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1. Introduction

Recently, there has been a great interest in studying the periodic nature of nonlinear difference
equations. Although difference equations are relatively simple in form, it is, unfortunately,
extremely difficult to understand thoroughly the periodic behavior of their solutions. The
periodic nature of nonlinear difference equations of the max type has been investigated by
many authors. See, for example, [1–20] (see also the references therein).

In [7], the following open problems were posed.

Problem 1.1 (open problem [7, page 217, Open Problem 6.1]). Assume that A ∈ (0,∞) and that
r1 and r2 are positive rational numbers.

Investigate the periodic nature of the solution of the difference equation

xn+1 =
max

{
xn,A

}

xn−1
, n = 0, 1, . . . , (1.1)

where the initial conditions x−1 = Ar1 and x0 = Ar2 .

Problem 1.2 (open problem [7, page 217, Open Problem 6.2]). Assume that A ∈ (0,∞) and that
r1 and r2 are positive rational numbers. Investigate the periodic nature of the solution of the
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difference equation

xn+1 =
max

{
xn,A

}

xnxn−1
, n = 0, 1, . . . , (1.2)

where the initial conditions x−1 = Ar1 and x0 = Ar2 .

Problem 1.3 (open problem [7, page 217, Open Problem 6.3]). Assume that A ∈ (0,∞) and that
r1 and r2 are positive rational numbers. Investigate the periodic nature of the solution of the
difference equation

xn+1 =
max

{
x2
n,A

}

xnxn−1
, n = 0, 1, . . . , (1.3)

where the initial conditions x−1 = Ar1 and x0 = Ar2 .

Problem 1.4 (open problem [7, page 218, Open Problem 6.4]). Assume that A ∈ (0,∞) and that
r1 and r2 are positive rational numbers. Investigate the periodic nature of the solution of the
difference equation

xn+1 =
max

{
xn,A

}

x2
nxn−1

, n = 0, 1, . . . , (1.4)

where the initial conditions x−1 = Ar1 and x0 = Ar2 .

Problem 1.5 (open problem [7, page 218, Open Problem 6.5]). Assume that A ∈ (0,∞), k and l
are natural numbers, and that r1 and r2 are positive rational numbers. Investigate the periodic
nature of the solution of the difference equation

xn+1 =
max

{
xk
n,A

}

xl
nxn−1

, n = 0, 1, . . . , (1.5)

where the initial conditions x−1 = Ar1 and x0 = Ar2 .

In [6], we solved the open problem 6.1. And, in [20] we solved the open problem 6.4.
Now, in this paper we give answer to the open problem 6.2.

2. The case A < 1

We consider (1.2)where A < 1. It is clear that the change of variables

xn = Arn for n ≥ −1 (2.1)

reduces (1.2) to the difference equation

rn+1 = min
{
0, 1 − rn

} − rn−1, n = 0, 1, . . . , (2.2)

where the initial conditions are positive rational numbers.
In this section, we consider the behavior of the solutions of (2.2) (or equivalently of (1.2))

where A < 1. We give the following lemmas which give us explicit solutions of (2.2) for some
consecutive terms and show us the pattern of the behavior of solutions of (2.2) (or equivalently
of (1.2)). The proofs of some lemmas and theorems in this section are similar. So, some will be
proved and the proofs of the others will be omitted.
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Lemma 2.1. Suppose that {rn}∞n=−1 is a solution of (2.2). If at least one of the initial conditions of (2.2)
is less than or equal to one andmax{r−1, r0} = r, then the following statements are true for some positive
integerN.

(a) If rN = −r, then |rN−1| ≤ |rN |.
(b) If r ≤ 1, then rn = rn+4 for all n ≥ −1.
(c) If r > 1, rN = −r, then rN = rN+3 or rN = rN+4.

(d) If r > 1, rN = rN+3 = −r and rN−1 < −1, then

rN ≤ rN−1, rN+2 = 1 − rN + rN−1. (2.3)

(e) If r > 1, rN = rN+4 = −r and −1 < rN−1, then

rN−1 ≤ −rN, rN+3 = 1 + rN + rN−1. (2.4)

Proof. (a) Let 1 < r. From (2.2), if r0 = r, we have r1 = 1 − r0 − r−1 and r2 = −r0. Thus, we get
r2 ≤ r1 and r3 = −r1. If r1 ≤ −1, then we get r4 = 2 − r−1, r5 = −r0, and r4 ≤ −r5. If − 1 < r1, then
we get r4 = r0, r5 = 2 − 2r0 − r−1, r6 = −r0, and r6 < r5.

