)
m(k)yr(k) + x(k)

≤ −dl + fu(M1 + ε)
mlyr

< 0. (2.21)

This prove the claim, then we have

lim sup
k→+∞

y(k) = lim
k→+∞

y(k) = y ≤
{
fu(M1 + ε)

mldl

}1/r

. (2.22)

Combining Cases (i) and (ii), we see that

lim sup
k→+∞

y(k) ≤M2ε. (2.23)

Let ε → 0, we have

lim sup
k→+∞

y(k) ≤
{
fuM1

mldl

}1/r

exp
{
−dl + fu

}
=M2. (2.24)

Claim 3 (lim infk→∞x(k) ≥ m1). Conditions (H1) imply that for enough small positive
constant ε, we have

al − cu(M2 + ε)
1−r

ml
> 0. (2.25)
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For above ε, it follows form Claims 1 and 2 that there exists a k2 such that for all k > k2

x(k) ≤M1 + ε, y(k) ≤M2 + ε. (2.26)

From the first equation of (1.4), we have

x(k + 1) ≥ x(k) exp

{
al − cu(M2 + ε)

1−r

ml
− bux(k)

}
. (2.27)

By applying Lemma 2.3 to above inequality, we have

lim inf
k→+∞

x(k) ≥
al −

(
cu(M2 + ε)

1−r/ml
)

bu
exp

{
al − cu(M2 + ε)

1−r

ml
− bu(M1 + ε)

}
. (2.28)

Setting ε → 0 in (2.28) leads to

lim inf
k→+∞

x(k) ≥ al − (cuM1−r
2 /ml

)
bu

exp

{
al − cuM1−r

2

ml
− buM1

}
def= m1. (2.29)

This ends the proof of Claim 3.
Claim 4. For any small positive constant ε < m1/2, from Claims 1–3, it follows that there exists
a k3 > k2 such that for all k > k3

x(k) ≥ m1 − ε, x(k) ≤M1 + ε, y(k) ≤M2 + ε. (2.30)

We present two cases to prove that

lim inf
k→+∞

y(k) ≥ m2 (2.31)

Case (i)

There exists an n0 ≥ k3 such that y(n0 + 1) ≤ y(n0), then

−d(n0) +
f(n0)x(n0)

m(n0)yr(n0) + x(n0)
≤ 0. (2.32)

Hence

y(n0) ≥
{
(fl − du)(m1 − ε)

mudu

}1/r
def= c1ε, (2.33)
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and so,

y(n0 + 1) ≥
{
(fl − du)(m1 − ε)

mudu

}1/r

exp

{
−du + fl(m1 − ε)

mu(M2 + ε)
r + (m1 − ε)

}
def= c2ε. (2.34)

Set

m2ε = min{c1ε, c2ε}. (2.35)

We claim that y(k) ≥ m2ε for k ≥ n0. By a way of contradiction, assume that there exists a
q0 ≥ n0, such that y(q0) < m2ε. Then q0 ≥ n0 + 2. Let q̃0 ≥ n0 + 2 be the smallest integer such
that y(q̃0) < m2ε. Then y(q̃0) < y(q̃0 − 1), which implies that y(q0) ≤ m2ε, a contradiction, this
proves the claim.

Case (ii)

We assume that y(k + 1) > y(k) for all k > k3. According to (2.30), limk→+∞y(k) exists,
denoted by y, then

lim
k→+∞

y(k) = y. (2.36)

We claim that

y ≥ m2ε. (2.37)

By the way of contradiction, assume that y < m2ε. Taking limit in the second equation in
system (1.4) gives

lim
k→+∞

{
−d(k) + f(k)x(k)

m(k)yr(k) + x(k)

}
= 0, (2.38)

which is a contradiction since for k > k3,

−d(k) + f(k)x(k)
m(k)yr(k) + x(k)

≥ −du + fl(m1 − ε)
muyr + (m1 − ε) > 0. (2.39)

The above analysis show that

lim inf
k→+∞

y(k) ≥ m2ε. (2.40)

Letting ε → 0, we have

lim inf
k→+∞

y(k) ≥ m2, (2.41)
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where

m2 = min

⎧⎨
⎩
{
(fl − du)m1

mudu

}1/r

,

{
(fl − du)m1

mudu

}1/r

exp

{
−du + flm1

muMr
2 +m1

}⎫⎬
⎭. (2.42)

According to Claims 1–4, we can easily find that the result of Theorem 2.4 holds.

