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Challenging the conventional belief that sophistication in strategy is always better, it was found
in W. Huang (2002a) that a price-taker who adopts the Cobweb strategy yields higher profits
than those who adopt more sophisticated strategies. This study explores the possibility of
improving further the relative profit advantage that the price-taker has over its counterparts
through incorporating the growth-rate adjustment strategy. A linear heterogenous oligopoly
model is used to illustrate the merits of such strategy in the case of disequilibrium. It is shown
in theory and supported with numerical simulations that the adoption of growth-rate adjustment
strategy together with price-taking strategy confers on the price-taker the stabilization power
in a dynamically unstable market in addition to better relative performance in terms of major
performance measures.
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1. Introduction

One of the lessons learned from basic microeconomics is that for a profit maximizing, firm
will always leverage on the market information as well as the behavioral rule of its rivals
when making its output decision. In other words, a firm who ignores its market power
and simply behaves a price-taker appears to be economically irrational. A typical example
of this belief is demonstrated by the classic Cournot model in which each output decision
of profit-maximizing firm is based on a best response function that is derived using the
firm’s forecast about its rivals’ output level. However, such beliefs were first challenged in
[1, 2] where an oligopoly that consists of a price-taker and many sophisticated firms, with
identical technology, was studied. A counter-intuitive phenomenon is revealed—no matter
what strategies the sophisticated firms may adopt, the price-taker always triumphs over them
in terms of relative profitability at any intertemporal equilibrium. This result is found to hold
regardless of the strategy the sophisticated firms adopt. It was further demonstrated in [3, 4]
that either in dynamical transitionary periods or when the economy turns cyclic or chaotic, a
combination of the price-taking strategy with a simple cautious adjustment strategy can also
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lead to relatively higher average profits for a firm than its rival, if the latter adopts a myopic
Cournot best-response strategy.

The current research follows the same trend of research and explores the relative
performance of price-taking strategy in terms of profit and sales revenue when a novel
adjustment strategy—the growth-rate adjustment strategy—is implemented to prevent the
economy collapse, or to force the market price to stay in an economically meaningful region.
Using a traditional linear economy with linear demand and marginal cost, we are able to
show in theory and demonstrate by numerical simulations that by combining the price-
taking strategy with growth-rate adjustment strategy, a firm commands both an unbeatable
advantage in terms of the relative performance (such as profit and sales revenue) as well as
the stabilization power in a dynamically unstable market.

The article is organized as follows. A heterogeneous oligopoly model is set up in
Section 2 and the relevant dynamical characteristics are summarized in Section 3. Section 4
examines the relative performance measures in equilibrium and their implications in general.
The analysis for the relative performance in disequilibrium is presented in Section 5. Section 6
concludes the research.

2. A heterogeneous oligopoly model

Consider an oligopoly market, in which N = 1 + m firms produce a homogeneous product
with quantity q;', i=1,2,...,1+m,at period t. The inverse market demand for the product is
given by p; = D(Q;), where D'(-) < 0, with equality holding only at finite number of points.

The conventional assumption that Q; = XN, g/, that is, the actual market price adjusts to the
demand so as to clear the market at every period, applies.

While all firms are assumed to have an identical technology and hence an identical
convex cost function C, with C' > 0 and C" > 0, they adopt different production strategies.
We assume that all firms can be classified into two categories: the price-takers and the Counort
optimizers.

The first firm is the price-taker, who is either deficient in market information or less
strategic in market competition. Its production target, denoted by X; is derived by equating
the marginal cost (i.e., the first-order derivative of cost) with market price if last period, that
is, C'(Xt) = p-1. Notice that p;—1 = D(Qs-1), the production target X; can be expressed as

X =MC(D(Qm1)), (2.1)

where MC™! denotes the inverse function of C'.

