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Received 1 July 2008; Accepted 2 October 2008

Recommended by Leonid Berezansky

We investigate the global behaviour of the difference equation of higher order xn+1 = α + xn−m/xk
n,

n = 0, 1, . . . , where the parameters α, k ∈ (0,∞) and the initial values x−m, x−(m−1), . . . , x−2, x−1, and
x0 are arbitrary positive real numbers.
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1. Introduction

Although difference equations are relatively simple in form, it is, unfortunately, extremely
difficult to understand thoroughly the global behavior of their solutions. See, for example, [1–
12] and the relevant references cited therein. Difference equations appear naturally as discrete
analogues and as numerical solutions of differential and delay differential equations having
applications in various scientific branches, such as in ecology, economy, physics, technics,
sociology, and biology. Hamza and Morsy in [5] investigated the global behavior of the
difference equation

xn+1 = α +
xn−1
xk
n

, n = 0, 1, . . . , (1.1)

where the parameters α, k ∈ (0,∞) and the initial values x−1 and x0 are arbitrary positive real
numbers.

Equation (1.1) was investigated when k = 1 where α ∈ (0,∞) (see [1, 3]). There are
some other examples of the research regarding (1.1) (e.g., [4, 8]).

Yalçinkaya in [11] investigated the global behavior of the difference equation

xn+1 = α +
xn−2
xk
n

, n = 0, 1, . . . , (1.2)

where the parameters α, k ∈ (0,∞) and the initial values are arbitrary positive real numbers.
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Also, in [12], we investigated the global behavior of the difference equation

xn+1 = α +
xn−3
xk
n

, n = 0, 1, . . . , (1.3)

where the parameters α, k ∈ (0,∞) and the initial values are arbitrary positive real numbers.
In this paper, we consider the following difference equation of higher order

xn+1 = α +
xn−m
xk
n

, n = 0, 1, . . . , (1.4)

where the parameters α, k ∈ (0,∞) and the initial values are arbitrary positive real numbers.
Here, we review some results which will be useful in our investigation of the behavior

of (1.4) solutions (cf. [10]).

Definition 1.1. Let I be an interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function where k is a nonnegative integer. Consider the difference equation

xn+1 = f
(
xn, xn−1, . . . , xn−k

)
, n = 0, 1, . . . , (1.5)

with the initial values x−k, . . . , x0 ∈ I. A point x is called an equilibrium point of (1.5) if

x = f
(
x, x, . . . , x

)
. (1.6)

Definition 1.2. Let x be an equilibrium point of (1.5).
(a) The equilibrium x is called locally stable if for every ε > 0, there exists δ > 0 such

that x0, . . . , x−k ∈ I and |x0 − x| + · · · + |x−k − x| < δ, then

∣∣xn − x
∣∣ < ε, ∀n ≥ −k. (1.7)

(b) The equilibrium x is called locally asymptotically stable if it is locally stable and if
there exists γ > 0 such that if x0, . . . , x−k ∈ I and |x0 − x| + · · · + |x−k − x| < γ , then

lim
n→∞

xn = x. (1.8)

(c) The equilibrium x is called global attractor if for every x0, . . . , x−k ∈ I,

lim
n→∞

xn = x. (1.9)

(d) The equilibrium x is called globally asymptotically stable if it is locally stable and is a
global attractor.

(e) The equilibrium x is called unstable if is not stable.
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Definition 1.3. Let ai = (∂f/∂ui)(x, . . . , x) for each i = 0, 1, . . . , k denote the partial derivatives
of f(u0, u1, . . . , uk) evaluated at an equilibrium x of (1.5). Then

zn+1 = a0zn + a1zn−1 + · · · + akzn−k, n = 0, 1, . . . (1.10)

is called the linearized equation of (1.5) about the equilibrium point x.

Theorem 1.4 (Clark’s theorem). Consider the difference equation (1.10). Then

k∑

i=0

∣
∣ai

∣
∣ < 1 (1.11)

is a sufficient condition for the locally asymptotically stability of (1.5).

