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We consider the nonlinear difference equation xn+1 = f(xn−k, xn−k+1, . . . , xn), n = 0, 1, . . . , where
k ∈ {1, 2, . . .} and the initial values x−k, x−k+1, . . . , x0 ∈ (0,+∞). We give sufficient conditions under
which this equation hasmonotone positive solutions which converge to the equilibrium, extending
and including in this way some results of the literature.
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1. Introduction

In this paper, we study the existence of monotone positive solutions which converge to the
equilibrium of a nonlinear difference equation. Recently, there has been a lot of interest
in studying such solutions and the existence of some specific solutions (see [1–20]). In
[8], Karakostas and Stević studied the boundedness, global attractivity, and oscillatory and
asymptotic periodicity of the nonnegative solutions of the difference equation

xn+1 = B +
xn−k

a0xn + · · · + ak−1xn−k+1 + γ
, n = 0, 1, . . . , (E1)

where B ≥ 0, γ > 0, k ∈ {1, 2, . . .}, and ai ≥ 0 for every i ∈ {0, . . . , k − 1} with
∑k−1

i=0 ai > 0 and
the initial conditions x−k, . . . , x0 ∈ (0,+∞). They proposed the following open problem.

Open problem A. Let γ = 1, B = 0, and k ≥ 2. Is there a positive solution {xn} of (E1) such that
xn → 0 as n→∞?
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In [5], Devault et al. studied the boundedness, global stability, and periodic character
of positive solutions of the difference equation

xn+1 = p +
xn−k
xn

, n = 0, 1, . . . , (E2)

where k ∈ {1, 2, . . .}, p ∈ (0,+∞), and the initial conditions x−k, . . . , x0 ∈ (0,+∞). They
proposed the following Open problem B (which has been solved in [1, 18] by quite different
methods).

Open problem B. Do there exist nonoscillatory solutions of (E2)?
Recently, Stević [12] studied the following difference equations:

xn+1 = p +
xn−k

α0xn + · · · + αk−1xn−k+1
, n = 0, 1, . . . , (E3)

xn+1 =
1 + xn−k

α0xn + · · · + αk−1xn−k+1
, n = 0, 1, . . . , (E4)

xn+1 =
α + xn−k

1 + α0xn + · · · + αk−1xn−k+1
, n = 0, 1, . . . , (E5)

where p > −1, α > 0, k ∈ {1, 2, . . .}, and αi ≥ 0 for every i ∈ {0, . . . , k − 1} with
∑k−1

i=0 αi = 1 and
the initial conditions x−k, . . . , x0 ∈ (0,+∞). He proved that (E3), (E4), and (E5) have positive
solutions which decrease to the equilibrium.

The main theorem in this paper is motivated by the above studies and [17]. In this
paper, we consider the following nonlinear difference equation:

xn+1 = f
(
xn−k, xn−k+1, . . . , xn

)
, n = 0, 1, . . . , (1.1)

where k ∈ {1, 2, . . .}, the initial values x−k, x−k+1, . . . , x0 ∈ (0,+∞), and f ∈ C(Ek+1, E), where
C(Ek+1, E) denotes the set of all continuous maps from Ek+1 to E and E = (0,+∞) or E =
[0,+∞). Using arguments similar to ones developed in the proof of main theorem in [18], we
prove that under appropriate conditions (see (C1)–(C5) below) this difference equation has
monotone solutions converging to the equilibrium x.

2. Main result

In this section, we assume that f satisfies the following conditions.
(C1) f ∈ C(Ek+1, E) and f(z0, z1, . . . , zk) is increasing in z0 (i.e., f(a, z1, . . . , zk) >

f(b, z1, . . . , zk) if a > b), where E = (0,+∞) or E = [0,+∞) and k ≥ 1 is an integer.
(C2) Equation (1.1) has the unique nonnegative equilibrium, denoted by x.
(C3) A = {(z0, z1, . . . , zk) : z0 ≥ z1 ≥ · · · ≥ zk ≥ f(z0, z1, . . . , zk) ≥ x} is an unbounded

connected (closed) set.
Now we formulate and prove the main result of this paper.
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Theorem 2.1. Let f satisfy (C1)–(C3). If there exists g ∈ C([x,+∞)k+1, [x,+∞)) such that the
following two conditions hold:

(C4)A ⊂ B = {(z0, z1, . . . , zk) : g(z0, z1, . . . , zk) ≥ z0 ≥ z1 ≥ · · · ≥ zk ≥ x},
(C5) zk = f(g(z0, z1, . . . , zk), z0, z1, . . . , zk−1) for any (z0, z1, . . . , zk) ∈ [x,+∞)k+1, then

(1.1) has a monotone positive solution which converges to the equilibrium x.