Similarly, if r−1 = r, we get that r1 = −r−1, r0 < −r1, and then r2 = −r0, r3 = r−1, r4 =
1 + r0 − r−1, r5 = −r−1, and r5 < r4. If this proceeds, we have |rN−1| ≤ |rN | for rN = −r and 1 < r.

Now, let r ≤ 1. If r0 = r, from (2.2), we have r1 = −r−1 and r2 = −r0. So, we obtain r2 < r1.
If r−1 = r,we have r1 = −r−1. So, we obtain r0 < −r1. If this proceeds, we have |rN−1| ≤ |rN |

if rN = −r and r ≤ 1. So, the proof of (a) is complete.
(b) Let r ≤ 1. Then, we have 0 < r−1 ≤ 1 and 0 < r0 ≤ 1. So, the proof of (b) follows

directly from (2.2).
(c) Let 1 < r and rN = −r. From (2.2), we get rN+1 = −rN−1.
If rN−1 < −1, then rN+2 = min{0, 1− rN+1}− rN, rN+2 = 1− rN + rN−1, and rN+3 = min{0, 1−

rN+2} − rN+1, rN+3 = rN from (a).
If −1 < rN−1, then rN+2 = −rN , rN+3 = 1 + rN + rN−1, rN+4 = min{0,−rN − rN−1} − (−rN),

and rN+4 = rN from (a). So, the proof of (c) is complete.
(d) Let r > 1 and rN = rN+3 = −r for some positive integer N. Suppose that rN−1 < −1.

From (2.2), we get that rN+1 = −rN−1, rN+2 = 1−rN+rN−1, and rN+3 = min{0, rN−rN−1}−(−rN−1).
From rN = rN+3, we have rN ≤ rN−1. So, the proof of (d) is complete.

(e) Let r > 1 and rN = rN+4 = −r for some positive integer N. Suppose that −1 < rN−1.
From (2.2), we get that rN+1 = −rN−1, rN+2 = −rN , rN+3 = 1+ rN + rN−1, and rN+4 = min{0,−rN −
rN−1} − (−rN). From rN = rN+4, we have rN−1 ≤ −rN. So, the proof of (e) is complete.

The proof of the following lemma is similar and will be omitted.

Lemma 2.2. Suppose that {rn}∞n=−1 is a solution of (2.2), where r−1, r0 > 1. If r−1 + r0 = r, then the
following statements are true for some positive integer N.

(a) If rN = 1 − r, then |rN−1| ≤ |rN |.
(b) If rN = 1 − r, then rN = rN+3 or rN = rN+4.

(c) If rN = rN+3 = 1 − r and rN−1 < −1, then

rN ≤ rN−1, rN+2 = 1 − rN + rN−1. (2.5)
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(d) If rN = rN+4 = 1 − r and −1 < rN−1, then

rN−1 ≤ −rN, rN+3 = 1 + rN + rN−1. (2.6)

Remark 2.3. In view of Lemma 2.1 for r > 1, it is clear that rj = −r and rj = rj+4 for j = 1 or
j = 2. But, it is not clear rj+4 = rj+7 or rj+4 = rj+8. If rj+4 = rj+7, then rj+7 = rj+10 or rj+7 = rj+11.
If rj+4 = rj+8, then rj+8 = rj+11 or rj+8 = rj+12. So, we have rN+3 = −r or rN+4 = −r, if rN = −r for
N > 2.

In view of Lemma 2.1, for r > 1, from Lemma 2.1(c), we obtain

rN+2 = 1 − rN + rN−1, rN+3 = rN = −r.

Also, from Lemma 2.1(d), we have

rN+6 = 2 + rN−1, rN+7 = rN+3 = −r. (2.7)

Now, applying Lemma 2.1(d) and then we get

rN+3 = 1 + rN + rN−1, rN+4 = rN = −r.

Moreover, from Lemma 2.1(c), we have

rN+6 = 2 + rN−1, rN+7 = rN+4 = −r.

