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1. Introduction

It is known that various problems in fluid mechanics and other areas of engineering, physics,
and biological systems lead to partial differential equations of variable types. Methods of
solutions of nonlocal boundary value problems for partial differential equations of variable
type have been studied extensively by many researchers (see, e.g., [1–4] and the references
given therein).

The nonlocal boundary value problem

−d
2u(t)
dt2

+Au(t) = g(t), 0 < t < 1,

du(t)
dt

−Au(t) = f(t), −1 < t < 0,

u(1) = u(−1) + μ

(1.1)
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for differential equations in a Hilbert spaceH with the self-adjoint positive definite operator
A is considered.

Let us denote by Cα
0,1([−1, 1],H), 0 < α < 1 the Banach space obtained by completion

of the set of all smoothH-valued function ϕ(t) on [−1, 1] in the norm

‖ϕ‖Cα
0,1([−1,1],H) = ‖ϕ‖C([−1,1],H) + sup

−1<t<t+τ<0

(−t)α‖ϕ(t + τ) − ϕ(t)‖H
τα

+ sup
0<t<t+τ<1

(1 − t)α(t + τ)α‖ϕ(t + τ) − ϕ(t)‖H
τα

,

(1.2)

and denote by Cα
0,1([0, 1],H), 0 < α < 1 the Banach space obtained by completion of the set

of all smoothH-valued function ϕ(t) on [0, 1] in the norm

‖ϕ‖Cα
0,1([0,1],H) = ‖ϕ‖C([0,1],H) + sup

0<t<t+τ<1

(1 − t)α(t + τ)α‖ϕ(t + τ) − ϕ(t)‖H
τα

, (1.3)

finally denote by Cα
0 ([−1, 0],H), 0 < α < 1 the Banach space obtained by completion of the

set of all smoothH-valued function ϕ(t) on [−1, 0] in the norm

‖ϕ‖Cα
0 ([−1,0],H) = ‖ϕ‖C([−1,0],H) + sup

−1<t<t+τ<0

(−t)α‖ϕ(t + τ) − ϕ(t)‖H
τα

. (1.4)

Here C([a, b],H) stands for the Banach space of all continuous functions ϕ(t) defined on
[a, b]with values inH equipped with the norm

||ϕ||C([a,b],H) = max
a≤t≤b

‖ϕ(t)‖H. (1.5)

A function u(t) is called a solution of problem (1.1) if the following conditions are satisfied.

(i) u(t) is twice continuously differentiable on the segment (0, 1] and continuously
differentiable on the segment [−1, 1]; the derivatives at the endpoints of the segment
are understood as the appropriate unilateral derivatives.

(ii) The element u(t) belongs to the domain D(A) of A for all t ∈ [−1, 1], and the
function Au(t) is continuous on the segment [−1, 1].

(iii) u(t) satisfies the equations and the nonlocal boundary condition (1.1).

A solution of problem (1.1) defined in this manner will henceforth be referred to as a
solution of problem (1.1) in the space C(H) = C([−1, 1],H).

We say that problem (1.1) is well-posed in C(H), if there exists a unique solution u(t)
in C(H) of problem (1.1) for any g(t) ∈ C([0, 1],H), f(t) ∈ C([−1, 0],H), and μ ∈ D(A), and
the following coercivity inequality is satisfied:

‖u′′‖C([0,1],H) + ‖u′‖C([−1,0],H) + ‖Au‖C(H) ≤M[‖g‖C([0,1],H) + ‖f‖C([−1,0],H) + ‖Aμ‖H
]
, (1.6)

whereM is independent of μ, f(t), and g(t).
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Problem (1.1) is not well-posed in C(H) [5]. The well-posedness of the boundary
value problem (1.1) can be established if one considers this problem in certain spaces F(H)
of smoothH-valued functions on [−1, 1].

A function u(t) is said to be a solution of problem (1.1) in F(H) if it is a solution of this
problem in C(H) and the functions u′′(t) (t ∈ 0, 1]), u′(t) (t ∈ −1, 1]) and Au(t) (t ∈ −1, 1])
belong to F(H).

As in the case of the space C(H), we say that problem (1.1) is well-posed in F(H), if
the following coercivity inequality is satisfied:

‖u′′‖F([0,1],H) + ‖u′‖F([−1,0],H) + ‖Au‖F(H) ≤M
[
‖g‖F([0,1],H) + ‖f‖F([−1,0],H) + ‖Aμ‖H

]
, (1.7)

whereM is independent of μ, f(t), and g(t).
If we set F(H) equal to Cα

0,1(H) = Cα
0,1([−1, 1],H) (0 < α < 1), then we can establish

the following coercivity inequality.