Instead of producing at X;, the price-taker is assumed to implement the growth-rate
adjustment strategy so as to limit the production growth rate to a positive constant y in the
sense that its output, denoted by x;, is determined from

Xt — X1

T Y (X = x1), (2.2)

or, equivalently, from
xt = x1(1+y(MCH(D(Qe1)) = x1-1)). (2.3)

Remark 2.1. This mechanism was proposed in [2] as one of the adaptive adjustment
mechanisms purely for the purpose of stabilizing unstable dynamics or controlling chaos.
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Compared to other approaches, the mechanism inherits two unique advantages of feedback-
adjustment type of methodologies: (i) requiring neither prior information about the system
itself nor any externally generated control signal(s); (ii) forcing the adjusted system
to converge to generic periodic points. Moreover, it is very effective and efficient in
implementing and achieving the goal of stabilization.

In contrast, the rest m firms are Counort optimizers. They know exactly the price-taker’s
output. To take this information advantage and the market power to maximum extent, they
form a collusion and produce an identical quantity y; to maximize the individual profit given

by
¥ (xi, yr) = 8¥ (xe,yt) = C(yr) = D(Qr)y: — C(yr), (2.4)

where s¥(x;, yi) = pryr = D(Qy)y: is the sales revenue.
Then the first-order profit maximization condition 0xr¥ /0y; = 0 yields

oD(Q ,
D(Q) + a( t)yt -C'(y) =0. (2.5)
Y
Since Q; = x; + my;, we have 0D (Q;)/0y; = mD’'(Q;) and so that (2.5) is simplified to
D(Q) +my:D'(Q) = C'(w)- (2.6)
Assume that appropriate second-order condition is satisfied so that y; = R, (x;)

implicitly solved from (2.6) leads to a profit maximum.

For the convenience of reference, we will call the dynamical process given by (2.3) and
(2.6) together as a general heterogeneous oligopoly model (GHO model). To avoid running into
conclusions that are sensible in mathematics but meaningless in economics, we will focus on
the scenarios that only bring economical meaningful solutions. To this end, an economically
meaningful concept needs to be defined formally.

Definition 2.2. An output bundle (x;, y;) for the general heterogeneous oligopoly model is said to
be economically meaningful, if the following inequalities are met:

(i) x¢ > 0 and y; > 0, but g; > 0, that is, nonnegative market supply;
(ii) 0 < pr = D(g¢) < oo, that is, positive and limited price.
3. Dynamical analysis of a linear model

To have a deeper understanding of the role of the price-taker in our model, a concrete example
that can be manipulated analytically and verified is indispensable. For this purpose, we will
illustrate our main points with a linear heterogeneous oligopoly model (LHO model), in which
the market demand is assumed to be linear so that its inverse demand function is given by

pr=D(x; +my;) =1-x; —myy, (3.1)
whereas the marginal cost is linear so that the cost function adopts the form of
c
Cl@) =Co+ 34, (3.2)

where both Cj and c are positive constants. Without loss of generality, we assume that Cy = 0.
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Substituting (3.1) and (3.2) into (2.3) yields

Xt = Xp_q <1 + y< (1= X1 = mye) - xH>>. (3.3)

c

On the other hand, (2.6) defines an optimal reaction function for the Cournot
optimizers:

1—.’X't

mic (34)

Y = Ry(xt) =

Substituting (3.4) into (3.3) and manipulating them yield a quadratic recurrence
relation

xi = f(xi-1) =a(y)xe1 (1= b(y)xe1), (3.5)
where
. y(c+m)
a(y)=1+ m,
(3.6)

c+m+c(c+2m)
Y(c+m)y+c(c+2m)'

b(y)=

For the discrete process (3.5), the trajectory {x:};_y is bounded by x;(y) = 1/b(y) if
and only if 0 < xp < xj(y) and a(y) < 4. However, to generate an economically meaningful
trajectory {x;},.o, we need also ensure that xo < 1, which is guaranteed if we have xj(y) <1
and a(y) <4, or equivalently, if

1< Y < Ymax, (37)
where
_ 3c(c+2m)
Ymax = Term (3.8)

Figure 1 illustrates the impact of y on the functional shape of f for the case of ¢ = 1.
We see that

ox;(y) c c+2m
=__ <0,
oy y2c+m+c(c+2m)
o) @ - (3.9)
o) _ & Y <0 ify>1.
om Y (c+m+2cm + c?)

