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The set of all rational functions with any fixed denominator that simultaneously nullify in the
infinite point is parametrized by means of a well-known integrable system: a finite dimensional
version of the discrete KP hierarchy. This type of study was originated in Y. Nakamura’s works who
used others integrable systems. Our work proves that the finite discrete KP hierarchy completely
parametrizes the space RatΛ(n) of rational functions of the form f(x) = q(x)/zn, where q(x) is a
polynomial of order n − 1 with nonzero independent coefficent. More exactly, it is proved that there
exists a bijection from RatΛ(n) to the moduli space of solutions of the finite discrete KP hierarchy
and a compatible linear system.
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1. Introduction

Few decades ago, an unexpected relation between the control theory and the integrable sys-
tems was revealed. Papers [1, 2] which deal with problems related to those discussed here are
examples of these researches.

A large part of this research activity shows that some nonlinear integrable systems have
rich information about the moduli space of certain classes of solutions of linear dynamical
systems. In particular, they have relation with spaces of certain classes of rational functions.
Also according to the state space realization theory, some rational functions can be associated
with a controllable and observable linear dynamical system.

A convenient property of these spaces of rational functions is that they can be considered
as varieties, thus a question arises about the study of its moduli space. Maybe, in this context,
the fundamental role of the integrable systems is its compatibility with families of controllable
and observable linear dynamical systems.
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During the last ten years, the subject of integrable system has been enriched in a
remarkable way by its extensions to the other setting, notably, to discrete case of the KP
hierarchy. These developments have originated in the mathematical physics. In the new
settings, many of the classical tools are available, for example, we point out one of them which
is basic to this paper, the Gauss-Borel decomposition for the discrete KP hierarchy, proposed by
Felipe and Ongay [3] as an extension of the Mulase’s algebraic geometric approach to the KP
hierarchy [4]. This decomposition allows us to consider on an almost equal footing the cases
of semi-infinite and bi-infinite matrices.

In this paper, we use the well-known theory of the discrete KP hierarchy studied,
for instance, in [3], restricted to finite matrices to characterize RatΛ(n). Thus we will give
another example of nonlinear integrable system that also has the property of completely
parameterizing some kind of rational function space.

We must observe that an interesting property of the finite discrete KP hierarchy is that it
contains the full Kostant-Toda equation.

2. An algebraic geometric approach for the finite discrete KP hierarchy

The goals of this section are as follows.

(1) The first goal is to introduce a natural commuting finite hierarchy of flows. We make
three comments of this hierarchy. First, it can be defined by a Lax-type operator
(matrix) with respect to the shift matrix and its transpose. Second, the Lax matrix
introduced admits in certain cases a dressing matrix, in terms of which the hierarchy
can be rewritten. Third, there is a Sato-Wilson matrix “to dress” the shift matrix. We
mention that the situation is similar to the Sato theory and his dressing technique
(pseudodifferential theory).

(2) The second is to review the integrability in the sense of Frobenius for the hierarchy
introduced which turns out very simple in this context: the key point in our method
is the so-called Gauss-Borel decomposition. It also verifies that the finite discrete
KP hierarchy like any integrable system is always related to some kind of group
factorization.

Next, we describe the corresponding Mulase’s approach associated to the finite discrete
KP hierarchy as it is considered in [3]. We omit the proofs because in [3] these were given in a
more general background.

Let Λ be the n by n-matrix with ones (the matrix entry equals to 1) in the first upper
diagonal and zero in the remaining entries

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · · · · · · · 0
0 0 1 0 · · · 0
...
. . . . . . . . . . . .

...
...
. . . . . . . . . . . . 0

0 0 · · · · · · 0 1
0 0 · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

and ΛT its transpose. The matrix Λ is like a shift operator of coordinates for vectors in Rn. The
Λk matrix, 2 ≤ k ≤ n − 1, is a zero matrix except in the kth upper diagonal where it has ones.
Note that Λn = ΛTn

= O, where O is the zero matrix.
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Let L be a matrix

L = Λ +D0 +
∑

i=1,...,n−1
Di

(
ΛT)i, (2.2)

where Di are diagonal matrices. The entries of L are assumed to be functions depending on
parameters t = (t1, . . . , tn−1).