Theorem 1.1. Suppose μ ∈ D(A). Then the boundary value problem (1.1) is well-posed in a Hölder
space Cα

0,1(H) and the following coercivity inequality holds:

‖u′′‖Cα
0,1([0,1],H) + ‖u′‖Cα

0 ([−1,0],H) + ‖Au‖Cα
0,1(H)

≤M
[

1
α(1 − α)

[
‖f‖Cα

0 ([−1,0],H) + ‖g‖Cα
0,1([0,1],H)

]
+ ‖Aμ‖H

]
.

(1.8)

HereM is independent of f(t), g(t), and μ.

The proof of this assertion follows from the scheme of the proof of the theorem on
well-posedness of paper [5] and is based on the following formulas:

u(t) =
(
I − e−2A1/2

)−1[(
e−tA

1/2 − e−(−t+2)A1/2
)
u0

+
(
e−(1−t)A

1/2 − e−(t+1)A1/2
)
u1
]
+
(
I − e−2A1/2

)−1

×
(
e−(1−t)A

1/2 − e−(t+1)A1/2
)∫1

0
A−1/22−1

(
e−(1−s)A

1/2 − e−(s+1)A1/2
)
g(s)ds

−
∫1

0
A−1/22−1

(
e−(t+s)A

1/2 − e−|t−s|A1/2
)
g(s)ds, 0 ≤ t ≤ 1,

u(t) = etAu0 +
∫ t

0
e(t−s)Af(s)ds, −1 ≤ t ≤ 0,

u0 =
(
I + e−2A

1/2
+A1/2

(
I − e−2A1/2

)
− 2e−(A

1/2+A)
)−1

×
[
e−A

1/2
[
2
∫−1

0
e−(1+s)Af(s)ds +

∫1

0
A−1/2

(
e−(1−s)A

1/2 − e−(s+1)A1/2
)
g(s)ds

]
+ 2e−A

1/2
μ

]

+
(
I − e−2A1/2

)(
I + e−2A

1/2
+A1/2

(
I − e−2A1/2

)
− 2e−(A

1/2+A)
)−1

×
[
−A−1/2f(0) +

∫1

0
A−1/2e−sA

1/2
g(s)ds

]

(1.9)
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for the solution of problem (1.1) and on the estimates

∥∥∥
(
I − e−2A1/2

)−1∥∥∥
H→H

≤M,

∥∥∥
(
I + e−2A

1/2
+A1/2

(
I − e−2A1/2

)
− 2e−(A

1/2+A)
)−1∥∥∥

H→H
≤M,

∥∥∥A1/2
(
I + e−2A

1/2
+A1/2

(
I − e−2A1/2

)
− 2e−(A

1/2+A)
)−1∥∥∥

H→H
≤M,

∥∥∥(A1/2)αe−tA
1/2
∥∥∥
H→H

≤ t−α, t > 0, 0 ≤ α ≤ 1,

‖Aαe−tA||H→H ≤ t−α, t > 0, 0 ≤ α ≤ 1.

(1.10)

Remark 1.2. The nonlocal boundary value problem for the elliptic-parabolic equation

du(t)
dt

+Au(t) = f(t), 0 < t < 1,

−d
2u(t)
dt2

+Au(t) = g(t), −1 < t < 0,

u(1) = u(−1) + μ

(1.11)

in a Hilbert space H with a self-adjoint positive definite operator A is considered in paper
[6]. The well-posedness of this problem in Hölder spaces Cα(H) without a weight was
established under the strong condition on μ.

Now, the applications of this abstract results are presented.
First, the mixed boundary value problem for the elliptic-parabolic equations

ga − utt − (a(x)ux)x + δu = g(t, x), 0 < t < 1, 0 < x < 1,

ut + (a(x)ux)x − δu = f(t, x), −1 < t < 0, 0 < x < 1,

u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1), −1 ≤ t ≤ 1,

u(1, x) = u(−1, x) + μ(x), 0 ≤ x ≤ 1,

u(0+, x) = u(0−, x), ut(0+, x) = ut(0−, x), 0 ≤ x ≤ 1

(1.12)

is considered. Problem (1.12) has a unique smooth solution u(t, x) for a(x) ≥ a > 0 (x ∈
(0, 1)), and g(t, x) (t ∈ 0, 1], x ∈ [0, 1]), f(t, x) (t ∈ [−1, 0], x ∈ 0, 1]) the smooth functions and
δ = const > 0. This allows us to reduce the mixed problem (1.12) to the nonlocal boundary
value problem (1.1) in the Hilbert space H = L2[0, 1] with a self-adjoint positive definite
operator A defined by (1.12).
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Theorem 1.3. The solutions of the nonlocal boundary value problem (1.12) satisfy the coercivity
inequality

‖utt‖Cα
0,1([0,1],L2[0,1]) + ‖ut‖Cα

0 ([−1,0],L2[0,1]) + ‖u‖Cα
0,1([−1,1],W2

2 [0,1])

≤M
[

1
α(1 − α)

[
‖g‖Cα

0,1([0,1],L2[0,1]) + ‖f‖Cα
0 ([−1,0],L2[0,1])

]
+ ‖μ‖W2

2 [0,1]

]
,

(1.13)

whereM is independent of f(t, x), g(t, x), and μ(x).