The dynamic characteristics of (3.5) have been studied substantially in literature
and presented in many textbooks. So we will summarize some well-known results directly
without repeating the details.
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Figure 1: Illustration of x; = f(x;-1), relative profitability regime P and the trapping set Q(y).

Theorem 3.1. For the discrete dynamic process (3.5), when inequality (3.7) is satisfied, one has the
following:

(i) there exists a unique nontrivial equilibrium Xx:

m+c

—_ 1
Y v ct2me+r (3.10)
at which the derivative of f is given by
LY@ L yletm)
O ax [T ceromy G0

(ii) the equilibrium X is stable for y < y1, and the converge to the equilibrium is monotonic if
Y < yo and cyclical if y > yo, where

_c(c+2m)
Yo = crm) (3.12)
Yl = 2)/0,' (313)
(iii) increasing y from yy to y, where
Yoo = 2.5699 1y (3.14)

will lead to a sequence of period-doubling bifurcations, that is, stable cycles with periods 2"
appear right after the cycles with periods 2"~ become unstable, for n > 1;

(iv) increasing y from Yo t0 Ymax, Stable cycles for all periods can appear at some specific
intervals for y while aperiodic oscillations occur for the rest value of y;
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(V) for ¥ = Ymax, 1o stable periodic-cycles exist for any order and the system is pure chaotic
in the topological sense, that is, sensitive dependence on the initial condition, and the
probabilistic sense, that is, the frequency from the random-like trajectories is however
independent of the initial conditions and obeys an invariant density ¢ that is absolutely
continuous with respect to the Lebesgue measure, where

1

Qf(x) = ———— for x € J = [0, Xmax], (3.15)
VSR
where
Xmax = .X'S (Ymax) = 4(C i m) (316)

3(c+m+20m+c2);

(vi) for y > Ymax, the trajectory starting from almost all xq > 0 becomes unbounded and hence
is not economically meaningful.

Proof. At first, we point out that the map f is always topologically conjugated with the logistic
map, via a linear homeomorphism. Condition (i) can be directly verified. Conditions (ii)—(iv)
and (vi) follow from the standard textbook analysis.

(v) When y = ymax, f is topologically conjugated with

Xi=F(x4-1) =4X3 (1 - Xi1) (3.17)
in the sense that f = h™! o F o h, where h : ] — [0,1] is a homeomorphism defined by
h(x) = _x , forxel]. (3.18)

xmax

By the law of conjugation, if ¢r(X) is the invariant density for F, then the invariant
density for f is given by

dh
¢5(x) = pr (h(x)) Tl (3.19)
It is well known that the invariant density preserved by (3.17) is given by
1
X)=—— = for Xe[0,1]. 3.20
¢r(X) VX=X [0,1] (3.20)
Substituting with h defined in (3.18) into (3.19) results in (3.15). O

Remark 3.2. Details about the chaos in probabilistic sense and relevant issues of statistic
dynamics can be found in [5, 6]. Chaos in probabilistic sense occurs for infinitely many other
values in the compact interval [y, ymax] as well. However, the invariant density in general
cannot be expressed as the composition of finite terms of basic functions.

Remark 3.3. While the value of the nontrivial steady-state x is independent of the adjustment
rate y, the stability does depend on y. For a fixed y > yp, the stability of x is characterized by
the derivative given by (3.11), from which we have

90 _ (c+m)’+m?

>0,
oc c2(c +2m)?

(3.21)
oo Y
om (c +2m)*
Thus, increasing number of Cournot optimizers stabilizes the economy, but increasing the
technological level (less c¢) destabilizes the economy.

> 0.
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Figures 2(a) and 2(b) depict the bifurcation diagram with respect to y and c,
respectively. A structural similarity is apparently observed between them.

4. Relative performance in equilibrium

To see the merits of (3.3), we will proceed to evaluate the relative performance between the
price-taker and the Cournot optimizer. The profits and sales revenue as two of most important
performance measures used in the business and accounting literature will be considered.
However, sales revenue is taken as auxiliary index evaluated from the price-taker’s point of
view instead of from the collusion’s point of view since the latter is assumed to be a profit-
maximizer as implied by the optimal reaction given by (2.6). Unlike being treated in [7], we
do not evaluate these indices in the aggregated sense because the long-run averages of the
relevant performance measures provide equivalent information both in cyclical and chaotic
market environment.