Definition 2.1. The finite discrete KP hierarchy is the Lax system

∂L

∂tk
=
[
Lk
≥, L
]
, k = 1, . . . , n − 1, (2.3)

where L≥ (L>) denotes the (strictly) upper triangular part of L, analogously L≤ (L<) denotes
the (strictly) lower triangular part of L.

Now, let us assume that for an operator defined as in (2.2), one can find an invertible
matrix S:

S = I + S1ΛT + S2
(
ΛT)2 + · · · + Sn−1

(
ΛT)n−1 (2.4)

such that

L = SΛS−1 , (2.5)

S−1 = I +W1ΛT +W2
(
ΛT
)2 + · · · +Wn−1

(
ΛT
)n−1 (2.6)

where in (2.4) and (2.6), Si andWi are diagonal matrices, then L will be of Lax type.
From now, we can only consider solutions of (2.3) which are of the Lax type. The

operator S is called a dressing operator, and the decomposition (2.5) is unique, up to right
multiplication by an invertible matrix, taking the form of (2.4) that commutes with Λ. Note
that L = Λ is the most simple solution of (2.3) and for it S = I.

If there is a dressing operator such that

∂S

∂tk
= −Lk

<S, k = 1, . . . , n − 1, (2.7)

where L = SΛS−1, then L is of the Lax type, and moreover it satisfies (2.3). Conversely, if L is a
solution of (2.3)which is of the Lax type, then there exists a dressing operator S of L, such that
S is solution of (2.7). This operator S is called the Sato-Wilson matrix (see [3] for more details).

In this point, it is very important to observe that for any given order n, it is always
possible to find matrices L of the form (2.2) which are not of Lax type. It is explained bellow
with more details.

It was shown in [3] that from (2.3) the Zakharov-Shabat equations follow

∂Li
≥

∂tj
− ∂L

j
≥

∂ti
=
[
Li
≥, L

j
≥
]
, i /= j, i, j = 1, . . . , n − 1. (2.8)
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We say that a matrix M admits a Gauss-Borel decomposition if M can be written in the
form

M = M≤M≥, (2.9)

where M≤ has ones on the principal diagonal and M≥ has nonzero elements on the principal
diagonal. Decomposition (2.9) is equivalent to

M =
(
I +G<G

−1
0

)(
I +G0 +G>

)
, (2.10)

where G0 is a diagonal matrix with nonzero elements. It can be proved that the Gauss-
Borel decomposition is unique. M admits the Gauss-Borel decomposition if and only if
Mk /= 0 , k = 1, . . . , n, where Mk is the determinant of the k-order principal submatrix. Of
particular interest will be the matrix space M∗ of matrices M depending on t, admitting a
Gauss-Borel decomposition and for whichM≥(0) = I, where I is the identity matrix.

Let Z be the formal 1-form of L given by

Z =
n−1∑
k=1

Lk
≥dtk. (2.11)

If L satisfies (2.3), then Z satisfies

dZ =
1
2
[Z,Z] (2.12)

which is equivalent to the Zakharov-Shabat equations, where by definition

[Z,Z] =
n−1∑
i,j=1

[
Li
≥, L

j
≥
]
dti dtj . (2.13)

Let

Ω =
n−1∑
k=1

Λkdtk (2.14)

which is a trivial solution of (2.12). Each solution of (2.3) yields a solution of the linear equation

dU = ΩU (2.15)

in M∗ and conversely for a solution of (2.15) in M∗ we can build a matrix L which will be a
solution of (2.3). The solutions of (2.15) take the form

U = e
∑n−1

k=1Λ
ktkU0. (2.16)

Let us consider the Gauss-Borel factorization ofU :

U = S−1Y, (2.17)
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where S−1 is a lower triangular matrix with ones on the principal diagonal and Y is an upper
triangular matrix with nonzero elements on the principal diagonal.

ForU ∈ M∗ we have that

U0 = U(0) = S−1(0)Y (0) = S−1(0)I = S−1
0 , (2.18)

then

U = e
∑n−1

k=1Λ
ktkU0 = e

∑n−1
k=1Λ

ktkS−1
0 , (2.19)

where S−1
0 is a matrix, which takes the form of (2.4).

It is easy to show that if U ∈ M∗, then in (2.17) S is a Sato-Wilson operator, therefore
using the Gauss-Borel factorization of U and doing L = SΛS−1, we obtain a solution of (2.3)
for which

L(0) = S0ΛS−1
0 = L0, (2.20)

(see [3]).