Proof. Define F : A→B by

F
(
z0, z1, . . . , zk

)
=
(
u0, u1, . . . , uk

) ≡ (
z1, z2, . . . , zk, f

(
z0, z1, . . . , zk

))
, (2.1)

for all (z0, z1, . . . , zk) ∈ A.

Claim 1. F is well defined.

Proof of Claim 1. From (2.1) and the definition of A, we have

ui = zi+1, for i ∈ {0, 1, . . . , k − 1},
uk = f

(
z0, z1, . . . , zk

) ≥ x.
(2.2)

It follows from (2.2) and (C5) that

f
(
z0, u0, . . . , uk−1

)
= uk = f

(
g
(
u0, u1, . . . , uk

)
, u0, u1, . . . , uk−1

)
, (2.3)

which with (C1) implies

g
(
u0, u1, . . . , uk

)
= z0 ≥ u0 ≥ · · · ≥ uk ≥ x. (2.4)

Thus, (u0, u1, . . . , uk) ∈ B. Claim 1 is proved.

Claim 2. F is a bijection from A to B.

Proof of Claim 2. Let z = (z0, z1, . . . , zk) and y = (y0, y1, . . . , yk) ∈ A with z/=y. If zi /=yi for
some i ∈ {1, . . . , k}, then F(y)/=F(z). If z0 /=y0 and zi = yi for every i ∈ {1, . . . , k}, then from
(C1)we have

f
(
z0, z1, . . . , zk

)
/= f

(
y0, z1, . . . , zk

)
, (2.5)

which also implies F(y)/=F(z).
On the other hand, for any u = (u0, u1, . . . , uk) ∈ B, we have

g
(
u0, u1, . . . , uk

) ≥ u0 ≥ u1 ≥ · · · ≥ uk ≥ x. (2.6)

Choose

z =
(
z0, z1, . . . , zk

) ≡ (
g
(
u0, u1, . . . , uk

)
, u0, u1, . . . , uk−1

)
. (2.7)
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It follows from (2.6), (2.7), and (C5) that

zk = uk−1 ≥ uk = f
(
g
(
u0, u1, . . . , uk

)
, u0, u1, . . . , uk−1

)
= f

(
z0, z1, . . . , zk

) ≥ x, (2.8)

which implies z ∈ A. From (2.1) and (C5),we obtain

F(z) =
(
z1, . . . , zk, f

(
z0, z1, . . . , zk

))

=
(
u0, . . . , uk−1, f

(
g
(
u0, u1, . . . , uk

)
, u0, u1, . . . , uk−1

))

=
(
u0, u1, . . . , uk

)
= u.

(2.9)

Claim 2 is proved.

Furthermore, since F−1(u0, u1, . . . , uk) = (g(u0, u1, . . . , uk), u0, u1, . . . , uk−1) is continu-
ous, F is a homeomorphism from A to B.

Since A ⊂ B and F is a homeomorphism from A onto B, it follows that F−1(A) ⊂
F−1(B) = A. By induction, we have

x =
(
x, x, . . . , x

) ∈ F−n(A) ⊂ F−n+1(A) (2.10)

for every positive integer n. Because A is an unbounded connected closed set, we know that
F−n(A) is an unbounded connected closed set for every positive integer n. Let

S =
∞⋂

i=0

F−i(A). (2.11)

Claim 3. S is an unbounded connected set.

Proof of Claim 3. Indeed, if S is a bounded connected closed set, then there exists β > 0 such
that S ⊂ B(x, β) ≡ {x ∈ Ek+1 : d(x, x) < β}. Since F−n(A) is an unbounded connected closed
set for every positive integer n, it follows that Kn = [{x : d(x, x) ≤ 2β} − B(x, β)] ∩ F−n(A)/=∅

and Kn is a bounded closed set. Let xn ∈ Kn, then there exist the positive integers n1 <
n2 < · · · < nk < · · · and a point v ∈ {x : d(x, x) ≤ 2β} − B(x, β) such that limk→∞ xnk = v.
Notice that v/∈S. On the other hand, for every positive integer n, there exists N such that
xnk ∈ F−n(A) if nk > N, which implies v ∈ F−n(A). Thus v ∈ S, which is a contradiction.
Claim 3 is proved.