The proof of Theorem 1.3 is based on the abstract Theorem 1.1 and the symmetry
properties of the space operator are generated by problem (1.12).

Second, letΩ be the unit open cube in the n-dimensional Euclidean space R
n (0 < xk <

1, 1 ≤ k ≤ n)with boundary S, Ω = Ω ∪ S. In [−1, 1] ×Ω, the boundary value problem for the
multidimensional elliptic-parabolic equation

−utt −
n∑

r=1

(ar(x)uxr )xr = g(t, x), 0 < t < 1, x ∈ Ω,

ut +
n∑

r=1

(ar(x)uxr )xr = f(t, x), −1 < t < 0, x ∈ Ω,

u(t, x) = 0, x ∈ S, − 1 ≤ t ≤ 1; u(1, x) = u(−1, x) + μ(x), x ∈ Ω,

u(0+, x) = u(0−, x), ut(0+, x) = ut(0−, x), x ∈ Ω

(1.14)

is considered. Problem (1.14) has a unique smooth solution u(t, x) for ar(x) ≥ a > 0 (x ∈ Ω)
and g(t, x) (t ∈ (0, 1), x ∈ Ω), f(t, x) (t ∈ (−1, 0), x ∈ Ω), the smooth functions. This allows
us to reduce the mixed problem (1.14) to the nonlocal boundary value problem (1.1) in the
Hilbert space H = L2(Ω) of all the integrable functions defined on Ω, equipped with the
norm

‖f‖L2(Ω) =
{∫

· · ·
∫

x∈Ω
|f(x)|2dx1 · · ·dxn

}1/2

(1.15)

with a self-adjoint positive definite operator A defined by (1.14).

Theorem 1.4. The solution of the nonlocal boundary value problem (1.14) satisfies the coercivity
inequality

‖utt‖Cα
0,1([0,1],L2(Ω)) + ‖ut‖Cα

0 ([−1,0],L2(Ω)]) + ‖u‖Cα
0,1([−1,1],W2

2 (Ω))

≤M
[

1
α(1 − α)

[
‖g‖Cα

0,1([0,1],L2(Ω)) + ‖f‖Cα
0 ([−1,0],L2(Ω))

]
+ ‖μ‖W2

2 (Ω)

]
,

(1.16)

whereM is independent of f(t, x), g(t, x), and μ(x).
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The proof of Theorem 1.4 is based on the abstract Theorem 1.1 and the symmetry
properties of the space operator generated by problem (1.14) and the following theorem on
the coercivity inequality for the solution of the elliptic differential problem in L2(Ω).

Theorem 1.5. For the solution of the elliptic differential problem

n∑

r=1

(ar(x)uxr )xr = ω(x), x ∈ Ω, (1.17)

u(x) = 0, x ∈ S, (1.18)

the following coercivity inequality holds [7]:

n∑

r=1

‖uxrxr‖L2(Ω) ≤M||ω||L2(Ω). (1.19)

2. The first order of accuracy difference scheme

Let us associate the boundary-value problem (1.1) with the corresponding first order of
accuracy difference scheme

−τ−2(uk+1 − 2uk + uk−1) +Auk = gk,

gk = g(tk), tk = kτ, 1 ≤ k ≤N − 1,

τ−1(uk − uk−1) −Auk−1 = fk, fk = f(tk−1),

tk−1 = (k − 1)τ, −N + 1 ≤ k ≤ 0,

uN = u−N + μ, u1 − u0 = u0 − u−1.

(2.1)

A study of discretization, over time only, of the nonlocal boundary value problem also
permits one to include general difference schemes in applications if the differential operator
in space variables, A, is replaced by the difference operators Ah that act in the Hilbert spaces
Hh and are uniformly self-adjoint positive definite in h for 0 < h ≤ h0.