4.1. Profits

At each period, the price is given by
(1), (4.1)
that is, the realized price is in fact negatively related to the price-taker’s output. However,
compared to the case in which there is no counter-reaction from the Cournot optimizers, the
sensitivity is reduced from unity to a fraction (since (m +c)/(2m +c) < 1).

The profits made by the price-taker and by any of the Cournot optimizers are

yrx:< Xy x:m+c 1_2(m+c)+c(c+2m)x>x
t P ) T e 2(m+c) L)

pr=1-x;—my; =

) (4.2)
CYi ,  (I-x)

c
= <f’t‘ 7)” = (’"* z)-% =2
respectively.

We see that, .ﬂ'ty > 0 for all ¢, that is, the Cournot optimizers make no profit loss at
each and every move due to its optimization strategy. (This result is actually independent
of the specific demand function and the cost function. It can be shown that it is a typical
characteristic of a firm that adopts Cournot-type strategy with full-information about its
rival’s outputs when the fixed cost is negligible.) On the contrary, the price-taker may suffer
from profit loss due to its lagged reaction to the market changes. In fact, 77 > 0 if and only if
Xt < x,, where x, is defined by

2(m + c)
= 4.
o 2(m+c) +c(2m+c) (43)
Simple mathematical manipulations indicate that
x 2m+1)(1
ArY=af - o] = (c+2m+1)( +C)(x*—xt)(xt—x*), (4.4)

2(2m +c)
where x,=1/(1+ ¢ +2m) and x*=1/(1 + ¢).

Therefore, ;" > thy if and only if x; € QP=[x,,x*]. & so defined will be referred to
as the relative profitability regime for the price-taker. It is worthwhile to note that the relative
profitability regime is independent of the adjustment rate, y, which enables a firm to adjust
the trapping set (to be discussed in Section 5) of the trajectory so as to maintain the relative
profitability advantage over the Cournot optimizers.
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4.2, Sales revenue

In many business competition, sales revenue is a benchmark for market share. In our settings,
they are given by

m+c
Sf = pxt = P Cxt(l - Xt),
y m+c 2 (4.5)
Sp =Py = m(l—xt) :

We see that s¥ and s, are always positive (due to the fact that x; < 1 is implicitly
guaranteed). Moreover, since

As) =s¥ =) =pi(xi - y1), (4.6)
we have Asfy > 0so long as x; > v, which occurs when
X =1
‘> (1+c+2m)’
that is, when the price-taker’s output exceeds the lower bound of the relative profitability
regime QF.

x (4.7)

4.3. Relative performance

At the unique nontrivial equilibrium X given by (3.10), the other relevant equilibrium values
are summarized in the second column of Table 1. It can be verified that x € Q*, regardless of
the values of ¢, m, and y. Therefore, at the equilibrium, the price-taker enjoys a higher sale revenue
as well as a higher profit than the Cournot optimizers.

For benchmarks, two extreme situations are also included in Table 1, one with all m +1
firms adopting the price-taking strategy and the other with all m+1 firms forming a collusion.

In the former case where all firms behave as the price-taker, the equilibrium is known
as a Walrasian equilibrium (competitive equilibrium). For the latter case, all firms behave as if
they were a monopolist and maximize the total profit with a constant output

1

= 4.
2m+2+c¢’ (4.8)

qu

from which the other performance measure can be evaluated. (Again we do not consider the
case in which the monopoly maximizes the sales revenue.)

While Figure 3 provides graphical illustrations of the outputs, the sales revenue, and
the profits at the equilibrium with m =1 and m = 3.

In fact, the conclusions for the equilibrium analysis are generic in the sense that they
are independent of the concrete functional forms of the linear demand and the quadratic cost
functions illustrated in our analysis.

Theorem 4.1. Consider the GHO model given by
xt=x1(1+y(MCH(D(Q))) = x:-1)), (4.9)
C'(y1) = D(Qr) + my:D'(Qr), (4.10)

where Qy = x; + myy, the cost function is strictly convex (C' > 0 and C" > 0) and the demand function
(D' < 0) satisfies the additional assumptions that both D(Qy) and D'(Qy) are bounded for Q; # 0,
the following facts hold.
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Table 1: Equilibrium outcomes.