It shows that the last corresponding two terms are the same in each two cases. So, we can apply
Lemma 2.1(c) or Lemma 2.1(d) for getting the last two termswe need. Furthermore, it is reality
there are infinite number of integers N satisfying Lemma 2.1(b). If we determine exactly the
number of integersN, we can apply Lemmas 2.1(c) and 2.1(d), consecutively. Also, in view of
Lemma 2.1,

if rN = −r, rN−1 < −1, then rN = rN+3,

if rN = −r, −1 < rN−1, then rN = rN+4.
(2.8)

Remark 2.4. In view of Lemma 2.2, we can get similar results as Remark 2.3. So, we have the
following:

if rN = 1 − r, rN−1 < −1, then rN = rN+3,

if rN = 1 − r, −1 < rN−1, then rN = rN+4.
(2.9)

Also, we can apply Lemma 2.2(c) or Lemma 2.2(d) firstly for getting the last two terms we
need.

Clearly, there are infinite number of integers N satisfying Lemma 2.1 or Lemma 2.2. We
give the following two lemmas about the number of integersN.
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Lemma 2.5. Suppose that {rn}∞n=−1 is a solution of (2.2) satisfying Lemma 2.1. If max{r−1, r0, 1} =
k/m and GCD(k,m) = 1, then the following statements are true.

(a) If k+m is an even integer, then the number of integersN satisfying Lemma 2.1(c) is (k−m)/2
and the number of integersN satisfying Lemma 2.1(d) is (k +m)/2 forN < (7k +m)/2.

(b) If k + m is an odd integer, then the number of integers N satisfying Lemma 2.1(c) is k − m
and the number of integersN satisfying Lemma 2.1(d) is k +m forN < 7k +m.

Proof. (a) Assume that k +m is an even integer. So, both of k and m are even or odd integers.
From GCD(k,m) = 1, k andm are odd integers. We have max{r−1, r0, 1} = k/m ≥ 1.

Let k/m = 1. Then, we have k = m = 1, 0 < r−1 ≤ 1, and 0 < r0 ≤ 1. If r−1 = r,we get r1 = −r
from (2.2), then we get r1 = r5 = −r from −1 < r0, Lemma 2.1(d) and Remark 2.3. Similarly, If
r0 = r, we get r2 = −r from (2.2), then we get r2 = r6 = −r from −1 < r1 = −r−1, Lemma 2.1(d)
and Remark 2.3. So, the number of integers N satisfying Lemma 2.1(d) is (1 + 1)/2 = 1 for
N < (7.1 + 1)/2 = 4, such that N = 1 or N = 2. There are not any integers N satisfying
Lemma 2.1(c). So, the claim is true for k/m = 1.

Let k/m > 1 and the number of integers N satisfying Lemma 2.1(c) is ((k − m)/2 + 1)
for N < (7k +m)/2. From Remark 2.3, observe that j is the smallest integer of the integers N
satisfying Lemma 2.1(b), such that j = 1 or j = 2. This assumption and Remark 2.3 allow us
that Lemma 2.1(c) can be applied consecutively for iterated ((k −m)/2 + 1) times such that

rj+4+3l1 = rj+4+3(l1+1) = −r, rj+4+3l1−1 < −1 for l1 = 0, 1, . . . ,
k −m

2
. (2.10)

So, we have

rj+4+3((k−m)/2)−1 < −1,
rj+3 = 1 + rj + rj−1,

rj+6 = 1 − rj+4 + rj+3 = 1 + rj +
(
1 − rj

)
+ rj−1,

rj+9 = 1 − rj+7 + rj+6 = 1 + rj + 2
(
1 − rj

)
+ rj−1,

...

rj+4+3((k−m)/2)−1 = 1 + rj +
(
k −m

2

)
(
1 − rj

)
+ rj−1.

(2.11)

Thus,

1 + rj +
(
k −m

2

)
(
1 − rj

)
+ rj−1 = 1 − k

m
+
(
k −m

2

)(
1 −

(
− k

m

))
+ rj−1 < −1,

rj−1 < −2 + k

m
−
(
k −m

2

)(
1 +

k

m

)
≤ − k

m
.