3. Global Attractivity

Theorem 3.1. Assume that (H1) and (H2) hold. Assume further that there exist positive constants
α, β, and δ such that

αmin
{
bl,

2
M1

− bu
}
− αc

uM
1−(r/2)
2

4mlm2
− β f

uM1/2
1

4m1m
r/2
2

> δ, (H3)

βmin

{
flmlm1r

(muMr
2 +M1)

2M1−r
2

,
2
M2

− fuM1/2
1 r

4m2m
1/2
1

}
− α cuM1/2

1

4mlmr
2m

1/2
1

− αc
uMr

2(1 − r)
4m1m

r
2

> δ. (H4)

Then system (1.4) with initial condition (1.6) is globally attractive, that is, for any two positive
solutions (x1(k), y1(k)) and (x2(k), y2(k)) of system (1.4), one has

lim
k→+∞

|x1(k) − x2(k)| = 0, lim
k→+∞

∣∣y1(k) − y2(k)
∣∣ = 0. (3.1)

Proof. From conditions (H3) and (H4), there exists an enough small positive constant ε <
min{m1/2, m2/2} such that

αmin
{
bl,

2
M1 + ε

− bu
}
− αc

u(M2 + ε)
1−(r/2)

4ml(m2 − ε)
− β fu(M1 + ε)

1/2

4(m1 − ε)(m2 − ε)r/2
> δ,

βmin

{
flml(m1 − ε)r

[mu(M2 + ε)
r + (M1 + ε)]

2(M2 + ε)
1−r ,

2
M2 + ε

− fu(M1 + ε)
1/2r

4(m2 − ε)(m1 − ε)1/2

}

− α cu(M1 + ε)
1/2

4ml(m2 − ε)r(m1 − ε)1/2
− αc

u(M2 + ε)
r(1 − r)

4(m1 − ε)(m2 − ε)r
> δ.

(3.2)

Since (H1) and (H2) hold, for any positive solutions (x1(k), y1(k)) and (x2(k), y2(k)) of
system (1.4), it follows from Theorem 2.4 that

m1 ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤M1,

m2 ≤ lim inf
k→+∞

yi(k) ≤ lim sup
k→+∞

yi(k) ≤M2, i = 1, 2.
(3.3)
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For above ε and (3.3), there exists a k4 > 0 such that for all k > k4,

m1 − ε ≤ xi(k) ≤M1 + ε, m2 − ε ≤ xi(k) ≤M2 + ε, i = 1, 2. (3.4)

Let

V1(k) = |lnx1(k) − lnx2(k)|. (3.5)

Then from the first equation of system (1.3), we have

V1(k + 1) = |lnx1(k + 1) − lnx2(k + 1)|

≤ |lnx1(k) − lnx2(k) − b(k)(x1(k) − x2(k))|

+ c(k)

∣∣∣∣∣
y1(k)

m(k)yr1(k) + x1(k)
− y2(k)
m(k)yr2(k) + x2(k)

∣∣∣∣∣.
(3.6)

Using the Mean Value Theorem, we get

x1(k) − x2(k) = exp(lnx1(k)) − exp(lnx2(k)) = ξ1(k)(lnx1(k) − lnx2(k)),

y1−r
1 (k) − y1−r

2 (k) = (1 − r)ξ−r2 (k)
(
y1(k) − y2(k)