Let P = P(τA) = (I + τA)−1. Then the following estimates are satisfied [8]:

‖Pk‖H→H ≤M(1 + δτ)−k, kτ‖APk‖H→H ≤M, k ≥ 1, δ > 0, (2.2)

‖Aβ(Pk+r − Pk)‖H→H ≤M (rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤N, 0 ≤ α, β ≤ 1. (2.3)

Furthermore, for a self-adjoint positive definite operatorA it follows that the operatorR = (I+
τB)−1 is defined on the whole spaceH, it is a bounded operator, and the following estimates
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hold:

‖Rk‖H→H ≤M(1 + δτ)−k, kτ‖BRk‖H→H ≤M, k ≥ 1, δ > 0, (2.4)

‖Bβ(Rk+r − Rk)‖H→H ≤M (rτ)α

(kτ)α+β
, 1 ≤ k < k + r ≤N, 0 ≤ α, β ≤ 1. (2.5)

Here B = (1/2)(τA +
√
A(4 + τ2A)). From (2.2) and (2.4), it follows that

||(I − R2N)−1||H→H ≤M, (2.6)
∥∥∥(I + (I + τA)(I + 2τA)−1R2N−1 + B−1A(I + 2τA)−1(I − R2N−1)

−(2I + τB)(I + 2τA)−1RNPN−1)−1
∥∥∥
H→H

≤M.
(2.7)

Theorem 2.1. For any gk, 1 ≤ k ≤ N − 1 and fk, −N + 1 ≤ k ≤ 0, the solution of problem (2.1)
exists and the following formulas hold:

uk = (I − R2N)−1
{

[Rk − R2N−k]u0

+ [RN−k − RN+k]

[

PNu0 − τ
0∑

s=−N+1

Ps+Nfs + μ

]

− [RN−k − RN+k](I + τB)(2I + τB)−1B−1
N−1∑

s=1

[RN−s − RN+s]gsτ

}

+ (I + τB)(2I + τB)−1B−1
N−1∑

s=1

[
R|k−s| − Rk+s]gsτ, 1 ≤ k ≤N,

(2.8)

uk = P−ku0 − τ
0∑

s=k+1

Ps−kfs, −N ≤ k ≤ 0, (2.9)

u0 = Tτ(I + 2τA)−1(I + τA)

{{

(2 + τB)RN

[

− τ
0∑

s=−N+1

Ps+Nfs + μ

]

− RN−1B−1
N−1∑

s=1

[RN−s − RN+s]gsτ

}

+ (I − R2N)B−1
N−1∑

s=1

Rs−1gsτ − (I − R2N)(I + τB)B−1Pf0

}

,

(2.10)

where

Tτ =
(
I+(I+τA)(I+2τA)−1R2N−1+B−1A(I+2τA)−1(I−R2N−1)−(2I+τB)(I+2τA)−1RNPN−1)−1.

(2.11)
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Proof. By [8, 9],

uk = (I − R2N)−1
{

[Rk − R2N−k]ξ + [RN−k − RN+k]ψ

− [RN−k − RN+k](I + τB)(2I + τB)−1B−1
N−1∑

s=1

[RN−s − RN+s]gsτ

}

+ (I + τB)(2I + τB)−1B−1
N−1∑

s=1

[R|k−s| − Rk+s]gsτ, 1 ≤ k ≤N,

(2.12)

is the solution of the boundary value difference problem

−τ−2(uk+1 − 2uk + uk−1) +Auk = gk,

gk = g(tk), tk = kτ, 1 ≤ k ≤N − 1,

u0 = ξ, uN = ψ,

(2.13)

uk = P−kξ − τ
0∑

s=k+1

Ps−kfs, −N ≤ k ≤ 0 (2.14)

is the solution of the inverse Cauchy problem

τ−1(uk − uk−1) −Auk−1 = fk, fk = f(tk−1),

tk−1 = (k − 1)τ, −N + 1 ≤ k ≤ 0, u0 = ξ.
(2.15)

Exploiting (2.12), (2.14), and the formulas

ψ = u−N + μ, ξ = u0, (2.16)

we obtain formulas (2.8) and (2.9). For u0, using (2.8), (2.9), and the formula

u1 − u0 = u0 − u−1, (2.17)

we obtain the operator equation

(I − R2N)
−1
{

[R − R2N−1]u0 + [RN−1 − RN+1]

×
[

PNu0 − τ
0∑

s=−N+1

Ps+Nfs + μ

]

− [RN−1 − RN+1](I + τB)(2I + τB)−1B−1
N−1∑

s=1

[RN−s − RN+s]gsτ

}

+ (I + τB)(2I + τB)−1B−1
N−1∑

s=1

[Rs−1 − R1+s]gsτ = 2u0 − Pu0 + τPf0.

(2.18)
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The operator

I + (I + τA)(I + 2τA)−1R2N−1 + B−1A(I + 2τA)−1(I − R2N−1) − (2I + τB)(I + 2τA)−1RNPN−1

(2.19)

has an inverse

Tτ=
(
I+(I+τA)(I+2τA)−1R2N−1+B−1A(I+2τA)−1(I−1R2N−1)−(2I+τB)(I+2τA)−1RNPN−1

)−1
,

(2.20)

and the following formula

u0 = Tτ(I + τA)(I + 2τA)−1
{{

(2 + τB)RN

[

− τ
0∑

s=−N+1

Ps+Nfs + μ

]

− RN−1B−1
N−1∑

s=1

[RN−s − RN+s]gsτ

}

+ (I − R2N)B−1
N−1∑

s=1

Rs−1gsτ − (I − R2N)(I + τB)B−1Pf0

}

(2.21)

is satisfied. This concludes the proof of Theorem 2.1.