(2.12)

This shows that rj−1 < rj . But, it contradicts Lemma 2.1(a). This means Lemma 2.1(c)
cannot be applied consecutively for iterated ((k −m)/2 + 1) times. So, the number of integers
N satisfying Lemma 2.1(c) is not more than (k −m)/2 for N < (7k +m)/2.
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Similarly, we assume that the number of integers N satisfying Lemma 2.1(d) is ((k +
m)/2 + 1) for N < (7k + m)/2. So, we can apply Lemma 2.1(d) consecutively for iterated
((k +m)/2 + 1) times such that

rj+4l2 = rj+4(l2+1) = −r, rj+4l2−1 > −1 for l2 = 0, 1, . . . ,
k +m

2
. (2.13)

So, we have

rj+4((k+m)/2)−1 > −1,
rj+3 = 1 + rj + rj−1,

rj+8 = 1 + rj+4 + rj+3 = 2
(
1 + rj

)
+ rj−1,

...

rj+4((k+m)/2)−1 =
(
k +m

2

)
(
1 + rj

)
+ rj−1.

(2.14)

Thus, we have

(
k +m

2

)
(
1 + rj

)
+ rj−1 =

(
k +m

2

)(
1 +

(
− k

m

))
+ rj−1 > −1,

rj−1 > −1 −
(
k +m

2

)(
1 − k

m

)
≥ k

m
.

(2.15)

This means that rj−1 > −rj . But, it contradicts Lemma 2.1(a) So, the number of integers
N satisfying Lemma 2.1(c) is not more than (k +m)/2.

We assume that the number of integersN satisfying Lemma 2.1(c) is (k−m)/2−1 forN <
(7k + m)/2. We have just had the number of integers N satisfying Lemma 2.1(d) is less than
(k+m)/2+1. We apply Lemma 2.1(d) for iterated (k+m)/2 times, and then we get that the first
integerN satisfying Lemma 2.1(c) is [j + 4((k +m)/2)] such that rj+4((k+m)/2) = rj+4((k+m)/2)+3 =
−r. So, we apply Lemma 2.1(c) for iterated ((k−m)/2−2) times, and thenwe get that the biggest
integerN satisfying Lemma 2.1(b) forN < (7k +m)/2 is [j + 4((k +m)/2) + 3((k −m)/2 − 2)]
such that rj+4((k+m)/2)+3((k−m)/2−2) = −r. From Lemma 2.1(b), rj+4((k+m)/2)+3((k−m)/2−2)+3 = −r
or rj+4((k+m)/2)+3((k−m)/2−2)+4 = −r. But, rj+4((k+m)/2)+3((k−m)/2−2)+4 = −r is not possible because
the number of integers N satisfying Lemma 2.1(d) is not ((k + m)/2 + 1). So, it must be
rj+4((k+m)/2)+3((k+m)/2−2)+3 = −r and it contradicts our assumption. Thus, the number of integers
N satisfying Lemma 2.1(c) is (k −m)/2 exactly forN < (7k +m)/2.

Similarly, the number of integers N satisfying Lemma 2.1(d) is not ((k +m)/2 − 1) and
can be showed for N < (7k + m)/2. So, the number of integers N satisfying Lemma 2.1(d) is
(k +m)/2 exactly forN < (7k +m)/2. The proof is complete.

(b) The proof of (b) is similar and will be omitted.

The proof of the following lemma is similar and will be omitted.

Lemma 2.6. Suppose that {rn}∞n=−1 is a solution of (2.2) satisfying Lemma 2.2. If r = k/m and
GCD(k,m) = 1, then the following statements are true.
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(a) If k is an even integer, then the number of integersN satisfying Lemma 2.2(a) is (k − 2m)/2
and the number of integersN satisfying Lemma 2.2(b) is k/2 forN < (7k − 6m)/2.

(b) If k is an odd integer, then the number of integers N satisfying Lemma 2.2(a) is k − 2m and
the number of integersN satisfying Lemma 2.2(b) is k forN < 7k − 6m.

We give the following two lemmas which are generalized from Lemmas 2.1 and 2.5, and
Remark 2.3. It allows us to more quickly calculate terms in the solution of (2.2).

Lemma 2.7. Suppose that {rn}∞n=−1 is a solution of (2.2) satisfying Lemmas 2.1 and 2.5. If k +m is an
even integer, then the following statements are true.

(a) If rN = rN+4l1 = −r, then

rN+4l1−1 = 1 + rN+4(l1−1) + rN+4(l1−1)−1 (2.16)

for l1 = 1, 2, . . . , (k +m)/2.

(b) If rN+4((k+m)/2) = rN+4((k+m)/2)+3l2 = −r, then

rN+4((k+m)/2)+3l2−1 = 1 − rN+4((k+m)/2)+3(l2−1) + rN+4((k+m)/2)+3(l2−1)−1 (2.17)

for l2 = 1, 2, . . . , (k −m)/2.