All price-taker 1 price-taker m Colluded All Colluded
Price Poy= 5o __cmto) oo mrerl
Po =T v e T 2em+ct+m+c Pu= omi2+e
7o m+c
Outouts - 1 T 2em+ct+m+c - 1
o T = Time —_ c = amr2+c
Y dem+cvmerc
Ele c(m +c)?
. _ c 22em+c2+m+c)? _ 1
Profits T = 5 S —
2(1+m+c) —y 1 EQm+c) 2(2+2m+c)
==
2 2cm+ 2 +m+c)’
5 c(m +c)?
_ c (2cm+c2 +m+c)’ _ m+c+1
Sales Sw="T Su=————
(1+m+c) v 2(m+c) 2m+2+c)

(2cm + 2 +m +c)?

(i) All nontrivial intertemporal equilibria are economically meaningful.
(i) x >y > 0so that s* > s/ > 0.

(iii) 77° > 7Y, Moreover, ™ > ¥ > 0if C(0) = 0.

Proof. (i)-(ii) At a nontrivial intertemporal equilibrium (steady-states (X, 7)), we mean x > 0.
It follows from (4.9) that we must have

7=C(%). (4.11)

The facts that C” > 0 thus implies p > 0. What remains to be verified is the positiveness
of y. Equation (4.10) yields

C'(x) +mD'(Q)y =C'(y), (4.12)

where Q = x + my. Since D'(Q) is bounded even when ¥ = 0, a hypothesis that 7 = 0 would
lead to

C'(x) =C'(y) = C(0). (4.13)

However, (4.13) in turn suggests that x = 0 by the monotonicity characteristics implied from
the convexity assumption of C, which is a contradiction to the fact that x > 0.

Again from (4.12), a positive ¥ and D’ < 0 together thus suggest X > . Under the
same equilibrium price p, we thus have s* >s¥ > 0.

(iii) For the profit difference at the nontrivial equilibrium, (4.11) suggests that

ATY =7 -7 = C(®)(x-7) - (CE - C©)). (4.14)
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Figure 2: Bifurcations of x; = f(x;-1), m = 3.
It follows from the assumption of C"(-) > 0and x # y that C'(x) (x-y)-(C(x)-C(y)) >
0, or equivalently,
7 > Y. (4.15)

Next we need to show that 77/ > 0 if the fixed cost is negligible. It follows from (4.12)
that p = C'(y) - mD'(Q)¥ so that

7 =py-CH) = (C'H) -mD'(Q)y)7 - C¥)
=C'(y)y-CH) + (-mD' (Q)y°),

which is positive since C'(y)y > C(y) if C(0) = 0. 0

(4.16)

Remark 4.2. Due to the limit scope, theoretical issues such as the existence of nontrivial
equilibrium and the selection mechanism when multiple nontrivial equilibria are presented
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12 Discrete Dynamics in Nature and Society

(a) Profit

(s*) |

15 Y1 Yoo Ymax 2.9

(b) Sales revenue

Figure 4: Long-run averages with respect toy (m = 3,c = 1/2).

are not discussed since we are only concerned with with the situations that can lead to
economically meaningful outcomes, based on which the relative performance of two types
of firms can be evaluated. Nevertheless, it can be proved that a unique nontrivial equilibrium
exists when a classical assumption about the marginal revenue as justified in [8, 9] is
assumed.

Remark 4.3. In the proof of part (iii), we do not use the fact that the outputs of the Cournot
optimizers follow (4.10), thus the conclusion for the relative profitability advantage of the
price-taker holds for more general situations where each Cournot optimizer adopts different
strategy (including partial and full collusion), provided that its equilibrium output, 7, k =
1,2,...,m, is different from Xx. Moreover, the assumption for the strict convexity can be
relaxed to convexity so long as the marginal cost is not a constant.