Let Fτ(H) = F([a, b]τ ,H) be the linear space of mesh functions ϕτ = {ϕk}Nb

Na
defined on

[a, b]τ = {tk = kh, Na ≤ k ≤ Nb, Naτ = a, Nbτ = b} with values in the Hilbert space H.
Next on Fτ(H)we denote byC([a, b]τ ,H) andCα

0,1([−1, 1]τ ,H), Cα
0,1([−1, 0]τ ,H), Cα

0 ([0, 1]τ ,
H)(0 < α < 1) Banach spaces with the norms

‖ϕτ‖C([a,b]τ ,H) = max
Na≤k≤Nb

‖ϕk‖H,

‖ϕτ‖Cα
0,1([−1,1]τ ,H) = ‖ϕτ‖C([−1,1]τ ,H) + sup

−N≤k<k+r≤0
‖ϕk+r − ϕk‖E (−k)

α

rα

+ sup
1≤k<k+r≤N−1

‖ϕk+r − ϕk‖E ((k + r)τ)α(N − k)α
rα

,

‖ϕτ‖Cα
0 ([−1,0]τ ,H) = ‖ϕτ‖C([−1,0]τ ,H) + sup

−N≤k<k+r≤0
‖ϕk+r − ϕk‖E (−k)

α

rα
,

‖ϕτ‖Cα
0,1([0,1]τ ,H) = ‖ϕτ‖C([0,1]τ ,H) + sup

1≤k<k+r≤N−1
‖ϕk+r − ϕk‖E ((k + r)τ)α(N − k)α

rα
.

(2.22)

The nonlocal boundary value problem (2.1) is said to be stable in F([−1, 1]τ ,H) if we have
the inequality

‖uτ‖F([−1,1]τ ,H) ≤M[‖fτ‖F([−1,0]τ ,H) + ‖gτ‖F([0,1]τ ,H) + ‖μ‖H], (2.23)

whereM is independent of not only fτ , gτ , μ but also τ .
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Theorem 2.2. The nonlocal boundary value problem (2.1) is stable in C([−1, 1]τ ,H) norm.

Proof. By [9],

∥∥∥{uk}0−N
∥∥∥
C([−1,0]τ ,H)

≤M[‖fτ‖C([−1,0]τ ,H) + ‖u0‖H] (2.24)

for the solution of the inverse Cauchy difference problem (2.15) and

∥∥∥{uk}N−1
1

∥∥∥
C([0,1]τ ,H)

≤M[‖gτ‖C([0,1]τ ,H) + ‖u0‖H + ‖uN‖H] (2.25)

for the solution of the boundary value problem (2.13). The proof of Theorem 2.2 is based on
the stability inequalities (2.24), (2.25), and on the estimates

‖u0‖H ≤M[‖fτ‖C([−1,0]τ ,H) + ‖gτ‖C([0,1]τ ,H) + ‖μ‖H],

‖uN‖H ≤M[‖fτ‖C([−1,0]τ ,H) + ‖gτ‖C([0,1]τ ,H) + ‖μ‖H]
(2.26)

for the solution of the boundary value problem (2.1). Estimates (2.26) are derived from
formula (2.10) and estimates (2.2), (2.4), (2.7). This concludes the proof of Theorem 2.2.

The nonlocal boundary value problem (2.1) is said to be coercively stable (well-posed)
in F([−1, 1]τ ,H) if we have the coercive inequality

∥∥{τ−2(uk+1 − 2uk + uk−1)}N−1
1

∥∥
F([0,1]τ ,H)

+
∥∥{τ−1(uk − uk−1)}0−N+1

∥∥
F([−1,0]τ ,H) +

∥∥∥{Auk}N−1
−N

∥∥∥
F([−1,1]τ ,H)

≤M[‖fτ‖F([−1,0]τ ,H) + ‖gτ‖F([0,1]τ ,H) + ‖Aμ‖H],

(2.27)

whereM is independent of not only fτ , gτ , μ but also τ .
Since the nonlocal boundary value problem (1.1) in the space C([0, 1],H) of

continuous functions defined on [−1, 1] andwith values inH is not well-posed for the general
positive unbounded operator A and space H, then the well-posedness of the difference
nonlocal boundary value problem (2.1) in C([−1, 1]τ ,H) norm does not take place uniformly
with respect to τ > 0. This means that the coercive norm