Definition 1.5. The sequence {xn} is said to be periodicwith period p if xn+p = xn for n = 0, 1, . . .
(cf. [2]).

2. Main results

In this section, we investigate the global behavior, the boundedness, and some periodicity of
(1.4).

A point x ∈ R is an equilibrium point of (1.4) if and only if it is a zero for the function

g(x) = x − x1−k − α, (2.1)

that is,

x − x1−k − α = 0. (2.2)

Lemma 2.1. Equation (1.4) has a unique equilibrium point x > 1.

Proof

Case 1. Assume that k = 1, then (1.4) has a unique equilibrium point x = α + 1 > 1.

Case 2. Assume that 0 < k < 1. The function g defined by (2.1) is decreasing on [0, (1 − k)1/k]
and increasing on [(1 − k)1/k,∞). Since g(1) = −α and limx→∞g(x) = ∞, then g has a unique
zero x > 1.

Case 3. Assume that 1 < k. Since g is increasing on [0,∞), g(1) = −α and limx→∞g(x) = ∞,
then g has a unique zero x > 1.

Therefore, the proof is complete.

Theorem 2.2. Assume that x is the equilibrium point of (1.4). If k(k + 1)(1−k)/k < α, then x is locally
asymptotically stable.
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Proof. From (1.5) and (1.10), we see that

f
(
u0, u1, . . . , um

)
= α + u−k

0 um, (2.3)

then

a0 =
−k
xk

, ai = 0 ∀i ∈ {1, 2, . . . , m − 1}, am =
1

xk
. (2.4)

By using Clark’s theorem, we get that x is locally asymptotically stable if and only if
xk > k + 1.

Let k(k + 1)(1−k)/k < α, a simple calculations shows that

g
(
(k + 1)1/k

)
= k(k + 1)(1−k)/k − α < 0, (2.5)

where g is defined by (2.1). Then, since limx→∞g(x) = ∞, x > (k + 1)1/k and xk > k + 1.
Therefore, the proof is complete.

Lemma 2.3. If α /= 1, then every solution of (1.4) is bounded.

Proof. We get that

α < xn+1 < α + βxn−m, ∀n = 1, 2, . . . , (2.6)

where β = 1/αk.
By induction we obtain

α < x(m+1)n+p < α
1 − βn

1 − β
+ βnxp, ∀p ∈ { − (m − 1),−(m − 2), . . . ,−1, 0, 1}. (2.7)

Also, we see that if α > 1,

α < x(m+1)n+p < α
1

1 − β
+ xp, ∀p ∈ { − (m − 1), (−m − 2), . . . ,−1, 0, 1}. (2.8)

Therefore, the proof is complete.

Theorem 2.4. Assume that x is the equilibrium point of (1.4). If α > k1/k ≥ 1, then x is globally
asymptotically stable.

Proof. Wemust show that the equilibrium point x of (1.4) is both locally asymptotically stable
and limx→∞xn = x.

Firstly, since k ≥ 1, then k ≥ k(k + 1)(1−k)/k and since α > k1/k, we get α >

k(k + 1)(1−k)/k. By Theorem 2.2, x is locally asymptotically stable.
Let {xn}∞n=−m be a solution of (1.4). By Lemma 2.3, {xn}∞n=−m is bounded.
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Let us introduce

Λ1 = lim
n→∞

inf xn, Λ2 = lim
n→∞

supxn. (2.9)

Then, for all ε ∈ (0,Λ1) there exists n0 ∈ N such that for all n ≥ n0, we get

Λ1 − ε ≤ xn ≤ Λ2 + ε. (2.10)

This implies that

α +
Λ1 − ε

(
Λ2 + ε

)k ≤ xn+1 ≤ α +
Λ2 + ε

(
Λ1 − ε

)k for n ≥ n0 + 1. (2.11)