Remark 4.4. The relative profitability in an equilibrium for the price-taker, though seemingly
contradictory to economic intuition, is still justified by economic theory. In fact, at an
equilibrium, the market price approaches to a constant and does not respond to the variation
of individual output. As a result, equating marginal cost to the market price is the optimal
decision.

An equilibrium may exist in theory but may never be reached (converged to) in reality.
When y is sufficiently large (y > y, in LHO model), the asymptotic behavior becomes very
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(a) Profit

(s*)

2.9 n Yoo Ymax 5.5

(b) Sales revenue

Figure 5: Long-run averages with respect to y (m = 3,c = 1).

complex, ranging from stable periodic cycles to aperiodic cyclic fluctuations, as well as the
situations in which a stable cycle coexists with infinitively many unstable cycles. Therefore,
to complete the analysis of relative performance, we need to investigate what happens when
the trivial equilibrium becomes unstable, which leads us to the next section.

5. Relative performance in disequilibrium

Due to complex nature of the nonlinear dynamics for an unstable GHO model, we need to
resort to a concrete example like LHO to provide a clearer picture.

As indicated in Section 3, when y > y;, stable and unstable periodic cycles as well
as aperiodic cycles may appear. In these cases, we are interested in comparing the long-run
average performance of the price-taker and the Cournot optimizers. A formal definition for
the average is needed.

Definition 5.1. Let G € C' be a performance measure function of x;. Given an adjustment
speed y and an associated periodic-k cycle {x;(y) }le, its k-period average is defined as

1

(5.1)
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and its long-run average for a trajectory {x;};2 is defined as

limréw 1

(G), (52)

) TZZ;OG(xt).

For the discrete dynamic process (3.5), if {X;(y) }le is a stable periodic cycle, then we
have

(G)y = (Gxk),- (5.3)

Apparently, both the performance measure functions: profits and sales revenue, are
continuous at least up to the first-order differential, so are the respective differences between
the price-taker and the Cournot optimizer.

Before proceeding to evaluate the periodic-k average and the long-run average of these
measures in the relative terms, we have to make sure that they are economically meaningful.

Theorem 5.2. For the LHO model given by (3.5) and (3.4), for y € (0, Ymax), Where Ymax is defined
in (3.8), one always has

(G), >0, (GZ)Y >0 forany k>1, (5.4)
and more generally,
(G"), >0,  (G¥), >0, (5.5)
where G denotes or and s.

Proof. The conclusion for the sales revenue s follows straightforwardly from the fact that
x; > 0 for all tif y € (0, ymax) and xo < x7(y), as discussed in Section 3.
For the profit or, we note first that (4.9) implies that

1/ x4 _ -1
Y’( x; 1> + X = MC (Pt)/ (56)
that is,
_Cf Xtn
pr= . <—xt — 1) + cxy, (5.7)
which leads to
c c
a*(xi) = prx — C(xy) = ;(xm - X)) + Exf (5.8)

For a given periodic-k cycle {¥;}L;, we have

(7

. 1 ~ 1
kS E) kS (/) T — %) + (c/DT)

(5.9)

_ c ,_ — C k_z_ Cc k_z
= k—y(xk+] -X1) + ﬂI;Xi = ﬂl;xi >0,

where we utilize the fact that X, = x7.
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Similarly, for any chaotical trajectory {x;};2;, the long-run average of profit for the
price-taker can be recast as

~| =

(), = lim liﬂ'x(xt) = £ lim l(xT —-x1) + ¢ lim lix.z = £ lim ix.z >0, (5.10)
Y Towo T 1 Y T—oo T 2T T P ! 2 T—oo P ! ’

which holds because the limit term lim7_,.,(1/T) (xr — x1) approaches zero since both xr and
x1 are less than unity by assumption. O

Next, we turn to explore the relative performance between two types of firms in
disequilibrium. Since the requirements for the relative performance in terms of sales-revenue
are weaker than those in terms of profits, we will focus our discussion more on the latter.

From the analysis in Section 4, we see that there exists a relative profitability regime ”
that is independent of the adjustment rate y such that the price-taker will make more profit
than the Cournot optimizer whenever the former’s output falls in that regime.