Now suppose that {xn}∞n=−k is a positive solution of (1.1)with (x−k, . . . , x0) ∈ S − x; we
can show that for all positive integer n,

Fn(x−k, . . . , x0
)
=
(
xn−k, xn−k+1, . . . , xn

) ∈ A. (2.12)

Thus, {xn}∞n=−k is a monotone positive solution. Let

lim
n→∞

xn = a, (2.13)
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then

a = f(a, a, . . . , a) ≥ x. (2.14)

It follows from (C2) that a = x. Thus, {xn}∞n=−k is a nontrivial monotone positive solution
which converges to x. Theorem 2.1 is proved.

Remark 2.2. From the proof of Theorem 2.1, we can conclude that (1.1) has infinitely many
monotone positive solutions which converge to the equilibrium x.

Remark 2.3. In [21], Stević gave another proof of Claim 3 of Theorem 2.1 for the case of
equation xn = xn−k/(1 + xn−1 + · · · + xn−(k−1)).

3. Example and some remarks

In this section, we will give an application of Theorem 2.1 and some remarks.

Example 3.1. Consider the equation

xn+1 = p +
a + xn−k

b +
∑k−1

i=0 aixn−i
, n = 0, 1, . . . , (3.1)

where k ∈ {1, 2, . . .} and ai ≥ 0 for every i ∈ {0, . . . , k − 1} with s =
∑k−1

i=0 ai > 0 and the initial
conditions x−k, . . . , x0 ∈ (0,+∞). If a, b, p ∈ [0,+∞) satisfy one of the following conditions:

(i) a = 0,

(ii) b/s ≥ a > 0,

then (3.1) has monotone positive solutions which converge to the unique nonnegative
equilibrium.

Proof. Let E = (0,+∞) if b = 0 and let E = [0,+∞) if b > 0. Define f ∈ C(Ek+1, E) by

f
(
z0, z1, . . . , zk

)
= p +

a + z0

b +
∑k−1

i=0 aizk−i
, (3.2)

for all (z0, z1, . . . , zk) ∈ Ek+1. Then, (3.1) has the unique nonnegative equilibrium

x =
1 + ps − b +

√
(1 + ps − b)2 + 4s(pb + a)

2s
≥ p. (3.3)

Let A = {(z0, z1, . . . , zk) : z0 ≥ z1 ≥ · · · ≥ zk ≥ f(z0, z1, . . . , zk) ≥ x} and define

g
(
z0, z1, . . . , zk

)
=
(
zk − p

)
(

b +
k−1∑

i=0

aizk−i−1

)

− a, (3.4)
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for all (z0, z1, . . . , zk) ∈ [x,+∞)k+1; then

g
(
z0, z1, . . . , zk

) ≥ (
x − p

)(
b + sx

) − a =
a + x

b + sx

(
b + sx

) − a = x. (3.5)

Thus g ∈ C([x,+∞)k+1, [x,+∞)).
It is easy to check that the conditions (C1), (C2), and (C5) hold. Now we show that A

is an unbounded connected set.
It follows from conditions (i) and (ii) that b ≥ as; then

f(x, x, . . . , x) = p +
a + x

b + xs
= p +

1
s
− b − as

s(b + sx)
,

F(x) = x − f(x, x, . . . , x) =
sx2 − (ps − b + 1)x − pb − a

b + sx

(3.6)

are increasing in x in [x,+∞). Thus c ≥ c ≥ · · · ≥ c ≥ f(c, c, . . . , c) ≥ x for any c ≥ x, which
implies that (c, . . . , c) ∈ A and A is unbounded.