)
,

(3.7)

where ξ1(k) lies between x1(k) and x2(k), ξ2(k) lies between y1(k) and y2(k).
It follows from (3.6), (3.7) that

V1(k + 1) ≤ |lnx1(k) − lnx2(k)| −
(

1
ξ1(k)

−
∣∣∣∣ 1
ξ1(k)

− b(k)
∣∣∣∣
)
|x1(k) − x2(k)|

+

∣∣∣∣∣
c(k)y1(k)(

m(k)yr1(k) + x1(k)
)(
m(k)yr2(k) + x2(k)

)
∣∣∣∣∣|x1(k) − x2(k)|

+

∣∣∣∣∣
c(k)x1(k)(

m(k)yr1(k) + x1(k)
)(
m(k)yr2(k) + x2(k)

)
∣∣∣∣∣
∣∣y1(k) − y2(k)

∣∣

+

∣∣∣∣∣
c(k)m(k)yr1(k)y

r
2(k)(

m(k)yr1(k) + x1(k)
)(
m(k)yr2(k) + x2(k)

) 1 − r
ξr2(k)

∣∣∣∣∣
∣∣y1(k) − y2(k)

∣∣.

(3.8)
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And so, for k > k4

ΔV1 ≤ −min
{
bl,

2
M1 + ε

− bu
}
|x1(k) − x2(k)|

+
cu(M2 + ε)

1−(r/2)

4ml(m2 − ε)r/2(m1 − ε)
|x1(k) − x2(k)|

+
cu(M1 + ε)

1/2

4ml(m2 − ε)r(m1 − ε)1/2

∣∣y1(k) − y2(k)
∣∣

+
cu(M2 + ε)

r(1 − r)
4(m1 − ε)(m2 − ε)r

∣∣y1(k) − y2(k)
∣∣.

(3.9)

Let

V2(k) =
∣∣lny1(k) − lny2(k)

∣∣. (3.10)

Then from the second equation of system (1.4), we have

V2(k + 1) =
∣∣lny1(k + 1) − lny2(k + 1)

∣∣

=

∣∣∣∣∣lny1(k) − lny2(k) + f(k)

(
x1(k)

m(k)yr1(k) + x1(k)
− x2(k)
m(k)yr2(k) + x2(k)

)∣∣∣∣∣

≤
∣∣∣∣∣lny1(k) − lny2(k) −

f(k)m(k)x1(k)
(
yr1(k) − yr2(k)

)
(
m(k)yr1(k) + x1(k)

)(
m(k)yr2(k) + x2(k)

)
∣∣∣∣∣

+

∣∣∣∣∣
f(k)m(k)yr1(k)(x1(k) − x2(k))(

m(k)yr1(k) + x1(k)
)(
m(k)yr2(k) + x2(k)

)
∣∣∣∣∣.

(3.11)

Using the Mean Value Theorem, we get

y1(k) − y2(k) = exp
(
lny1(k)

) − exp
(
lny2(k)

)
= ξ3(k)

(
lny1(k) − lny2(n)

)
,

yr1(k) − yr2(k) = rξr−1
4 (k)

(
y1(k) − y2(k)

)
,

(3.12)
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where ξ3(k), ξ4(k) lie between y1(k) and y2(k), respectively. Then, it follows from (3.11),
(3.12) that for k > k4,

ΔV2 ≤ −
(

1
ξ3(k)

−
∣∣∣∣∣

1
ξ3(k)

− f(k)m(k)x1(k)r(
m(k)yr1(k) + x1(k)

)(
m(k)yr2(k) + x2(k)

)
ξ1−r

4 (k)

∣∣∣∣∣
)

× ∣∣y1(k) − y2(k)
∣∣

+
f(k)m(k)yr1(k)(

m(k)yr1(k) + x1(k)
)(
m(k)yr2(k) + x2(k)

) |x1(k) − x2(k)|

≤ −min

{
flml(m1 − ε)r

[mu(M2 + ε)
r + (M1 + ε)]

2(M2 + ε)
1−r ,

2
M2 + ε

− fu(M1 + ε)
1/2r

4(m2 − ε)(m1 − ε)1/2

}

× ∣∣y1(k) − y2(k)
∣∣

+
fu(M1 + ε)

r/2

4(m1 − ε)(m2 − ε)r/2
|x1(k) − x2(k)|.