‖uτ‖Kτ (E) = ‖{τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖C([0,1]τ ,H)

+ ‖{τ−1(uk − uk−1)}0−N+1‖C([−1,0]τ ,H) + ‖{Auk}N−1
−N ‖C([−1,1]τ ,H)

(2.28)

tends to∞ as τ→ 0+. The investigation of the difference problem (2.1) permits us to establish
the order of growth of this norm to ∞.
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Theorem 2.3. Assume that μ ∈ D(A) and f0 ∈ D(I + τB). Then for the solution of the difference
problem (2.1) we have the almost coercivity inequality

‖uτ‖Kτ (E) ≤M[‖Aμ‖H + ‖(I + τB)f0‖H
+min

{
ln

1
τ
, 1 + | ln ‖A‖H→H |

}
[‖fτ‖C([−1,0]τ ,H) + ‖gτ‖C([0,1]τ ,H)]],

(2.29)

whereM is independent of not only fτ , gτ , μ but also τ .

Proof. By [9],

‖{τ−1(uk − uk−1)}0−N+1‖C([−1,0]τ ,H) + ‖{Auk}0−N‖C([−1,0]τ ,H)

≤M
[
min

{
ln

1
τ
, 1 + | ln ‖A‖H→H |

}
‖fτ‖C([−1,0]τ ,H) + ‖Au0‖H

] (2.30)

for the solution of the inverse Cauchy difference problem (2.15) and

∥∥∥{τ−2(uk+1 − 2uk + uk−1)}N−1
1

∥∥∥
C([0,1]τ ,H)

+
∥∥∥{Auk}N−1

1

∥∥∥
C([0,1]τ ,H)

≤M
[
min

{
ln

1
τ
, 1 + | ln ‖A‖H→H |

}
‖gτ‖C([0,1]τ ,H) + ‖Au0‖H + ‖AuN‖H

] (2.31)

for the solution of the boundary value problem (2.13). Then the proof of Theorem 2.3 is based
on the almost coercivity inequalities (2.30), (2.31), and on the estimates

‖Au0‖H ≤M[‖Aμ‖H + ‖(I + τB)f0‖H
+min

{
ln

1
τ
, 1 + | ln ‖A‖H→H |

}
[‖fτ‖C([−1,0]τ ,H) + ‖gτ‖C([0,1]τ ,H)]],

‖AuN‖H ≤M[‖Aμ‖H + ‖(I + τB)f0‖H
+min

{
ln

1
τ
, 1 + | ln ‖A‖H→H |

}
[‖fτ‖C([−1,0]τ ,H) + ‖gτ‖C([0,1]τ ,H)]]

(2.32)

for the solution of the boundary value problem (2.1). The proof of these estimates follows the
scheme of papers [8, 9] and relies on formula (2.10) and on estimates (2.2), (2.4), and (2.7).
This concludes the proof of Theorem 2.3.

Theorem 2.4. Let the assumptions of Theorem 2.3 be satisfied. Then the boundary value problem (2.1)
is well-posed in a Hölder space Cα

0,1([−1, 1]τ ,H) and the following coercivity inequality holds:

‖{τ−2(uk+1 − 2uk + uk−1)}N−1
1 ‖Cα

0,1([0,1]τ ,H)

+
∥∥∥{Auk}N−1

−N
∥∥∥
Cα

0,1([−1,1]τ ,H)
+ ‖{τ−1(uk − uk−1)}0−N+1‖Cα

0 ([−1,0]τ ,H)

≤M
[
‖Aμ‖H + ‖(I + τB)f0‖H +

1
α(1 − α) [‖f

τ‖Cα
0 ([−1,0]τ ,H) + ‖gτ‖Cα

0,1([0,1]τ ,H)]
]
,

(2.33)

whereM is independent of not only fτ , gτ , μ but also τ and α.
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Proof. By [8, 9],

∥∥∥{τ−1(uk − uk−1)}0−N+1

∥∥∥
Cα

0 ([−1,0]τ ,H)
+
∥∥{Auk}0−N

∥∥
Cα

0 ([−1,0]τ ,H)

≤M
[

1
α(1 − α)‖f

τ‖Cα
0 ([−1,0]τ ,H) + ‖Au0‖H

] (2.34)

for the solution of the inverse Cauchy difference problem (2.15) and

∥∥∥{τ−2(uk+1 − 2uk + uk−1)}N−1
1

∥∥∥
Cα

0,1([0,1]τ ,H)
+
∥∥∥{Auk}N−1

1

∥∥∥
Cα

0,1([0,1]τ ,H)

≤M
[

1
α(1 − α)‖g

τ‖Cα
0,1([0,1]τ ,H) + ‖Au0‖H + ‖AuN‖H

] (2.35)

for the solution of the boundary value problem (2.13). Then the proof of Theorem 2.4 is based
on the coercivity inequalities (2.34), (2.35), and on the estimates