Lemma 2.8. Suppose that {rn}∞n=−1 is a solution of (2.2) satisfying Lemma 2.1 and 2.5. If k +m is an
odd integer, then the following statements are true.

(a) If rN = rN+4l1 = −r, then

rN+4l1−1 = 1 + rN+4(l1−1) + rN+4(l1−1)−1 (2.18)

for l1 = 1, 2, . . . , k +m.

(b) If rN+4(k+m) = rN+4(k+m)+3l2 = −r, then

rN+4(k+m)+3l2−1 = 1 − rN+4(k+m)+3(l2−1) + rN+4(k+m)+3(l2−1)−1 (2.19)

for l2 = 1, 2, . . . , k −m.

The following two lemmas are generalized from Lemmas 2.2, 2.6, and Remark 2.4.

Lemma 2.9. Suppose that {rn}∞n=−1 is a solution of (2.2) satisfying Lemmas 2.2 and 2.6. If k is an even
integer, then the following statements are true.

(a) If rN = rN+4l1 = 1 − r, then

rN+4l1−1 = 1 + rN+4(l1−1) + rN+4(l1−1)−1 (2.20)

for l1 = 1, 2, . . . , k/2.

(b) If rN+4(k/2) = rN+4(k/2)+3l2 = 1 − r, then

rN+4(k/2)+3l2−1 = 1 − rN+4(k/2)+3(l2−1) + rN+4(k/2)+3(l2−1)−1 (2.21)

for l2 = 1, 2, . . . , (k − 2m)/2.
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Lemma 2.10. Suppose that {rn}∞n=−1 is a solution of (2.2) satisfying Lemmas 2.2 and 2.6. If k is an odd
integer, then the following statements are true.

(a) If rN = rN+4l1 = 1 − r, then

rN+4l1−1 = 1 + rN+4(l1−1) + rN+4(l1−1)−1 (2.22)

for l1 = 1, 2, . . . , k.

(b) If rN+4k = rN+4k+3l2 = 1 − r, then

rN+4k+3l2−1 = 1 − rN+4k+3(l2−1) + rN+4k+3(l2−1)−1 (2.23)

for l2 = 1, 2, . . . , k − 2m.

Theorem 2.11. Suppose that {xn}∞n=−1 is a solution of (1.2) with the initial conditions x−1 = Ar−1 and
x0 = Ar0 , such that 0 < A < 1, r−1 and r0 are positive rational numbers. Let at least one of r−1 and r0 is
less than or equal to one. Ifmax{r−1, r0, 1} = k/m and GCD(k,m) = 1, then {xn}∞n=−1 is periodic

with prime period

⎧
⎪⎨

⎪⎩

7k +m

2
, if k +m is an even integer,

7k +m, if k +m is an odd integer.
(2.24)

Proof. Let {rn}∞n=−1 is a solution of (2.2) satisfying Lemmas 2.1 and 2.5. We assume that k +m is
an odd integer. We must show that

rn = rn+7k+m ∀n ≥ −1. (2.25)

From Lemma 2.8(a), we get that

rN = rN+4(k+m), rN+4(k+m)−1 = (k +m)(1 + rN) + rN−1. (2.26)

Then, from Lemma 2.8(b), we get that

rN+4(k+m) = rN+4(k+m)+3(k−m),

rN+4(k+m)+3(k−m)−1 = (k +m)(1 + rN) + rN−1 + (k −m)(1 − rN).
(2.27)

So, at the end of this process, we have rN = rN+7k+m and rN−1 = rN+7k+m−1. From rn−1 =
min{0, 1 − rn} − rn+1, we get immediately rN = rN+7k+m for all N ≥ −1. Also, it is easy to
see that rN−1 /= rN+4l1−1 and rN−1 /= rN+4(k+m)+3l2−1 for l1 = 1, 2, . . . , k+m and l2 = 1, 2, . . . , k−m−1.
It shows that 7k +m is prime period. So, the proof is complete. The proof of the case that k +m
is an even integer is similar and will be omitted.

The proof of the following theorem is similar and follows directly from Lemmas 2.9 and
2.10.