(3.13)

Now we define a Lyapunov function as follows:

V (k) = αV1(k) + βV2(k). (3.14)

Calculating the difference of V along the solution of system (1.4), for k > k4, it follows from
(3.9) and (3.13) that

ΔV ≤
[
−αmin

{
bl,

2
M1 + ε

− bu
}
− α cu(M2 + ε)

1−(r/2)

4ml(m2 − ε)r/2(m1 − ε)
− β fu(M1 + ε)

r/2

4(m1 − ε)(m2 − ε)r/2

]

× |x1(k) − x2(k)|

−
[
βmin

{
flml(m1 − ε)r

[mu(M2 + ε)
r + (M1 + ε)]

2(M2 + ε)
1−r ,

2
M2 + ε

− fu(M1 + ε)
1/2r

4(m2 − ε)(m1 − ε)1/2

}

−α cu(M1 + ε)
1/2

4ml(m2 − ε)r(m1 − ε)1/2
− αc

u(M2 + ε)
r(1 − r)

4(m1 − ε)(m2 − ε)r
]
× ∣∣y1(k) − y2(k)

∣∣

≤ −δ(|x1(k) − x2(k)| +
∣∣y1(k) − y2(k)

∣∣).
(3.15)

Summating both sides of the above inequalities from k4 to k, we have

k∑
p=k4

(
V
(
p + 1

) − v(p)) ≤ −δ
k∑

p=k4

(∣∣x1
(
p
) − x2

(
p
)∣∣ + ∣∣y1

(
p
) − y2

(
p
)∣∣), (3.16)
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which implies

V (k + 1) + δ
k∑

p=k4

(∣∣x1
(
p
) − x2

(
p
)∣∣ + ∣∣y1

(
p
) − y2

(
p
)∣∣) ≤ V (k4). (3.17)

It follows that

k∑
p=k4

(∣∣x1
(
p
) − x2

(
p
)∣∣ + ∣∣y1

(
p
) − y2

(
p
)∣∣) ≤ V (k4)

δ
. (3.18)

Using the fundamental theorem of positive series, there exists small enough positive constant
ε > 0 such that

+∞∑
p=k4

(∣∣x1
(
p
) − x2

(
p
)∣∣ + ∣∣y1

(
p
) − y2

(
p
)∣∣) ≤ V (k4)

δ
, (3.19)

which implies that

lim
k→+∞

(|x1(k) − x2(k)| +
∣∣y1(k) − y2(k)

∣∣) = 0, (3.20)

that is

lim
k→+∞

|x1(k) − x2(k)| = 0, lim
k→+∞

∣∣y1(k) − y2(k)
∣∣ = 0. (3.21)

This completes the proof of Theorem 3.1.

4. Extinction of the Predator Species

This section is devoted to study the extinction of the predator species y.

Theorem 4.1. Assume that

− dl + fu < 0. (H5)

Then, the species y will be driven to extinction, and the species x is permanent, that is, for any positive
solution (x(k), y(k)) of system (1.4),

lim
k→+∞

y(k) = 0,

m∗ ≤ lim inf
k→+∞

x(k) ≤ lim sup
k→+∞

x(k) ≤M1,
(4.1)
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where

m∗ =
al

bu
exp
{
al − buM1

}
,

M1 =
1
bl

exp(au − 1).