‖Au0‖H ≤M
[
‖Aμ‖H + ‖(I + τB)f0‖H +

1
α(1 − α)

[
‖fτ‖Cα

0 ([−1,0]τ ,H) + ‖gτ‖Cα
0,1([0,1]τ ,H)

]]
,

‖AuN‖H ≤M
[
‖Aμ‖H + ‖(I + τB)f0‖H +

1
α(1 − α)

[
‖fτ‖Cα

0 ([−1,0]τ ,H) + ‖gτ‖Cα
0,1([0,1]τ ,H)

]]

(2.36)

for the solution of the boundary value problem (2.1). Estimates (2.36) are derived from the
formulas

Au0 = Tτ(I + 2τA)−1(I + τA)

×
{{

(2 + τB)RN

[

− τ
0∑

s=−N+1

APs+N(fs − f−N+1) +Aμ

]

− RN−1AB−2
{
N−1∑

s=1

BRN−s(gs − gN−1)τ +
N−1∑

s=1

BRN+s(g1 − gs)τ
}}

+ (I − R2N)AB−2
N−1∑

s=1

BRs−1(gs − g1)τ
}

+ Tτ(I + 2τA)−1(I + τA)
{{

(2 + τB)RN(PN − I)f−N+1

− RN−1AB−2{(I − RN−1)gN−1 − (RN−2 − R2N−1)g1
}}

+ (I−R2N)AB−2(I−RN−1)g1−(I−R2N)(I+τB)B−1APf0
}
,
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AuN = PN
{

Tτ(I + 2τA)−1(I + τA)

×
{{

(2 + τB)RN

[

− τ
0∑

s=−N+1

APs+N(fs − f−N+1) +Aμ

]

− RN−1AB−2
{
N−1∑

s=1

BRN−s(gs − gN−1)τ +
N−1∑

s=1

BRN+s(g1 − gs)τ
}}

+ (I − R2N)AB−2
N−1∑

s=1

BRs−1(gs − g1)τ
}}

− τ
0∑

s=−N+1

APs+N(fs − f−N+1) +Aμ + (PN − I)f−N+1

+ PN{Tτ(I + 2τA)−1(I + τA){{(2 + τB)RN(PN − I)f−N+1

− RN−1AB−2{(I − RN−1)gN−1 − (RN−2 − R2N−1)g1}}
+ (I − R2N)AB−2(I − RN−1)g1 − (I − R2N)(I + τB)B−1APf0}}

(2.37)

for the solution of problem (2.1) and estimates (2.2), (2.4), and (2.7). This concludes the proof
of Theorem 2.4.

Now, the applications of this abstract result to the approximate solution of the
mixed boundary value problem for the elliptic-parabolic equation (1.14) are considered. The
discretization of problem (1.14) is carried out in two steps. In the first step, the grid sets

Ω̃h = {x = xm = (h1m1, . . . , hnmn), m = (m1, . . . , mn), 0 ≤ mr ≤Nr, hrNr = 1, r = 1, . . . , n},

Ωh = Ω̃h ∩Ω, Sh = Ω̃h ∩ S
(2.38)

are defined. To the differential operator A generated by problem (1.14) we assign the
difference operator Ax

h
by the formula

Ax
hu

h
x = −

n∑

r=1

(
ar(x)uhxr

)

xr ,jr
(2.39)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for all x ∈ Sh.
With the help of Ax

h
we arrive at the nonlocal boundary-value problem

−d
2uh(t, x)
dt2

+Ax
hu

h(t, x) = gh(t, x), 0 < t < 1, x ∈ Ωh,

duh(t, x)
dt

−Ax
hu

h(t, x) = fh(t, x), −1 < t < 0, x ∈ Ωh,
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uh(−1, x) = uh(1, x) + μh(x), x ∈ Ω̃h,

uh(0+, x) = uh(0−, x), duh(0+, x)
dt

=
duh(0−, x)

dt
, x ∈ Ω̃h

(2.40)

for an infinite system of ordinary differential equations.
In the second step problem (2) is replaced by the difference scheme (2.1):

−u
h
k+1(x) − 2uh

k
(x) + uh

k−1(x)

τ2
+Ax

h
uh
k
(x) = gh

k
(x),

gh
k
(x) = gh(tk, x), tk = kτ, 1 ≤ k ≤N − 1, Nτ = 1, x ∈ Ωh,

uhk(x) − uhk−1(x)
τ

−Ax
h
uh
k−1(x) = f

h
k
(x),

fhk (x) = f
h(tk, x), tk−1 = (k − 1)τ, −N + 1 ≤ k ≤ −1, x ∈ Ωh,

uh−N(x) = uhN(x) + μh(x), x ∈ Ω̃h,

uh1(x) − uh0(x) = uh0(x) − uh−1(x), x ∈ Ω̃h.