On the other hand, as illustrated in Figure 1, with fixed m and ¢, for yo < ¥ < Ymax,
where yy and ymax are, respectively, defined in (3.12) and (3.8), there exists a trapping set
Q(Y) = [Xmin(Y), *¥max(y)] such that starting from any initial output x¢ € (0, Xo(y)), the output
trajectories {x;}i2; will be eventually trapped in Q(y) and remain there forever. xmin(y) and
Xmax (Y) are determined from

dey(c+2m)(c + m+c(c+2m))’

Xmax (Y) :f<x3§}’)> (Y(c+m) +C(c+2m))2

(5.11)
(y(c+m) +c(c+ 2m))3(3c(c +2m) - y(c+m))

xmin(Y) = f(xmax(Y)) =

16¢3y (c + 2m)* (c+m+c(c+2m))

For ¥ < ¥max, Xmin(y) > 0. Moreover, 0xmax(y)/0y > 0 and 0xmin(y)/0y < 0 for yp < y <
Ymax-

From the fact that xmin(y0) = Xmax(yo) = X, we can infer that the trapping set Q(y)
grows around x along with increasing value of y. This in turn suggests that for a sufficiently
small positive € and y = yp + €, we are able to enforce Q(y) C €P. That is to say, by limiting the
magnitude of y, the price-taker is able to secure that the trapping set falls within the relative
profitability regime so as to achieve a relative advantage in terms of profit. Similar reasoning
can be applied to the analysis of the sales revenue.

Since the condition for s* > s! is just x; > x,, which can be guaranteed as long as the
lower-bound of Q(y) coincides with the lower-bound of 7, solving the identity

Xmin (Ys) = Xa (5.12)

yields an upper bound y? for the adjustment rate to ensure s > s! for all x; € Q(y).

Denote by y* the maximum possible y such that the upper bound of the trapping
set Q(y) coincides with the upper bound of the relative profitability regime QF, then y* is
a solution to the identity xmax(y*) = x*.

Finally, let y! = min{y?,y*}, then we have y® > ! by definition and the following
beautiful results.
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Table 2: Some typical values.

)4 ¥s
c=1/2,m=1 20723 2.0955
c=1/2,m=3 2.5848 2.5898
c=1,m=1 3.5777 35777
c=1,m=3 47387 47387

Theorem 5.3. With the LHO model defined in (3.4) and (3.5), for any given m and c,

(i) when y € [yo,y!], one has ¥ > xr! > 0 for all x; € Q(y), that is, the price-taker makes
more profit than the individual Cournot optimizer at each move after the trajectory runs
into the trapping set;

(ii) when y € [yo,y:], one has s¥ > s! > 0 for all x; € Q(y), that is, the price-taker has higher
sales revenue than the individual Cournot optimizer at each move after the trajectory runs
into the trapping set.

Table 2 provides a list of y? and y! values for several typical sets of parameters we
have applied in our illustrations.

When y exceeds the upper bounds yf and y;, respectively, Athx Y and ASfy become
negative from time to time. Then we are again forced to consider periodic-k average and the
long-run averages of the performance measures.

In terms of profit, it follows from Theorem 5.3 that (Ax™¥), > 0 is guaranteed for all
x; € Q(y), if y € [y0,77]. By the continuity of & and s/ as functions of y and the ergodicity
of the dynamical process (3.5), we can hypothesize that there exists a ?i such that so long
asyo <y < ?Z, despite that Az, < 0 for some t, we still have (Ayr,fy )Y > 0 for any cyclic

orbit. Apparently, the value of # depends on the order k. For instance, for a period-2 cycle
(x1(y), x2(y)), with x1(y) < x2(y), (4.4) suggests that

(Am), = LA @) + Ax (E()

12 (5.13)

0 5 3 (" = Ti()) (Tily) — x.).
i=1

The RHS of (5.13) is a continuous function of y. In considering the fact that x1(yy) = x2(yo) =
x, where yy is defined in (3.12), and the differential properties 0x1(y) /0y > 0 and 0x,(y) /0y <
0 for y1 <y < Ymax, We are able to conclude the existence of a5, ¥ > yo, such that the equality
(Ar*¥(y)), = 0 holds.