(4.2)

Proof. For condition (H5), there exists small enough positive γ > 0, such that

−dl + fu < −γ < 0 (4.3)

for all k ∈ N, from (4.3) and the second equation of the system (1.4), one can easily obtain
that

y(k + 1) = y(k) exp
{
−d(k) + f(k)x(k)

m(k)y(k) + x(k)

}

< y(k) exp
{
−dl + fu

}

< y(k) exp
{−γ}.

(4.4)

Therefore,

y(k + 1) < y(0) exp
{−kγ}, (4.5)

which yields

lim
k→+∞

y(k) = 0. (4.6)

From the proof of Theorem 3.1, we have

lim sup
k→+∞

x(k) ≤M1. (4.7)

For enough small positive constant ε > 0,

al − cuε1−r

ml
> 0. (4.8)

For above ε, from (2.9) and (4.6), there exists a k5 > 0 such that for all k > k5,

x(k) < M1 + ε, y(k) < ε. (4.9)
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From the first equation of (1.4), we have

x(k + 1) ≥ x(k) exp

{
al − cuε1−r

ml
− bux(k)

}
. (4.10)

By Lemma 2.3, we have

lim inf
k→+∞

x(k) ≥ al − (cuε1−r/ml
)

bu
exp

{
al − cuε1−r

ml
− bu(M1 + ε)

}
. (4.11)

Setting ε → 0 in (4.11) leads to

lim inf
k→+∞

x(k) ≥ al

bu
exp
{
al − buM1

}
def= m∗. (4.12)

The proof of Theorem 4.1 is completed.

5. Example

The following example shows the feasibility of the main results.

Example 5.1. Consider the following system:

x(k + 1) = x(k) exp

{
1.41 + 0.12 cos(k) − 1.78x(k) − 0.33y(k)

2.16y1/2(k) + x(k)

}
,

y(k + 1) = y(k) exp

{
−0.62 +

1.79x(k)
2.16y1/2(k) + x(k)

}
.

(5.1)

One could easily see that there exist positive constants α = 0.01, β = 0.05, δ = 0.001
such that

al − cuM1−r
2

ml
≈ 2.3281 > 0,

f l > du ≈ 1.1700 > 0,

αmin
{
bl,

2
M1

− bu
}
− αc

uM
1−(r/2)
2

4mlm2
− β f

uM1/2
1

4m1m
r/2
2

≈ 0.0011 > δ,

βmin

{
flmlm1r

(muMr
2 +M1)

2M1−r
2

,
2
M2

− fuM1/2
1 r

4m2m
1/2
1

}
− α cuM1/2

1

4mlmr
2m

1/2
1

− αc
uMr

2(1 − r)
4m1m

r
2

≈ 0.0107 > δ.

(5.2)
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Figure 1: Dynamics behavior of system (1.4) with initial conditions (x(0), y(0)) = (0.9, 0.6), (0.7, 0.4),
(0.5, 0.5), respectively.

Clearly, conditions (H1)–(H4) are satisfied. It follows from Theorems 2.4 and 3.1, that the
system is permanent and globally attractive. Numerical simulation from Figure 1 shows
that solutions do converge and system is permanent.

6. Conclusion

In this paper, we have obtained sufficient conditions for the permanence and global
attractivity of the system (1.4), where r ∈ (0, 1). If r = 1 in the system (1.4), the system
(1.4) is a discrete ratio-dependent predator-prey model with Holling-II functional response,
in this case, HUO and LI gave sufficient conditions for the permanence of the system in [24],
however, they did not provide the condition for the extinction of the predator species y.
In this paper, Theorem 2.4 gives the same conditions as that of Huo and Li’s condition for
the permanence of the system. Furthermore, Theorem 4.1 gives sufficient conditions which
ensure the extinction the predator of the system (1.4) when r = 1. If al − cu/ml > 0 holds,
then the prey species x is permanence. If r = 0 in the system of (1.4), the system is a discrete
predator-prey model with Holling-II function response, Theorem 4.1 also holds for the case
r = 0.
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