3. Rational functions induced by the finite discrete KP hierarchy solutions

Let ratp(n) be the space of rational functions of grade n and fixed denominator p(z) = zn +
pn−1zn−1 + · · · + p0. It is possible to see that an element f(z) ∈ ratp(n) always admits a unique
factorization

f(z) =
q(z)
p(z)

= CT
0
(
zIn − Lp

)−1
B0, (3.1)

where CT
0 = (1, 0, . . .), BT

0 = (bn−1·bn−2, . . . , b0), q(z) = bn−1zn−1 + bn−2zn−2 + · · · + b0, and

Lp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−pn−1 1 0 · · · 0

−pn−2 0
. . . . . .

...
...

...
. . . . . . 0

−p1 0 · · · . . . 1
−p0 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.2)

this matrix Lp will be denominated by p-operator (note that Lp is of the form (2.2)). Observe
that the characteristic polynomials of Lp is equal to the given p(z).

At this point, it is convenient to inspect the Lax operator as function of its dressing
operators. Let us see it for n = 2 and n = 3:

n = 2 n = 3

S−1
(
1 0
a 1

) ⎛
⎝

1 0 0
a 1 0
c b 1

⎞
⎠

S

(
1 0
−a 1

) ⎛
⎝

1 0 0
−a 1 0

ab − c −b 1

⎞
⎠

L

(
−a 1
−a2 a

) ⎛
⎝

a 1 0
−a2 + c −a + b 1

(a2 − c)b − ac (ab − c) − b2 −b

⎞
⎠ .

(3.3)
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From these simple examples, it follows that the unique p-operator that is also a Lax
operator is justly Lp = Λ. This assertion holds also for any arbitrary dimension of matrix Lp and
it shows that rat(n) (its definition is given next) is the unique space that could be characterized
by this hierarchy, using the Gauss-Borel factorization.

Let rat(n) be a space of rational functions f(z) ∈ ratp(n) such that

f(z) =
a1z

n−1 + a2z
n−2 + · · · + an

zn
=
q(z)
zn

(3.4)

with an /= 0 and ai ∈ R for any i. On this space, it is usual to introduce the equivalence relation

f ∼αf α εR \{0}. (3.5)

We denote the equivalence class to which belongs f(z) and by [f] and the set rat(n)\∼ =
{[f] : f ε rat(n)} by RatΛ(n). As mentioned before, any element of rat(n) can be written in the
form

f(z) = CT
0 (zI −Λ)−1B0, (3.6)

where CT
0 = (1, 0, . . . , 0), BT

0 = (a1, a2, . . . , an) are constant vectors in Rn, and ai are the coef-
ficients of f(z).

Note that

αf(z) = CT
0 (zI −Λ)−1

(
αB0
)
. (3.7)

The functions f ε rat(n) expressed according to (3.6) can be considered as the transfer
functions of the linear dynamical system

dx

dτ
= Λx(τ) + B0u(τ), y(τ) = CT

0x(τ). (3.8)

Proposition 3.1. The linear dynamical system (3.8) associated to f(z) = CT
0 (zI −Λ)−1B0 ε rat(n) is

controllable and observable.

Proof. Indeed,

rang
((
B0
)(
ΛB0
) · · · (Λn−1B0

))
= n (3.9)

because
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1

a2

.

.

.
an−1
an

a2

a3

.

.

.
an

0

. . .

an

0
.
.
.
0
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −(an
n

)
/= 0 (3.10)

if an /= 0 . This fact implicates the controllability of (3.8). Also

rang
((
C0
)(
ΛTC0

) · · · (ΛTn−1
C0
))

= n (3.11)

because (ΛT)iC0, i = 0, . . . , n − 1 , is the canonical base on Rn. This fact implies that (3.8) is
observable.
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Proposition 3.2. LetU ∈ M∗,U = S−1Y and B, C be defined as follows:

B
(
t1, . . . , tn−1

)
= Y
(
t1, . . . , tn−1)B0, C

(
t1, . . . , tn−1) =

(
S−1(t1, . . . , tn−1))TC0, (3.12)

then B and C satisfy the linear equations

∂B

∂tk
= Lk

≥B ,
∂C

∂tk
=
(
Lk
<

)T
C, k = 1, . . . , n − 1, B(0) = B0, C(0) = C0, (3.13)

where L = SΛS−1.