(2.41)

Based on the number of corollaries of the abstract theorems given above, to formulate the
result, one needs to introduce the space L2h = L2(Ω̃h) of all the grid functions ϕh(x) =
{ϕ(h1m1, . . . , hnmn)} defined on Ω̃h, equipped with the norm

‖ϕh‖L2(Ω̃h) =

(
∑

x∈Ωh

|ϕh(x)|2h1 · · ·hn
)1/2

. (2.42)

Theorem 2.5. Let τ and |h| =
√
h21 + · · · + h2n be sufficiently small numbers. Then the solutions of

the difference scheme (2.41) satisfy the following stability and almost coercivity estimates:

∥∥∥{uhk}
N−1
−N

∥∥∥
C([−1,1]τ ,L2h)

≤M
[∥∥∥{fhk }

−1
−N+1

∥∥∥
C([−1,0]τ ,L2h)

+
∥∥∥{ghk}

N−1
1

∥∥∥
C([0,1]τ ,L2h)

+ ‖μh‖L2h

]
,

∥∥∥
{
τ−2

(
uhk+1 − 2uhk + u

h
k−1

)}N−1
1

∥∥∥
C([0,1]τ ,L2h)

+
∥∥∥
{
τ−1

(
uhk − uhk−1

)}0
−N+1

∥∥∥
C([−1,0]τ ,L2h)

+
∥∥∥{uhk}

N−1
−N

∥∥∥
C([−1,1]τ ,W2

2h)

≤M
[
‖μh‖W2

2h
+ τ‖fh0 ‖W1

2h
+ ln

1
τ + |h|

[∥∥∥{fhk }
−1
−N+1

∥∥∥
C([−1,0]τ ,L2h)

+
∥∥∥{ghk}

N−1
1

∥∥∥
C([0,1]τ ,L2h)

]]
,

(2.43)

whereM is independent of τ, h, μh(x), and gh
k
(x), 1 ≤ k ≤N − 1, fh

k
,−N + 1 ≤ k ≤ 0.
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The proof of Theorem 2.5 is based on the abstract Theorems 2.2, 2.3, on the estimate

min
{
ln

1
τ
, 1 + | ln ‖Ax

h‖L2h →L2h |
}

≤M ln
1

τ + |h| (2.44)

as well as the symmetry properties of the difference operator Ax
h
defined by formula (2.39)

in L2h, along with the following theorem on the coercivity inequality for the solution of the
elliptic difference problem in L2h.

Theorem 2.6. For the solution of the elliptic difference problem,

Ax
hu

h(x) = ωh(x), x ∈ Ωh, (2.45)

uh(x) = 0, x ∈ Sh, (2.46)

the following coercivity inequality holds [7]:

n∑

r=1

∥∥∥(uh)xrxr ,jr
∥∥∥
L2h

≤M||ωh||L2h
. (2.47)

Theorem 2.7. Let τ and |h| be sufficiently small numbers. Then the solutions of the difference scheme
(2.41) satisfy the following coercivity stability estimates:

∥∥∥
{
τ−2

(
uhk+1 − 2uhk + u

h
k−1

)}N−1
1

∥∥∥
Cα

0,1([0,1]τ ,L2h)

+
∥∥∥
{
τ−1

(
uhk − uhk−1

)}0
−N+1

∥∥∥
Cα

0 ([−1,0]τ ,L2h)
+
∥∥∥{uhk}

N−1
−N

∥∥∥
Cα

0,1([−1,1]τ ,W2
2h)

≤M
[
‖μh‖W2

2h
+ τ‖fh0 ‖W1

2h
+

1
α(1 − α)

[∥∥∥{fhk }
−1
−N+1

∥∥∥
Cα

0 ([−1,0]τ ,L2h)
+
∥∥∥{ghk}

N−1
1

∥∥∥
Cα

0,1([0,1]τ ,L2h)

]]
,

(2.48)

whereM is independent of τ, h, μh(x), and ghk (x), 1 ≤ k ≤N − 1, fhk ,−N + 1 ≤ k ≤ 0.

The proof of Theorem 2.7 is based on the abstract Theorem 2.4, the symmetry
properties of the difference operator Ax

h
defined by formula (2.39), and on Theorem 2.6 on

the coercivity inequality for the solution of the elliptic difference equation (2.45) in L2h.
Note that in a similar manner the difference schemes of the first order of accuracy with

respect to one variable for approximate solutions of the boundary value problem (1.12) can
be constructed. Abstract theorems given above permit us to obtain the stability, the almost
stability, and the coercive stability estimates for the solution of these difference schemes.
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