Theorem 2.12. Suppose that {xn}∞n=−1 is a solution of (1.2) with the initial conditions x−1 = Ar−1 and
x0 = Ar0 such that 0 < A < 1, r−1 and r0 are positive rational numbers. Let 1 < r−1, r0. If r−1+r0 = k/m
and GCD(k,m) = 1, then {xn}∞n=−1 is periodic

with prime period

⎧
⎪⎨

⎪⎩

7k − 6m
2

if k is an even integer,

7k − 6m if k is an odd integer.
(2.28)
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3. The case A > 1

We consider (1.2)where A > 1. It is clear that the change of variables

xn = Arn for n ≥ −1 (3.1)

reduces (1.2) to the difference equation

rn+1 = max
{
0, 1 − rn

} − rn−1, n = 0, 1, . . . , (3.2)

where the initial conditions are positive rational numbers.
In this section, we consider the behavior of the solutions of (3.2) (or equivalently of (1.2))

where A > 1. We omit the proofs of the following results since they can easily be obtained in a
way similar to the proofs of the lemmas and theorems in the previous section.

Lemma 3.1. Suppose that {rn}∞n=−1 is a solution of (3.2). If max{r−1, r0} = r, then the following
statements are true for some integer N ≥ −1.

(a) If rN = r, then |rN−1| ≤ rN.

(b) If rN = r, then rN = rN+3 or rN = rN+4.

(c) If rN = rN+3 = r and −1 < rN−1, then

rN−1 ≤ rN, rN+2 = 1 − rN + rN−1. (3.3)

(d) If rN = rN+4 = r and rN−1 < −1, then

−rN ≤ rN−1, rN+3 = 1 + rN + rN−1.

Lemma 3.2. Suppose that {rn}∞n=−1 is a solution of (3.2) satisfying Lemma 3.1. If max{r−1, r0, 1} =
k/m and GCD(k,m) = 1, then the following statements are true.

(a) If k+m is an even integer, then the number of integersN satisfying Lemma 3.1(a) is (k+m)/2
and the number of integersN satisfying Lemma 3.1(b) is (k −m)/2 forN < (7k −m)/2.

(b) If k + m is an odd integer, then the number of integers N satisfying Lemma 3.1(a) is k + m
and the number of integersN satisfying Lemma 3.1(b) is k −m forN < 7k −m.

The following two lemmas are generalized from Lemmas 3.1 and 3.2.

Lemma 3.3. Suppose that {rn}∞n=−1 is a solution of (3.2) satisfying Lemmas 3.1 and 3.2. If k +m is an
even integer, then the following statements are true.

(a) If rN = rN+4l1 = r, then

rN+4l1−1 = 1 + rN+4(l1−1) + rN+4(l1−1)−1 (3.4)

for l1 = 1, 2, . . . , (k −m)/2.
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(b) If rN+4((k−m)/2) = rN+4((k−m)/2)+3l2 = r, then

rN+4((k−m)/2)+3l2−1 = 1 − rN+4((k−m)/2)+3(l2−1) + rN+4((k−m)/2)+3(l2−1)−1 (3.5)

for l2 = 1, 2, . . . , (k +m)/2.

Lemma 3.4. Suppose that {rn}∞n=−1 is a solution of (3.2) satisfying Lemmas 3.1 and 3.2. If k +m is an
odd integer, then the following statements are true.

(a) If rN = rN+4l1 = r, then

rN+4l1−1 = 1 + rN+4(l1−1) + rN+4(l1−1)−1 (3.6)

for l1 = 1, 2, . . . , k −m.

(b) If rN+4(k−m) = rN+4(k−m)+3l2 = r, then

rN+4(k−m)+3l2−1 = 1 − rN+4(k−m)+3(l2−1) + rN+4(k−m)+3(l2−1)−1 (3.7)

for l2 = 1, 2, . . . , k +m.

Theorem 3.5. Suppose that {xn}∞n=−1 is a solution of (1.2) with the initial conditions x−1 = Ar−1 and
x0 = Ar0 such that 1 < A, r−1, and r0 are positive rational numbers. If max{r−1, r0, 1} = k/m and
GCD(k,m) = 1, then {xn}∞n=−1 is periodic

with prime period

⎧
⎪⎨

⎪⎩

7k −m

2
if k +m is an even integer,

7k −m if k +m is an odd integer.
(3.8)

4. Conclusion

In this paper, we have solved the open problem 6.2 which was proposed in [7]. We think that
the method used in this work may solve the open problems 6.3 and 6.5 which were proposed
in [7].
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