Similar conclusion can be expected for an aperiodic orbit which occurs when y > y.
There exists a ¥ ¥ value such that for all y < ¥, we have (Ax*Y )y > 0. There is no analytical
formula to obtain the value of y?.

Figures 4 to 6 depict the numerical simulations of relevant performance measures for
several combinations of m and ¢ values.

Comparing Figure 4(a) with Figure 5(a), we see that y¥ decreases with the increase
in c. For a relatively small ¢ (a more divergent economy caused by higher marginal cost),
¥¥ can even exceed its maximum possible growth-rate limit ymax, as illustrated in Figure 4.
On the other hand, by comparing Figure 4(a) with Figure 6(a), we see that increasing m
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Figure 6: Long-run averages with respecttoy (m =1,c =1/2).

(more Cournot optimizers) stabilizes the economy so that y? increases along with the
increase of the maximum possible growth-rate limit ypax.

Similarly, there exist cases in which (s*), > (s¥), for all y < ymax, as illustrated in
Figures 4(b) and 5(b).

The above analysis and observations can be summarized into the following theorem.

Theorem 5.4. With the LHO model defined in (3.4) and (3.5), for any given m and c,

(i) there exists Y7, Y7 > yI, such that for all y € [yo, "], one has (Ax*¥), > 0, that is,
the long-run average profits made by the price-taker is higher than that earned by each
individual Cournot optimizer;

(ii) there exists ¥ °, ¥ ° > y7, such that for all y € [yo, ¥ "], one has (As*¥), > 0, that is, the
long-run average sales-revenue earned by the price-taker is higher than that earned by each
individual Cournot optimizer.

When y = ymax, process (3.5) becomes full-chaotic and preserves an ergodic invariant
density ¢ given by (3.15) so that for any function G € C, its space mean equals to the time
mean in the sense of

(G), = J; " Gy (x)dx. (5.14)
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Figure 7: Performance measures under full-chaos (y = ymax, m = 3).

For instance, substituting Athx Y defined in (4.4) into (5.14) leads to

(Ayrxy>ymax = J;) AT (x)ps(x)dx

> fo (- x) (x - x. )5 (x)dx (5.15)

- fwdx

0 X (Xmax — X)
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As x*, x., and Xmax all depend on m and ¢, so does the integral in (5.15). Analogously,
all long-run averages of performance measures under full chaos can be numerically
evaluated. Figure 7 provides such results with respect to ¢ for m = 3, from which the impact
of c is illustrated. Again, as expected, a range for y can be identified, in which we have
(A V), >0.

Although our analysis is conducted using the LHO model, the methodology applied
and conclusions drawn in Theorem 5.4 are expected to hold for the GHO model in general.
Conclusive results cannot be obtained without adequate analytical assumptions on the
derivative properties of cost function and demand in general, and hence will be presented
in the future report.

6. Conclusions

A heterogeneous oligopoly model consisting of a price-taking firm and a group of Cournot
optimizers have been studied from both equilibrium and disequilibrium points of view. If
the Cournot optimizers form a collusion and maximize their profit with the full information
about the price-taker’s output, a price-taker can triumph over her rivals in terms of major
performance measures utilized in economics and business by adopting a combination of
price-taking strategy and growth-rate adjustment strategy. Moreover, it is also the price-taker
who is in control of the complexity of the oligopolistic dynamics. Numerical simulations
successfully verified all theoretical conclusions.

In our analysis, the Cournot optimizers are assumed to command the full knowledge
of the price-taker’s current production. Such assumption reduces the oligopolistic dynamical
system into a simple one-dimensional discrete process and hence greatly simplifies the
analysis. If the Cournot optimizers know only the price-taker’s outputs in previous periods,
then a multidimensional discrete process is formed. Global analysis as implemented in [10]
should be carried out.

Apparently, the current studies can be generalized in many ways. For instance, it is
interesting to see the relative profitability of the different agents in an oligopolist economy
with product differentiation. Analogous analysis can also be conducted for heterogeneous
oligopsonist model. However, the analysis turns to be much complicated when multiple
nontrivial equilibria may appear, under which a suitable “selection mechanism” as discussed
in [11] needs to be considered.
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