Then, we obtain

α +
Λ1 − ε

(
Λ2 + ε

)k ≤ Λ1 ≤ Λ2 ≤ α +
Λ2 + ε

(
Λ1 − ε

)k , (2.12)

and from the above inequality

α +
Λ1

Λ2
k
≤ Λ1 ≤ Λ2 ≤ α +

Λ2

Λ1
k
, (2.13)

which implies that

(
αΛ2

kΛ1
k−1 + Λ1

k) ≤ Λk
1Λ

k
2 ≤ (

αΛ2
k−1Λ1

k + Λ2
k). (2.14)

Consequently, we obtain

αΛ2
k−1Λ1

k−1(Λ2 −Λ1
) ≤ (

Λk
2 −Λk

1

)
. (2.15)

Suppose that Λ1 /= Λ2, we get that

αΛ2
k−1Λ1

k−1 ≤ Λk
2 −Λk

1

Λ2 −Λ1
. (2.16)

There exists γ ∈ (Λ1,Λ2) such that

Λk
2 −Λk

1

Λ2 −Λ1
= kγk−1 ≤ kΛk−1

2 . (2.17)
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This implies that αk ≤ k, which is a contradiction. Hence, Λ1 = Λ2 = x. So, we have
shown that

lim
n→∞

xn = x. (2.18)

Therefore, the proof is complete.

Theorem 2.5. Suppose that m is odd, then let {xn}∞n=−m be a positive solution of (1.4) which consists
of at least two semicycles. Then {xn}∞n=−m is oscillatory and, except possibly for the first semicycle,
every semicycle is of length one.

Proof. Assume that xn−2a < x ≤ xn−(2a+1), ∀a ∈ {0, 1, 2, . . . , (m − 1)/2} for some n ≥ 0, then

xn+1 > α +
x

xk
= x,

xn+2 < α +
x

xk
= x,

xn+3 > α +
x

xk
= x,

...

xn+m+1 < α +
x

xk
= x.

(2.19)

Second, consider xn−(2a+1) < x < xn−2a, ∀a ∈ {0, 1, 2, . . . , (m − 1)/2}, then

xn+1 < α +
x

xk
= x,

xn+2 > α +
x

xk
= x,

xn+3 < α +
x

xk
= x,

...

xn+m+1 > α +
x

xk
= x,

(2.20)

which ends the proof.

Theorem 2.6. Equation (1.4) has a period (m + 1) solution (not necessary prime) {xn}∞n=−m if and
only if (x−m, x−m+1, . . . , x−2, x−1, x0) is a solution of the system

at = α +
at

ak
t−1

, ∀t ∈ {1, 2, . . . , m + 1}. (2.21)
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Moreover, if at least one of the initial values of (1.4) is different from the others, then {xn}∞n=−m
has a prime period (m + 1) solution.

Proof. First, assume that {xn}∞n=−m is a prime period (m + 1) solution of (1.4), then

x−m = x1 = α +
x−m
xk
0

, (2.22)

and for all t ∈ {2, 3, 4, . . . , m + 1},

xt−(m+1) = xt = α +
xt−(1+m)

xk
t−1

= α +
xt

xk
t−1

. (2.23)

Then, (x−m, x−m+1, . . . , x−2, x−1, x0) is a solution of the system (2.21).
Second, assume that (x−m, x−m+1, . . . , x−2, x−1, x0) is a solution of the system (2.21), then

x−m = α +
x−m
xk
0

= x1,

x−(m−1) = α +
x−(m−1)
xk
−m

= α +
x−(m−1)
xk
1

= x2,

x−(m−2) = α +
x−(m−2)
xk
−(m−1)

= α +
x−(m−2)
xk
2

= x3,

...

x−1 = α +
x−1
xk
−2

= α +
x−1
xk
m−1

= xm,

x0 = α +
x0

xk
−1

= α +
x0

xk
m

= xm+1.

(2.24)

By induction we see that

xn+m+1 = xn ∀n ≥ −m. (2.25)

In the case where at least one of the initial values of (1.4) is different from the others,
clearly {xn}∞n=−m is a prime period (m + 1) solution.
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[10] M. R. S. Kulenović and O. Merino, Discrete Dynamical Systems and Difference Equations with
Mathematica, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2002.
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