Let (z0, z1, . . . , zk) ∈ A and Ai = {(z0, . . . , z0, tz0 + (1 − t)zi, zi+1, . . . , zk) : 0 ≤ t ≤ 1} for
0 ≤ i ≤ k; then Ai is a connected set. Since

z0 ≥ z1 ≥ · · · ≥ zk ≥ f
(
z0, z1, . . . , zk

) ≥ x,

f(x, x, . . . , x) = p +
a + x

b + xs

(3.7)

are increasing in x, we know that

z0 ≥ · · · ≥ z0 ≥ tz0 + (1 − t)zi ≥ zi+1 ≥ · · · ≥ zk ≥ f
(
z0, z1, . . . , zk

)

≥ f
(
z0, . . . , z0, tz0 + (1 − t)zi, zi+1, . . . , zk

) ≥ f
(
z0, . . . , z0

) ≥ x,
(3.8)

from which it follows that Ai ⊂ A. Again since (z0, . . . , z0, zi+1, . . . , zk) ∈ Ai ∩ Ai+1 for any
0 ≤ i ≤ k − 1, ∪k

i=0Ai ∪ {(c, c, . . . , c) : c ≥ x} is a connected subset of A and (z0, z1, . . . , zk) ∈ A0,
which implies that A is an unbounded connected set. Thus, the condition (C3) holds.

On the other hand, let z = (z0, z1, . . . , zk) ∈ A, then

z0 ≥ z1 ≥ · · · ≥ zk ≥ f
(
z0, z1, . . . , zk

)
= p +

a + z0

b +
∑k−1

i=0 aizk−i
≥ x. (3.9)

It follows from (3.9) that

g
(
z0, z1, . . . , zk

)
=
(
zk − p

)
(

b +
k−1∑

i=0

aizk−i−1

)

−a≥ a + z0

b +
∑k−1

i=0 aizk−i

(

b+
k−1∑

i=0

aizk−i

)

−a = z0,

(3.10)

which implies z ∈ B = {(z0, z1, . . . , zk) : g(z0, z1, . . . , zk) ≥ z0 ≥ z1 ≥ · · · ≥ zk ≥ x}. Thus,
condition (C4) holds.
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By Theorem 2.1, we know that (3.1) has monotone positive solutions which converge

to the unique nonnegative equilibrium x = [1 + ps − b +
√
(1 + ps − b)2 + 4s(pb + a)]/2s.

Remark 3.2. (i) Let a = b = 0 and a0 = 1 > a1 = · · · = ak−1 = 0, then (3.1) reduces to (E2).
(ii) Take a = p = 0 and b = 1 in Example 3.1; then we have solved Open problem A.

Example 3.3. Consider the following equations:

xn+1 = f
(
xn−k, xn−k+1, . . . , xn

)
=

x3
n−k
xn

, n = 0, 1, . . . , (3.11)

xn+1 = f
(
xn−k, xn−k+1, . . . , xn

)
=

x2
n

1 +
∑k−1

i=0 aixn−i−1
, n = 0, 1, . . . , (3.12)

xn+1 = f
(
xn−k, xn−k+1, . . . , xn

)
=

xn−k
1/2 +

∑k−1
i=0 aixn−i

, n = 0, 1, . . . , (3.13)

where k ∈ {1, 2, . . .} and ai ≥ 0 for every i ∈ {0, . . . , k − 1} with
∑k−1

i=0 ai = 1 and the initial
conditions x−k, . . . , x0 ∈ (0,+∞). Then

(i) equation (3.11) satisfies conditions (C1) and (C2), but A = {(z0, z1, . . . , zk) : z0 ≥
z1 ≥ · · · ≥ zk ≥ f(z0, z1, . . . , zk) ≥ x} = {(x, . . . , x}) since z0 ≥ z1 ≥ · · · ≥ zk ≥ z30/zk ≥ x = 1
implies z0 = z1 = · · · = zk = 1; thus condition (C3) does not hold;

(ii) using arguments similar to ones developed in the proof of Example 3.1, it is easy
to check that conditions (C2) and (C3) hold, but f(z0, z1, . . . , zk) is decreasing in z0, which
implies that condition (C1) does not hold for (3.12);

(iii) equation (3.13) satisfies condition (C1) and has two nonnegative equilibria: x1 = 0
and x2 = 1/2, which implies that condition (C2) does not hold; using arguments similar to
ones developed in the proof of Example 3.1, it is easy to check that A = {(z0, z1, . . . , zk) : z0 ≥
z1 ≥ · · · ≥ zk ≥ f(z0, z1, . . . , zk) ≥ x2} is an unbounded connected set.

Remark 3.4. From Example 3.3, we see that all the conditions (C1), (C2), and (C3) are
necessary, in the sense that no pair of such conditions implies the remaining condition.

Remark 3.5. If k = 0 and the conditions (C1)–(C3) are satisfied, then automatically the
difference equation xn+1 = f(xn) has monotone positive solutions converging to x.
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