Proof. We have that

∂B

∂tk
=

∂Y

∂tk
B0 (3.14)

for k = 1, . . . , n − 1. Being U = S−1Y , we obtain

∂U

∂tk
=
∂S−1

∂tk
Y + S−1 ∂Y

∂tk
(3.15)

and since

S−1S = I
∂S−1

∂tk
S + S−1 ∂S

∂tk
= 0,

∂U

∂tk
= −S−1 ∂S

∂tk
S−1Y + S−1 ∂Y

∂tk
. (3.16)

Having in mind that S is a Sato-Wilson operator and ∂U/∂tk = ΛkU,

ΛkU =
∂U

∂tk
= −S−1 ∂S

∂tk
S−1Y + S−1 ∂Y

∂tk
, SΛkU +

∂S

∂tk
S−1Y =

∂Y

∂tk
,

(
SΛkS−1)Y − Lk

<Y =
∂Y

∂tk
, Lk

≥Y =
(
Lk − Lk

<

)
Y =

∂Y

∂tk
,

(3.17)

then

∂B

∂tk
=

∂Y

∂tk
B0 = Lk

≥YB0 = Lk
≥B . (3.18)

On the other hand, we have that

∂C

∂tk
=
∂
(
S−1)T
∂tk

B0, C =
(
S−1)TC0 =

(
ST)−1C0 (3.19)

for k = 1, . . . , n − 1. Since S verifies (2.7), it is Sato-Wilson matrix then

∂ST

∂tk
= −STLk

<. (3.20)

From (3.19) and (3.20), its follows that

∂C

∂tk
=
∂
(
S−1)T
∂tk

C0 =
∂
(
ST
)−1

∂tk
C0 =

(
Lk
<

)T(
ST)−1C0 =

(
Lk
<

)T
C. (3.21)

Let us show that the initial conditions hold.
Since B = YB0 and Y (0) = I, then B(0) = B0. On other hand, due to C = (S−1)TC0, we

have that C(0) = (S−1(0))TC0 = (S−1
0 )TC0. As (S−1

0 )
T
is an upper triangular matrix with ones

on the diagonal, then
(
S−1
0

)T
C0 = C0.
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Remark 3.3. It is interesting to note that independently of the selection of S−1
0 as initial condition

in the factorization ofU, the flow for C always begins in C0.

We restrict ourselves to consider a solution L of (2.3) to which LI(0) = Λ and we denote
it by LI . In this case, we must take S0 = I by (2.20).

Next, let us define a linear dynamical system of parameter t = (t1, . . . , tn−1) using B(t),
C(t), and LI(t) in the following way

d

dτ
x(τ, t) = L(τ, t)x(τ, t) + B(τ, t)u(τ, t), y(τ, t1) = CT(τ, t)x(τ, t). (3.22)

Note that for t1 = · · · = tn−1 = 0, we obtain (3.8).

Proposition 3.4. The linear dynamical system (3.22) is controllable and observable.

Proof. Indeed,

rang
(
(B)(LB) · · · (Ln−1B

))
= rang

((
YB0
)(
SΛS−1YB0

) · · · (SΛn−1S−1YB0
))

= rang
(
S
((
UB0

)(
ΛUB0

) · · · (Λn−1UB0
)))

.
(3.23)

Since Λ and U commute, then

rang
(
(B)(LB) · · · (Ln−1B

))
= rang

(
SU
(
B0
)(
ΛB0

) · · · (Λn−1B0
))

= rang
(
Y
(
B0
)(
ΛB0
) · · · (Λn−1B0

))
.

(3.24)

By (3.9) and due to detY /= 0, we have that

rang
(
Y
(
B0
)(
ΛB0
) · · · (Λn−1B0

))
= n (3.25)

from where

rang
(
(B)(LB) · · · (Ln−1B

))
= n (3.26)

then (3.22) is controllable.
Now we will show the observability of (3.32).

rang
(
(C)(LC) · · · (Ln−1C

))

= rang
(((

ST)−1C0
)((

ST)−1ΛTST(ST)−1C0
) · · · ((ST)−1(ΛT)n−1ST(ST)−1C0

))

= rang
((
ST)−1(C0

(
ΛTC0

) · · · ((ΛT)n−1C0
))
.

(3.27)

By (3.11) and since det (ST)−1 /= 0,we have

rang
((
ST)−1(C0

(
ΛTC0

) · · · ((ΛT)n−1C0
))

= n (3.28)

from where

rang
(
(C)(LC) · · · (Ln−1C

))
= n . (3.29)
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Let us consider the function

F
(
z, t1, . . . , tn−1

)
= CT(zI − LI

)−1
B

= CT(S(zI −Λ)S−1)−1B

= CTS(zI −Λ)−1S−1B

=
((
S−1)TC0

)T
S(zI −Λ)−1S−1B

= CT
0S

−1S(zI −Λ)−1S−1YB0

= CT
0 (zI −Λ)−1UIB0.

(3.30)

SinceUI(0) = I, then

F(z, 0) = f(z) = CT
0
(
zI − LI(0)

)−1
B0 . (3.31)

We see that F(z, t1, . . . , tn−1) ε rat(n). From (3.30), we have that

F
(
z, t1, . . . , tn−1

)
=
b1z

n−1 + b2z
n−2 + · · · + bn
zn

=
qn−1
(
z, t1, . . . , tn−1

)

zn
. (3.32)

As UI is an upper triangular matrix with ones on the diagonal, then the independent
terms of qn−1 and of the numerator of f(z) coincide.

We can characterize the flow of (3.30). Taking derivate respect to tk, we obtain

∂F

∂tk
= CT

0
(
zI − LI

)−1∂UI

∂tk
B0, k = 1, . . . , n − 1, (3.33)

doing V = UIB0, we have

F = CT
0 (zI −Λ)−1V. (3.34)

The flows on rat(n) determined by LI have the form

∂V

∂tk
= ΛkV, k = 1, . . . , n − 1 , (3.35)

where V defines the numerator of F and it has the form

V = e
∑n−1

k=1Λ
ktkB0 . (3.36)

Let us notice that (3.35) is similar to the flows considered by Brockett and Faybusovich
in [1].

Let (LI(t), B(t), C(t)) be a triple, where LI(t) is the above fixed solution of (2.3); B(t) and
C(t) are solutions of (3.13). This triple gives a flow of (3.30) on rat(n) defined by the initial
conditions LI(0) = Λ, B(0) = B0, C(0) = C0 that determine the triple (Λ, B0, C0).

In such way, we have the nontrivial flow (Λ, B0, C0)→ (LI, B, C) on R2n+n2
.

The equivalence relation (3.5) induces an equivalence relation ≺ on the set of triples
(Λ, B0, C0) such that

(
Λ, B1

0 , C0
) ≺ (Λ, B2

0 , C0
)
, if B1

0 = αB2
0 , αε R \{0}. (3.37)
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Definition 3.5. The set of solutions (LI(t), B(t), C(t)) of compatible systems (2.3) and (3.13) for
any equivalence class [(Λ, B0, C0)] that satisfies (3.6) is denominated by the moduli space of
systems (2.3) and (3.13). We denote this moduli space as MΛ.

Now, we will discuss the correspondence between RatΛ(n) and MΛ and we will built a
one-to-one mapping from RatΛ(n) to MΛ.

We can obtain a flow on RatΛ(n) by means of (3.35), determined by f(z) in the following
way:

F
(
z, t1, . . . , tn−1

)
= CT

0 (zI −Λ)−1V

= CT
0 (zI −Λ)−1e

∑n−1
k=1Λ

ktkB0

= CT
0 (zI −Λ)−1 S−1YB0

=
((
S−1)TC0

)T(
zI − LI

)−1
YB0

= CT(zI − LI

)−1
B,

(3.38)

where C and B satisfy (3.13), LI satisfy (2.3), and LI(0) = Λ. Thus any [f] εRatΛ(n) defines a
solution (LI, B, C) determined by the initial conditions [(Λ, B0, C0)]. So we have a mapping

β : RatΛ(n) −→ MΛ. (3.39)

Conversely, any solution (LI, B, C) ∈ MΛ induces a flow (3.30) on RatΛ(n) which
originates into f(z) at t = 0. Furthermore, by (3.31) we obtain the class [(Λ, B0, C0)]. Thus
β is an onto mapping form RatΛ(n) toMΛ.

Theorem 3.6. The mapping β defined in (3.39) is a bijection.
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